

Received 15 November 2017 Accepted 27 February 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; bromo; chloroform; dichloromethane; imidazole; iodide.

CCDC references: 1826102; 1826101; 1826100

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and crystal structures of 2-bromo-1,3dimethylimidazolium iodides

Martin Lampl,^a* Gerhard Laus,^a Volker Kahlenberg,^b Klaus Wurst,^a Hubert Huppertz^a and Herwig Schottenberger^a

^aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80–82, 6020 Innsbruck, Austria, and ^bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria. *Correspondence e-mail: lampl.martin@uibk.ac.at

Attempts at direct bromination of 1,3-dimethylimidazolium salts were futile. The title compounds, 2-bromo-1,3-dimethylimidazolium iodide chloroform 0.33-solvate, $C_5H_8BrN_2^+\cdot I^-\cdot 0.33CHCl_3$, 2-bromo-1,3-dimethylimidazolium iodide dichloromethane hemisolvate, $C_5H_8BrN_2^+\cdot I^-\cdot 0.5CH_2Cl_2$, and 2-bromo-1,3-dimethylimidazolium iodide hemi(diiodide), $C_5H_8BrN_2^+\cdot I^-\cdot 0.5I_2$, were obtained by methylation of 2-bromo-1-methylimidazole. They crystallized as CHCl₃, CH₂Cl₂ or I₂ solvates/adducts. The Br atom acts as a σ -hole to accept short C—Br···I interactions. C—H···I hydrogen bonds are observed in each structure.

1. Chemical context

Salts containing 2-bromo-1,3-dimethylimidazolium $(C_5H_8N_2Br^+)$ cations are the objective of this work. They are presumed to be valuable precursors for substitution reactions. This cation, despite its simplicity, has not yet been described. Since brominations in the 1,3-dimethoxyimidazolium series (Laus et al., 2007) and also bromination of 1-hydroxyimidazole-3-oxide (Laus et al., 2012) gave the respective 2bromo derivatives, we hoped that in the present case bromination would also yield the desired 2-bromoimidazolium salts. However, on attempted bromination of 1,3-dimethylimidazolium hexafluoridophosphate (Holbrey et al., 2002), no substitution occurred in the 2-position as indicated by NMR. The absence of P-F vibrations in the infrared spectra suggested the formation of a different anion, which was confirmed by X-ray diffraction. Though direct bromination of the quaternary salt did not yield the desired product, it was discovered that an altered sequence of reaction was successful. Thus, the reaction between the 2-lithio derivative of 1-methylimidazole and an equimolar amount of CBr₄ (Boga et al., 2000) or Br₂ (El Borai et al., 1981) gave 2-bromo-1methylimidazole in good yield, followed by methylation using MeI to afford the desired quaternary salt as an iodide.

Now that the elusive title cation has been secured, further modifications are envisioned, giving access to a plethora of new 2-substituted imidazolium derivatives.

2. Structural commentary

The 2-bromo-1,3-dimethylimidazolium cations and iodide counter-ions crystallize as a CHCl₃ 1/3-solvate (1) (Fig. 1), a CH₂Cl₂ monosolvate (2) (Fig. 2) and an I₂ adduct (3) (Fig. 3).

research communications

cations, two anions and two half-molecules of dichloromethane (both completed by crystallographic twofold symmetry) in the asymmetric unit. In **3**, the iodine molecule is generated by crystallographic inversion symmetry.

Figure 1

The molecular structure of the chloroform solvate 1, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms. [Symmetry code: (i) x, 1 - y, z.]

In every case, the cation is almost planar. In the asymmetric unit of 1, there are one and a half ion pairs, which are completed by mirror symmetry; the chloroform molecule also lies on a crystallographic mirror plane. In 2, there are two

Figure 2

The molecular structure of the iodide **2**, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms. [Symmetry codes: (i) $\frac{1}{2} - x$, y, $\frac{3}{2} - z$, (ii) $\frac{1}{2} - x$, y, $\frac{1}{2} - z$.]

3. Supramolecular features

Halogen-halogen interactions constitute the main supramolecular features of the three compounds. The cations in **1** are arranged in a tridimensional array of chains by $C-H\cdots I1$ interactions. The chloroform molecule bridges these chains by $C-H7\cdots Cl1$ and $C-H9\cdots I2$ hydrogen bonds (Table 1). Interhalogen Br $1\cdots I2(x, y, -1 + z)$ [3.544 (1) Å] and Br $2\cdots I2$ [3.546 (2) Å] contacts complete the network (Fig. 4). The respective $C-Br\cdots I$ angles are 173.4 (2) and 173.6 (3)°, indicating an interaction involving the positive end cap (σ -

Figure 3

The molecular structure of the iodide **3**, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms. [Symmetry code: (i) 1 - x, 1 - y, -z.]

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for 1.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C7-H7\cdots Cl1^i$	0.95	2.82	3.623 (7)	142
$C8-H8C\cdots I1^{i}$	0.98	3.02	3.935 (6)	156
$C9-H9\cdots I2^{ii}$	1.00	2.77	3.760 (8)	169
$C2-H2\cdots I1^{iii}$	0.95	3.01	3.932 (6)	165
$C3-H3\cdots I1^{iv}$	0.95	3.12	3.952 (9)	147

Symmetry codes: (i) x, -y + 1, z; (ii) x + 1, y, z; (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, z$; (iv) x - 1, y, z - 1.

hole) of the terminal Br atom (Awwadi *et al.*, 2006; Clark *et al.*, 2007).

This type of interaction is also identified in the structures of compounds 2 and 3. In the dichloromethane solvate 2, almost linear halogen interactions $Br1\cdots I1$ [3.483 (1) Å] and

Figure 4

The crystal packing of compound **1** viewed along the *c* axis showing the $C-H\cdots Cl$ and $C-H\cdots I$ hydrogen bonds (see Table 1) and $Br\cdots I$ short contacts as dashed lines.

Table 2			
Hydrogen-bond geome	try (Å,	°) for	2.

, , ,	•	/		
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C11-H11A\cdots I2^{i}$ $C12-H12A\cdots I1^{ii}$	0.99 0.99	2.86 2.89	3.834 (2) 3.862 (2)	169 170

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y + 1, -z + 1.

Table 3 Hydrogen-bond geometry (Å, °) for 3

filjarogen bona geometry (fil,) for b.					
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$C5-H5B\cdots I1^{i}$	0.98	3.03	3.986 (8)	166	

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

The crystal packing of compound **2** viewed along the *b* axis showing the $C-H\cdots I$ hydrogen bonds involving the solvent (see Table 2) and $Br\cdots I$ short contacts as dashed lines.

Figure 6

The crystal packing of compound **3** viewed along the *a* axis showing the $C-H\cdots I$ hydrogen bonds (see Table 3) and $Br\cdots I$ and $I\cdots I$ short contacts as dashed lines.

research communications

Table 4Experimental details.

	1	2	3
Crystal data			
Chemical formula	3C ₅ H ₈ BrN ₂ ⁺ ·3I ⁻ ·CHCl ₂	2C ₅ H ₈ BrN ₂ ⁺ ·2I ⁻ ·CH ₂ Cl ₂	$C_{e}H_{e}BrN_{2}^{+}I^{-}0.5I_{2}$
	1028.20	690.79	429.83
Crystal system, space group	Monoclinic. Cm	Monoclinic. $P2/n$	Monoclinic. $P2_1/n$
Temperature (K)	173	193	173
a, b, c (Å)	13.9135 (14), 21.9492 (10), 6.4529 (6)	16.0223 (8), 8.5334 (4), 16.2881 (8)	6.0861 (4), 14.4773 (11), 12.0303 (7)
β (°)	128.314 (16)	101.590 (1)	97.812 (5)
$V(\dot{A}^3)$	1546.2 (3)	2181.58 (18)	1050.16 (12)
Z	2	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	7.18	6.79	9.74
Crystal size (mm)	$0.26\times0.14\times0.06$	$0.18\times0.16\times0.14$	$0.36 \times 0.10 \times 0.08$
Data collection			
Diffractometer	Gemini-R Ultra	Quest Photon 100	Gemini-R Ultra
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2014)	Multi-scan (SADABS; Bruker, 2014)	Analytical
T_{\min}, T_{\max}	0.427, 1	0.296, 0.433	0.065, 0.446
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4904, 2522, 2426	62055, 4302, 3952	6287, 1912, 1746
R _{int}	0.026	0.028	0.030
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.602	0.617	0.602
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.018, 0.035, 0.95	0.022, 0.063, 1.09	0.036, 0.080, 1.34
No. of reflections	2522	4302	1912
No. of parameters	151	196	93
No. of restraints	2	0	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.41, -0.44	1.07, -0.76	0.76, -0.97
Absolute structure	Flack x determined using 961 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	_	-
Absolute structure parameter	0.038 (8)	_	-

Computer programs: APEX2 and SAINT (Bruker, 2014), CrysAlis PRO (Oxford Diffraction, 2014), SIR2002 (Burla et al., 2003), SHELXTL (Sheldrick, 2008), SHELXL2014 and SHELXL2017 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Br2···I2 [3.411 (1) Å] exhibit C–Br···I angles of 173.7 (1) and 176.7 (1)°, respectively (Fig. 5). The I1 and I2 anions are linked by hydrogen bonds donated by the solvent molecules (Table 2).

In **3**, a molecular addition compound with iodine (Fig. 6), interactions $I1 \cdots I2$ [3.426 (1) Å] and I2-I2 [related by inversion, bond length 2.826 (1) Å] are present. The $I1 \cdots Br(1 + x, y, z)$ [3.499 (1) Å] interaction displays a C-Br $\cdots I$ angle of 168.0 (2)° (Fig. 6) and the iodide anion (I1) accepts a hydrogen bond from the methyl group (Table 3).

4. Database survey

A search of the Cambridge Structural Database (Version 5.38; Groom *et al.*, 2016) for 2-halogeno-1,3-dialkyl or diarylimidazolium salts gave 30 hits. When carbon substituents were allowed in positions 4 and 5, the tally was 34. Of these 64 compounds, there were 11 containing chlorine, 19 bromine and 33 iodine. Closely related imidazolin-2-ylidene–iodine (Kuhn *et al.*, 1993) and imidazolin-2-ylidene–bromine (Kuhn *et al.*, 2004) coordination compounds have been reported.

5. Synthesis and crystallization

Compound 1: A solution of 2-bromo-1-methylimidazole (150 µl, 1.54 mmol) in CHCl₃ (1 ml) was carefully layered over a solution of CH₃I (190 µl, 3.07 mmol) in CHCl₃ (2 ml). The mixture was kept at room temperature and protected from light. After 2 h, the formation of colourless crystals of **1** was observed. The product was collected after seven days at 278 K, yielding 252 mg (48%); m.p. 453 K (decomposition). ¹H NMR (300 MHz, DMSO-*d*₆): δ 3.81 (*s*, 6H), 7.90 (*s*, 2H), 8.31 (*s*) ppm. ¹³C NMR (75 MHz, DMSO-*d*₆): δ 36.8 (2C), 79.3, 123.5, 124.5 (2C) ppm. IR (neat): ν 3066, 2931, 1521, 1240, 1098, 765, 738, 652, 635 cm⁻¹.

Compound **2**: A solution of 2-bromo-1-methylimidazole (150 µl, 1.54 mmol) in CH₂Cl₂ (1 ml) was carefully layered over a solution of CH₃I (190 µl, 3.07 mmol) in CH₂Cl₂ (2 ml). The mixture was kept at room temperature and protected from light. After 2 h, the formation of colourless crystals of **2** was observed. The product was collected after 18 h, yielding 145 mg (27%); m.p. 452–453 K (decomposition). ¹H NMR (300 MHz, DMSO-*d*₆): δ 3.81 (*s*, 6H), 5.75, 7.90 (*s*, 2H) ppm. ¹³C NMR (75 MHz, DMSO-*d*₆): δ 36.8 (2C), 55.0, 123.3, 124.7

(2C) ppm. IR (neat): v 3066, 3011, 2944, 1523, 1240, 1101, 779, 728, 696, 635 cm⁻¹.

Compound **3**: The I₂ adduct was obtained as a byproduct of **1** and **2** in the form of brown crystals of **3**; approximate yield 10%; m.p. 451 K (decomposition). ¹H NMR (300 MHz, DMSO- d_6): δ 3.81 (*s*, 6H), 7.89 (*d*, 2H) ppm IR (neat): ν 3063, 1523, 1226, 739, 634 cm⁻¹.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were poisitioned geometrically (C-H = 0.95–1.0 Å) and treated as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Acknowledgements

We are grateful to H. Kopacka for the NMR spectra.

References

- Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.
- Boga, C., Del Vecchio, E., Forlani, L. & Todesco, P. E. (2000). J. Organomet. Chem. 601, 233–236.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Clark, T., Hennemann, M., Murray, J. S. & Politzer, P. (2007). J. Mol. Model. 13, 291–296.
- El Borai, M., Moustafa, A. H., Anwar, M. & Abdel Hay, F. I. (1981). Pol. J. Chem. 55, 1659–1665.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Holbrey, J. D., Reichert, W. M., Swatloski, R. P., Broker, G. A., Pitner, W. R., Seddon, K. R. & Rogers, R. D. (2002). *Green Chem.* 4, 407– 413.
- Kuhn, N., Abu-Rayyan, A., Eichele, K., Schwarz, S. & Steimann, M. (2004). Inorg. Chim. Acta, 357, 1799–1804.
- Kuhn, N., Kratz, T. & Henkel, G. (1993). J. Chem. Soc. Chem. Commun. pp. 1778–1779.
- Laus, G., Schwärzler, A., Schuster, P., Bentivoglio, G., Hummel, M., Wurst, K., Kahlenberg, V., Lörting, T., Schütz, J., Peringer, P., Bonn, G., Nauer, G. & Schottenberger, H. (2007). Z. Naturforsch. Teil B, 62, 295–308.
- Laus, G., Wurst, K., Kahlenberg, V. & Schottenberger, H. (2012). Z. Naturforsch. Teil B, 67, 354–358.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Oxford Diffraction (2014). *CrysAlis PRO*. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Acta Cryst. (2018). E74, 497-501 [https://doi.org/10.1107/S2056989018003390]

Synthesis and crystal structures of 2-bromo-1,3-dimethylimidazolium iodides

Martin Lampl, Gerhard Laus, Volker Kahlenberg, Klaus Wurst, Hubert Huppertz and Herwig Schottenberger

Computing details

Data collection: CrysAlis PRO (Oxford Diffraction, 2014) for (1); APEX2 (Bruker, 2014) for (2); CrysAlis PRO (Oxford Diffraction, 2014). for (3). Cell refinement: CrysAlis PRO (Oxford Diffraction, 2014) for (1); SAINT (Bruker, 2014) for (2); CrysAlis PRO (Oxford Diffraction, 2014). for (3). Data reduction: CrysAlis PRO (Oxford Diffraction, 2014) for (1); SAINT (Bruker, 2014) for (2); CrysAlis PRO (Oxford Diffraction, 2014). for (3). Program(s) used to solve structure: SIR2002 (Burla et al., 2003) for (1), (3); SHELXTL (Sheldrick, 2008) for (2). Program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015) for (1), (3); SHELXL2014 (Sheldrick, 2015) for (2). For all structures, molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).

2-Bromo-1,3-dimethylimidazolium iodide chloroform 0.33-solvate (1)

Crystal data	
$3C_5H_8BrN_2^+ \cdot 3I^- \cdot CHCl_3$	F(000) = 956
$M_r = 1028.20$	$D_{\rm x} = 2.208 {\rm Mg} {\rm m}^{-3}$
Monoclinic, Cm	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 13.9135 (14) Å	Cell parameters from 3263 refle
b = 21.9492 (10) Å	$\theta = 3.3 - 28.4^{\circ}$
c = 6.4529 (6) Å	$\mu = 7.18 \text{ mm}^{-1}$
$\beta = 128.314 \ (16)^{\circ}$	T = 173 K
V = 1546.2 (3) Å ³	Prismatic, colourless
<i>Z</i> = 2	$0.26 \times 0.14 \times 0.06 \text{ mm}$
Data collection	
Gemini-R Ultra	2522 independent reflections
diffractometer	2426 reflections with $I > 2\sigma(I)$
Radiation source: Enhance (Mo) X-ray Source	$R_{\rm int} = 0.026$
ω scans	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$
Absorption correction: multi-scan	$h = -16 \rightarrow 13$
(CrysAlis PRO; Oxford Diffraction, 2014)	$k = -22 \rightarrow 26$
$T_{\min} = 0.427, \ T_{\max} = 1$	$l = -7 \rightarrow 7$
4904 measured reflections	
Refinement	
Refinement on F^2	2522 reflections
Least-squares matrix: full	151 parameters
$R[F^2 > 2\sigma(F^2)] = 0.018$	2 restraints

2 restraints Hydrogen site location: inferred from neighbouring sites

3263 reflections

 $wR(F^2) = 0.035$

S = 0.95

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0049P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.41$ e Å⁻³

Special details

961 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.038 (8)

Absolute structure: Flack x determined using

 $\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.12194 (6)	0.39565 (3)	-0.07927 (14)	0.03269 (15)	
C2	0.0731 (6)	0.2987 (3)	0.3714 (13)	0.0354 (15)	
H2	0.100922	0.279634	0.532098	0.042*	
C3	-0.0414 (6)	0.2992 (3)	0.1483 (14)	0.0353 (16)	
H3	-0.110268	0.280970	0.121251	0.042*	
C1	0.0731 (5)	0.3488 (2)	0.0790 (11)	0.0246 (14)	
N1	0.1435 (4)	0.3305 (2)	0.3284 (9)	0.0284 (11)	
C4	0.2778 (6)	0.3372 (3)	0.5169 (14)	0.0405 (17)	
H4A	0.313345	0.325857	0.430407	0.061*	
H4B	0.310751	0.310582	0.669397	0.061*	
H4C	0.298588	0.379637	0.576266	0.061*	
N2	-0.0420 (4)	0.3308 (2)	-0.0364 (10)	0.0283 (12)	
C5	-0.1452 (5)	0.3358 (3)	-0.3220 (12)	0.0353 (15)	
H5A	-0.144701	0.376365	-0.385102	0.053*	
H5B	-0.222661	0.329753	-0.351574	0.053*	
H5C	-0.136654	0.304732	-0.418510	0.053*	
I1	0.62590 (4)	0.29885 (2)	0.94514 (6)	0.02823 (10)	
I2	0.21304 (5)	0.500000	0.65285 (9)	0.02890 (13)	
Br2	0.40367 (7)	0.500000	0.46275 (15)	0.0313 (2)	
C8	0.4948 (7)	0.6124 (3)	0.2888 (14)	0.0462 (18)	
H8A	0.405961	0.618288	0.177487	0.069*	
H8B	0.529339	0.639748	0.230124	0.069*	
H8C	0.531481	0.621371	0.472955	0.069*	
N3	0.5211 (4)	0.5494 (2)	0.2675 (9)	0.0315 (12)	
C6	0.4874 (7)	0.500000	0.3242 (15)	0.0269 (19)	
C7	0.5758 (6)	0.5305 (3)	0.1602 (12)	0.0399 (16)	
H7	0.607822	0.556086	0.097268	0.048*	
C9	0.8764 (8)	0.500000	0.0794 (19)	0.038 (2)	
H9	0.962304	0.500000	0.247965	0.045*	
Cl1	0.8016 (2)	0.43407 (7)	0.0686 (5)	0.0569 (5)	
Cl2	0.8806 (3)	0.500000	-0.1852 (6)	0.0636 (8)	
Cl2	0.8806 (3)	0.500000	-0.1852 (6)	0.0636 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0383 (3)	0.0293 (3)	0.0368 (3)	-0.0004 (3)	0.0265 (3)	0.0013 (3)
C2	0.052 (4)	0.032 (3)	0.033 (4)	0.001 (3)	0.031 (4)	-0.001 (3)
C3	0.046 (4)	0.031 (4)	0.050 (4)	0.002 (3)	0.040 (4)	0.003 (3)
C1	0.029 (3)	0.019 (3)	0.023 (3)	0.003 (3)	0.015 (3)	-0.003 (3)
N1	0.032 (3)	0.025 (3)	0.026 (3)	0.003 (2)	0.017 (2)	-0.003 (2)
C4	0.043 (4)	0.032 (3)	0.038 (4)	0.006 (3)	0.021 (4)	0.002 (3)
N2	0.028 (3)	0.024 (3)	0.035 (3)	0.002 (2)	0.021 (2)	-0.001 (2)
C5	0.022 (3)	0.033 (3)	0.031 (4)	0.003 (3)	0.007 (3)	0.005 (3)
I1	0.03254 (19)	0.02663 (18)	0.0289 (2)	-0.00359 (18)	0.02071 (17)	0.00012 (18)
I2	0.0286 (3)	0.0344 (3)	0.0280 (3)	0.000	0.0196 (3)	0.000
Br2	0.0373 (5)	0.0385 (5)	0.0292 (5)	0.000	0.0262 (4)	0.000
C8	0.059 (5)	0.044 (4)	0.052 (5)	-0.021 (3)	0.043 (4)	-0.015 (3)
N3	0.028 (3)	0.045 (3)	0.023 (3)	-0.011 (2)	0.016 (2)	-0.005 (2)
C6	0.021 (4)	0.044 (5)	0.018 (4)	0.000	0.013 (4)	0.000
C7	0.031 (3)	0.064 (4)	0.031 (4)	-0.008 (3)	0.022 (3)	-0.004 (3)
C9	0.034 (5)	0.031 (5)	0.053 (6)	0.000	0.030 (5)	0.000
Cl1	0.0748 (12)	0.0285 (7)	0.1059 (15)	0.0015 (10)	0.0751 (12)	0.0040 (11)
Cl2	0.102 (2)	0.0363 (14)	0.097 (2)	0.000	0.084 (2)	0.000

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Br1—C1	1.850 (6)	C5—H5C	0.9800
C2—C3	1.329 (9)	Br2—C6	1.857 (8)
C2—N1	1.364 (8)	C8—N3	1.457 (8)
C2—H2	0.9500	C8—H8A	0.9800
C3—N2	1.374 (8)	C8—H8B	0.9800
С3—Н3	0.9500	C8—H8C	0.9800
C1—N1	1.325 (7)	N3—C6	1.321 (6)
C1—N2	1.340 (7)	N3—C7	1.372 (7)
N1—C4	1.475 (8)	C7—C7 ⁱ	1.340 (13)
C4—H4A	0.9800	С7—Н7	0.9500
C4—H4B	0.9800	C9—C12	1.744 (9)
C4—H4C	0.9800	C9—C11 ⁱ	1.759 (5)
N2-C5	1.480 (8)	C9—C11	1.759 (5)
С5—Н5А	0.9800	С9—Н9	1.0000
С5—Н5В	0.9800		
C3—C2—N1	107.7 (6)	N2—C5—H5C	109.5
C3—C2—H2	126.1	H5A—C5—H5C	109.5
N1—C2—H2	126.1	H5B—C5—H5C	109.5
C2-C3-N2	107.6 (6)	N3—C8—H8A	109.5
С2—С3—Н3	126.2	N3—C8—H8B	109.5
N2—C3—H3	126.2	H8A—C8—H8B	109.5
N1-C1-N2	108.3 (5)	N3—C8—H8C	109.5
N1—C1—Br1	126.2 (4)	H8A—C8—H8C	109.5

N2—C1—Br1	125.3 (4)	H8B—C8—H8C	109.5
C1—N1—C2	108.6 (5)	C6—N3—C7	107.1 (5)
C1—N1—C4	125.2 (5)	C6—N3—C8	126.8 (5)
C2—N1—C4	125.8 (5)	C7—N3—C8	125.8 (5)
N1—C4—H4A	109.5	N3 ⁱ —C6—N3	110.5 (7)
N1—C4—H4B	109.5	N3 ⁱ —C6—Br2	124.8 (4)
H4A—C4—H4B	109.5	N3—C6—Br2	124.8 (4)
N1—C4—H4C	109.5	C7 ⁱ —C7—N3	107.6 (4)
H4A—C4—H4C	109.5	C7 ⁱ —C7—H7	126.2
H4B—C4—H4C	109.5	N3—C7—H7	126.2
C1—N2—C3	107.7 (5)	Cl2—C9—Cl1 ⁱ	109.8 (4)
C1—N2—C5	125.0 (5)	Cl2—C9—Cl1	109.8 (4)
C3—N2—C5	126.6 (5)	Cl1 ⁱ —C9—Cl1	110.8 (5)
N2—C5—H5A	109.5	С12—С9—Н9	108.8
N2—C5—H5B	109.5	Cl1 ⁱ —C9—H9	108.8
H5A—C5—H5B	109.5	С11—С9—Н9	108.8
N1-C2-C3-N2	0.8 (7)	Br1—C1—N2—C5	11.5 (8)
N2-C1-N1-C2	1.8 (6)	C2-C3-N2-C1	0.3 (7)
Br1-C1-N1-C2	178.1 (4)	C2—C3—N2—C5	171.0 (5)
N2-C1-N1-C4	175.1 (5)	C7—N3—C6—N3 ⁱ	2.1 (8)
Br1-C1-N1-C4	-8.6 (8)	C8—N3—C6—N3 ⁱ	176.4 (4)
C3—C2—N1—C1	-1.6 (7)	C7—N3—C6—Br2	-177.6 (5)
C3—C2—N1—C4	-174.9 (6)	C8—N3—C6—Br2	-3.3 (10)
N1-C1-N2-C3	-1.3 (6)	C6—N3—C7—C7 ⁱ	-1.3 (5)
Br1—C1—N2—C3	-177.6 (4)	C8—N3—C7—C7 ⁱ	-175.7 (5)
N1-C1-N2-C5	-172.2 (5)		
NI - UI - NZ - UJ	=1/2.2(3)		

Symmetry code: (i) x, -y+1, z.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H···A
C7—H7···Cl1 ⁱ	0.95	2.82	3.623 (7)	142
C8—H8C···I1 ⁱ	0.98	3.02	3.935 (6)	156
С9—Н9…І2 ^{іі}	1.00	2.77	3.760 (8)	169
C2—H2…I1 ⁱⁱⁱ	0.95	3.01	3.932 (6)	165
C3—H3…I1 ^{iv}	0.95	3.12	3.952 (9)	147

Symmetry codes: (i) *x*, -*y*+1, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*-1/2, -*y*+1/2, *z*; (iv) *x*-1, *y*, *z*-1.

2-Bromo-1,3-dimethylimidazolium iodide dichloromethane hemisolvate (2)

Crystal data	
$2C_5H_8BrN_2^+\cdot 2I^-\cdot CH_2Cl_2$	$V = 2181.58 (18) \text{ Å}^3$
$M_r = 690.79$	Z = 4
Monoclinic, $P2/n$	F(000) = 1288
a = 16.0223 (8) Å	$D_{\rm x} = 2.103 {\rm ~Mg} {\rm ~m}^{-3}$
b = 8.5334 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 16.2881 (8) Å	Cell parameters from 9539 reflections
$\beta = 101.590 \ (1)^{\circ}$	$\theta = 2.5 - 26.8^{\circ}$

 $\mu = 6.79 \text{ mm}^{-1}$ T = 193 K

Data collection

Quest Photon 100 diffractometer Radiation source: Incoatec Microfocus Multi layered optics monochromator Detector resolution: 10.4 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{min} = 0.296, T_{max} = 0.433$	62055 measured reflections 4302 independent reflections 3952 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -19 \rightarrow 19$ $k = -10 \rightarrow 10$ $l = -20 \rightarrow 20$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.063$ S = 1.09 4302 reflections 196 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0332P)^2 + 2.6592P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.07 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.76 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00234 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Prism, colourless

 $0.18 \times 0.16 \times 0.14 \text{ mm}$

Fractional atomic coordinates and isotropic or e	equivalent isotropic di	<i>isplacement parameters</i>	$(Å^2)$
--	-------------------------	-------------------------------	---------

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
I1	0.67871 (2)	0.51565 (2)	0.93259 (2)	0.03524 (8)	
I2	0.43487 (2)	1.00139 (2)	0.67926 (2)	0.03507 (8)	
Br1	0.58435 (2)	0.60778 (4)	0.72654 (2)	0.04235 (10)	
Br2	0.23431 (2)	0.90371 (4)	0.57720 (2)	0.03775 (10)	
N1	0.44318 (17)	0.5987 (3)	0.58815 (16)	0.0365 (6)	
N2	0.54830 (15)	0.7333 (3)	0.55936 (15)	0.0345 (5)	
N3	0.06441 (15)	0.7732 (3)	0.54179 (15)	0.0344 (5)	
N4	0.09163 (16)	0.9098 (3)	0.43839 (16)	0.0347 (5)	
C1	0.52208 (19)	0.6502 (4)	0.61831 (18)	0.0347 (6)	
C2	0.4178 (2)	0.6538 (4)	0.50716 (19)	0.0387 (7)	
H2	0.3644	0.6356	0.4708	0.046*	
C3	0.4831 (2)	0.7381 (4)	0.48965 (19)	0.0389 (7)	
H3	0.4841	0.7913	0.4386	0.047*	
C4	0.3892 (3)	0.5077 (5)	0.6337 (3)	0.0550 (10)	
H4A	0.4211	0.4167	0.6602	0.083*	
H4B	0.3382	0.4720	0.5945	0.083*	
H4C	0.3724	0.5737	0.6769	0.083*	

C5	0.6292 (2)	0.8180 (4)	0.5680 (2)	0.0494 (8)	
H5A	0.6345	0.8927	0.6145	0.074*	
H5B	0.6305	0.8747	0.5160	0.074*	
H5C	0.6765	0.7433	0.5793	0.074*	
C6	0.12335 (18)	0.8585 (3)	0.51581 (19)	0.0334 (6)	
C7	-0.00661 (19)	0.7668 (4)	0.4784 (2)	0.0383 (7)	
H7	-0.0580	0.7122	0.4797	0.046*	
C8	0.01002 (19)	0.8519 (4)	0.4140 (2)	0.0387 (7)	
H8	-0.0274	0.8689	0.3617	0.046*	
C9	0.0746 (2)	0.6917 (5)	0.6219 (2)	0.0503 (8)	
H9A	0.1254	0.6251	0.6298	0.075*	
H9B	0.0243	0.6266	0.6224	0.075*	
H9C	0.0809	0.7686	0.6674	0.075*	
C10	0.1357 (3)	1.0097 (5)	0.3880 (3)	0.0530 (10)	
H10A	0.1510	1.1091	0.4172	0.080*	
H10B	0.0982	1.0301	0.3336	0.080*	
H10C	0.1875	0.9569	0.3792	0.080*	
C11	0.2500	0.2120 (5)	0.7500	0.0409 (10)	
H11A	0.2931	0.1437	0.7324	0.049*	0.5
H11B	0.2069	0.1436	0.7676	0.049*	0.5
Cl1	0.29912 (8)	0.32404 (14)	0.83510 (8)	0.0829 (4)	
C12	0.2500	0.7005 (5)	0.2500	0.0416 (10)	
H12A	0.2689	0.6322	0.2081	0.050*	0.5
H12B	0.2311	0.6322	0.2919	0.050*	0.5
C12	0.16400 (7)	0.81502 (12)	0.20000 (7)	0.0695 (3)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U ²³
I1	0.03410 (12)	0.03872 (13)	0.03155 (12)	0.00227 (8)	0.00338 (9)	0.00373 (7)
I2	0.03022 (12)	0.04024 (13)	0.03290 (12)	0.00221 (7)	0.00191 (8)	-0.00410 (7)
Br1	0.04481 (19)	0.04589 (19)	0.03212 (17)	0.01593 (14)	-0.00236 (13)	0.00018 (13)
Br2	0.03094 (16)	0.04058 (18)	0.03833 (17)	-0.00138 (12)	-0.00111 (12)	-0.01062 (12)
N1	0.0399 (14)	0.0358 (14)	0.0331 (13)	0.0018 (11)	0.0057 (11)	-0.0024 (10)
N2	0.0315 (12)	0.0374 (13)	0.0331 (13)	0.0056 (10)	0.0025 (10)	-0.0051 (11)
N3	0.0320 (13)	0.0379 (13)	0.0326 (13)	0.0021 (10)	0.0050 (10)	-0.0042 (11)
N4	0.0326 (13)	0.0356 (13)	0.0349 (13)	0.0003 (10)	0.0046 (10)	-0.0052 (10)
C1	0.0382 (16)	0.0325 (15)	0.0317 (15)	0.0085 (12)	0.0032 (12)	-0.0038 (12)
C2	0.0384 (16)	0.0429 (17)	0.0315 (15)	0.0033 (14)	-0.0004 (12)	-0.0052 (13)
C3	0.0413 (17)	0.0454 (18)	0.0282 (15)	0.0076 (14)	0.0026 (12)	-0.0018 (13)
C4	0.058 (2)	0.057 (2)	0.051 (2)	-0.0060 (17)	0.0125 (19)	0.0077 (17)
C5	0.0364 (17)	0.054 (2)	0.055 (2)	-0.0011 (15)	0.0048 (15)	-0.0014 (17)
C6	0.0317 (14)	0.0315 (14)	0.0356 (15)	0.0037 (12)	0.0032 (12)	-0.0082 (12)
C7	0.0270 (14)	0.0438 (18)	0.0428 (17)	-0.0011 (12)	0.0039 (12)	-0.0061 (14)
C8	0.0306 (15)	0.0435 (17)	0.0383 (16)	0.0011 (13)	-0.0019 (12)	-0.0042 (14)
C9	0.054 (2)	0.058 (2)	0.0390 (18)	-0.0011 (17)	0.0089 (16)	0.0067 (16)
C10	0.051 (2)	0.061 (2)	0.046 (2)	-0.0109 (17)	0.0077 (17)	0.0060 (16)
C11	0.034 (2)	0.042 (2)	0.046 (3)	0.000	0.0059 (19)	0.000

Cl1	0 0724 (7)	0.0690 (7)	0 0889 (8)	0.0138 (6)	-0.0277 (6)	-0.0346(6)
C12	0.044 (2)	0.040 (2)	0.037 (2)	0.000	-0.0023(19)	0.000
Cl2	0.0684 (6)	0.0583 (6)	0.0657 (6)	0.0183 (5)	-0.0249 (5)	-0.0070 (5)

Geometric parameters (Å, °)

Br1—C1	1.878 (3)	C4—H4C	0.9800
Br2—C6	1.896 (3)	С5—Н5А	0.9800
N1-C1	1.335 (4)	С5—Н5В	0.9800
N1—C2	1.382 (4)	C5—H5C	0.9800
N1-C4	1.469 (5)	C7—C8	1.345 (5)
N2-C1	1.328 (4)	С7—Н7	0.9500
N2—C3	1.380 (4)	C8—H8	0.9500
N2—C5	1.465 (4)	С9—Н9А	0.9800
N3—C6	1.327 (4)	С9—Н9В	0.9800
N3—C7	1.376 (4)	С9—Н9С	0.9800
N3—C9	1.459 (4)	C10—H10A	0.9800
N4—C6	1.335 (4)	C10—H10B	0.9800
N4—C8	1.380 (4)	C10—H10C	0.9800
N4—C10	1.460 (4)	C11—C11	1.737 (3)
C2—C3	1.347 (5)	C11—H11A	0.9900
C2—H2	0.9500	C11—H11B	0.9900
С3—Н3	0.9500	C12—Cl2	1.751 (3)
C4—H4A	0.9800	C12—H12A	0.9900
C4—H4B	0.9800	C12—H12B	0.9900
C1—N1—C2	108.3 (3)	N3—C6—N4	108.7 (3)
C1—N1—C4	126.7 (3)	N3—C6—Br2	126.5 (2)
C2—N1—C4	124.8 (3)	N4—C6—Br2	124.7 (2)
C1—N2—C3	108.3 (3)	C8—C7—N3	107.5 (3)
C1—N2—C5	126.6 (3)	C8—C7—H7	126.3
C3—N2—C5	124.9 (3)	N3—C7—H7	126.3
C6—N3—C7	108.5 (3)	C7—C8—N4	107.1 (3)
C6—N3—C9	126.0 (3)	C7—C8—H8	126.4
C7—N3—C9	125.4 (3)	N4—C8—H8	126.4
C6—N4—C8	108.2 (3)	N3—C9—H9A	109.5
C6—N4—C10	126.0 (3)	N3—C9—H9B	109.5
C8—N4—C10	125.8 (3)	H9A—C9—H9B	109.5
N2-C1-N1	108.9 (3)	N3—C9—H9C	109.5
N2—C1—Br1	126.6 (2)	Н9А—С9—Н9С	109.5
N1—C1—Br1	124.5 (2)	H9B—C9—H9C	109.5
C3—C2—N1	106.9 (3)	N4—C10—H10A	109.5
С3—С2—Н2	126.5	N4—C10—H10B	109.5
N1—C2—H2	126.5	H10A—C10—H10B	109.5
C2—C3—N2	107.6 (3)	N4—C10—H10C	109.5
С2—С3—Н3	126.2	H10A—C10—H10C	109.5
N2—C3—H3	126.2	H10B—C10—H10C	109.5
N1—C4—H4A	109.5	Cl1 ⁱ —C11—Cl1	113.2 (3)

N1—C4—H4B	109.5	Cl1 ⁱ —C11—H11A	108.9
H4A—C4—H4B	109.5	Cl1—C11—H11A	108.9
N1—C4—H4C	109.5	Cl1 ⁱ —C11—H11B	108.9
H4A—C4—H4C	109.5	Cl1—C11—H11B	108.9
H4B—C4—H4C	109.5	H11A—C11—H11B	107.7
N2—C5—H5A	109.5	Cl2—C12—Cl2 ⁱⁱ	112.1 (3)
N2—C5—H5B	109.5	Cl2—C12—H12A	109.2
H5A—C5—H5B	109.5	Cl2 ⁱⁱ —C12—H12A	109.2
N2—C5—H5C	109.5	Cl2—C12—H12B	109.2
H5A—C5—H5C	109.5	Cl2 ⁱⁱ —C12—H12B	109.2
H5B—C5—H5C	109.5	H12A—C12—H12B	107.9
C3—N2—C1—N1	1.4 (3)	C7—N3—C6—N4	1.4 (3)
C5—N2—C1—N1	176.4 (3)	C9—N3—C6—N4	177.9 (3)
C3—N2—C1—Br1	-179.2 (2)	C7—N3—C6—Br2	-179.2 (2)
C5—N2—C1—Br1	-4.3 (4)	C9—N3—C6—Br2	-2.6 (4)
C2—N1—C1—N2	-1.1 (3)	C8—N4—C6—N3	-1.2 (3)
C4—N1—C1—N2	-177.4 (3)	C10—N4—C6—N3	178.9 (3)
C2—N1—C1—Br1	179.5 (2)	C8—N4—C6—Br2	179.3 (2)
C4—N1—C1—Br1	3.2 (4)	C10—N4—C6—Br2	-0.5 (4)
C1—N1—C2—C3	0.3 (3)	C6—N3—C7—C8	-1.0 (3)
C4—N1—C2—C3	176.7 (3)	C9—N3—C7—C8	-177.5 (3)
N1-C2-C3-N2	0.5 (3)	N3-C7-C8-N4	0.2 (4)
C1—N2—C3—C2	-1.2 (3)	C6—N4—C8—C7	0.6 (3)
C5—N2—C3—C2	-176.2 (3)	C10—N4—C8—C7	-179.6 (3)

Symmetry codes: (i) -x+1/2, y, -z+3/2; (ii) -x+1/2, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C11—H11A···I2 ⁱⁱⁱ	0.99	2.86	3.834 (2)	169
C12—H12A····I1 ^{iv}	0.99	2.89	3.862 (2)	170

Symmetry codes: (iii) x, y-1, z; (iv) -x+1, -y+1, -z+1.

2-Bromo-1,3-dimethylimidazolium iodide hemi(diiodide) (3)

Crystal data

$C_5H_8BrN_2^+ \cdot I^- \cdot 0.5I_2$
$M_r = 429.83$
Monoclinic, $P2_1/n$
a = 6.0861 (4) Å
<i>b</i> = 14.4773 (11) Å
c = 12.0303 (7) Å
$\beta = 97.812 (5)^{\circ}$
$V = 1050.16 (12) \text{ Å}^3$
Z = 4

F(000) = 772 $D_x = 2.719 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3142 reflections $\theta = 3.3-27.6^{\circ}$ $\mu = 9.74 \text{ mm}^{-1}$ T = 173 KLath shaped, red-brown $0.36 \times 0.10 \times 0.08 \text{ mm}$ Data collection

Gemini-R Ultra diffractometer	1746 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$
ω scans	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
Absorption correction: analytical	$h = -6 \rightarrow 7$
$T_{\min} = 0.065, \ T_{\max} = 0.446$	$k = -17 \rightarrow 13$
6287 measured reflections	$l = -14 \rightarrow 11$
1912 independent reflections	
Refinement	

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0102P)^2 + 8.6812P]$
S = 1.34	where $P = (F_o^2 + 2F_c^2)/3$
1912 reflections	$(\Delta/\sigma)_{max} < 0.001$
93 parameters	$\Delta \rho_{\rm max} = 0.76 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.97 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.59338 (9)	0.17085 (4)	0.05590 (4)	0.02835 (16)	
I2	0.51595 (9)	0.40299 (5)	0.01140 (5)	0.03726 (18)	
Br	0.04393 (13)	0.28681 (6)	0.20566 (7)	0.0274 (2)	
N2	0.4459 (11)	0.3501 (5)	0.3339 (5)	0.0246 (15)	
N1	0.2322 (11)	0.4618 (5)	0.2630 (5)	0.0269 (15)	
C1	0.2538 (13)	0.3703 (6)	0.2721 (6)	0.0236 (17)	
C4	0.0471 (14)	0.5121 (6)	0.1973 (7)	0.034 (2)	
H4A	0.076771	0.518793	0.119610	0.051*	
H4B	0.032629	0.573356	0.230131	0.051*	
H4C	-0.090958	0.477458	0.198377	0.051*	
C3	0.5500 (14)	0.4327 (6)	0.3649 (7)	0.031 (2)	
Н3	0.690601	0.439536	0.409197	0.037*	
C5	0.5298 (14)	0.2578 (6)	0.3667 (7)	0.0293 (19)	
H5A	0.422473	0.225817	0.406887	0.044*	
H5B	0.671533	0.263396	0.415747	0.044*	
H5C	0.551338	0.222595	0.299519	0.044*	
C2	0.4191 (15)	0.5011 (6)	0.3217 (7)	0.032 (2)	
H2	0.449093	0.565310	0.329958	0.039*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0248 (3)	0.0341 (3)	0.0254 (3)	-0.0032 (2)	0.0007 (2)	0.0003 (2)
I2	0.0282 (3)	0.0522 (4)	0.0320 (3)	-0.0097 (3)	0.0062 (2)	-0.0096 (3)
Br	0.0267 (4)	0.0248 (5)	0.0306 (4)	-0.0047 (3)	0.0028 (3)	-0.0036 (3)
N2	0.025 (3)	0.030 (4)	0.020 (3)	-0.005 (3)	0.005 (3)	-0.003 (3)
N1	0.030 (4)	0.024 (4)	0.026 (4)	0.001 (3)	0.002 (3)	-0.006 (3)
C1	0.031 (4)	0.021 (4)	0.021 (4)	-0.005 (4)	0.011 (3)	-0.003 (3)
C4	0.035 (5)	0.033 (5)	0.033 (5)	0.008 (4)	-0.003(4)	0.007 (4)
C3	0.024 (4)	0.034 (5)	0.034 (5)	-0.013 (4)	0.002 (3)	-0.003 (4)
C5	0.029 (4)	0.023 (5)	0.036 (5)	0.002 (4)	0.003 (4)	0.001 (3)
C2	0.041 (5)	0.023 (5)	0.031 (5)	-0.008(4)	0.002 (4)	-0.003(4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

I2—I2 ⁱ	2.8265 (14)	C4—H4B	0.9800
Br—C1	1.858 (8)	C4—H4C	0.9800
N2—C1	1.330 (10)	C3—C2	1.331 (12)
N2—C3	1.380 (11)	С3—Н3	0.9500
N2—C5	1.465 (11)	С5—Н5А	0.9800
N1-C1	1.335 (11)	С5—Н5В	0.9800
N1C2	1.377 (11)	С5—Н5С	0.9800
N1—C4	1.477 (10)	С2—Н2	0.9500
C4—H4A	0.9800		
C1—N2—C3	107.3 (7)	H4B—C4—H4C	109.5
C1—N2—C5	126.7 (7)	C2—C3—N2	108.1 (7)
C3—N2—C5	125.9 (7)	С2—С3—Н3	125.9
C1—N1—C2	107.6 (7)	N2—C3—H3	125.9
C1—N1—C4	126.3 (7)	N2—C5—H5A	109.5
C2—N1—C4	126.0 (7)	N2—C5—H5B	109.5
N2-C1-N1	109.4 (7)	H5A—C5—H5B	109.5
N2—C1—Br	126.8 (6)	N2—C5—H5C	109.5
N1—C1—Br	123.8 (6)	H5A—C5—H5C	109.5
N1—C4—H4A	109.5	H5B—C5—H5C	109.5
N1—C4—H4B	109.5	C3—C2—N1	107.6 (8)
Н4А—С4—Н4В	109.5	C3—C2—H2	126.2
N1—C4—H4C	109.5	N1—C2—H2	126.2
Н4А—С4—Н4С	109.5		
C3—N2—C1—N1	-0.1 (8)	C4—N1—C1—Br	-2.2 (11)
C5—N2—C1—N1	178.0 (7)	C1—N2—C3—C2	0.2 (9)
C3—N2—C1—Br	179.2 (6)	C5—N2—C3—C2	-177.9 (7)
C5—N2—C1—Br	-2.7 (11)	N2—C3—C2—N1	-0.2 (10)
C2-N1-C1-N2	0.0 (9)	C1—N1—C2—C3	0.2 (9)

C4—N1—C1—N2 C2—N1—C1—Br	177.1 (7) -179.4 (6)	C4—N1—C2—C3	-177.0 (8)
Symmetry code: (i) $-x+1, -y+1, -z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
С5—Н5В…І1іі	0.98	3.03	3.986 (8)	166

Symmetry code: (ii) x+1/2, -y+1/2, z+1/2.