

Received 20 February 2018 Accepted 2 March 2018

Edited by L. Fabian, University of East Anglia, England

Keywords: crystal structure; hydrogen bonding; topology; oxalate; pharmaceuticals.

CCDC reference: 1827135

Supporting information: this article has supporting information at journals.iucr.org/e

NB-H8...010ⁱ Od2-H42...030^{ji} Od2-H42...030^{ji}

OPEN 3 ACCESS

Thomas Gelbrich,^a* Christoph Langes,^a Marijan Stefinovic^b and Ulrich J. Griesser^a

^aUniversity of Innsbruck, Institute of Pharmacy, Innrain 52, 6020 Innsbruck, Austria, and ^bSandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria. *Correspondence e-mail: thomas.gelbrich@uibk.ac.at

In the salt $(5\alpha, 6\alpha)$ -6-[(2,5,8,11,14,17,20-heptaoxadocosan-22-yl)oxy]-3,14-dihydroxy-17-(prop-2-en-1-yl)-4,5-epoxymorphinan-17-ium hydrogen oxalate, $C_{34}H_{54}NO_{11}^+ \cdot C_2HO_4^-$ the polyether unit of the naloxegol cation adopts the shape of a squashed open letter 'O'. In the crystal, the hydrogen oxalate anions are linked into a chain by O-H···O hydrogen bonds. Each naloxegol unit is hydrogen bonded to three hydrogen oxalate ions *via* two O-H···O and one N-H···O interactions. The resulting hydrogen-bonded two-dimensional layer structure is 3,5-connected and has the **3,5 L50** topology.

1. Chemical context

Naloxegol $\{(5\alpha, 6\alpha)$ -17-allyl-6-[(20-hydroxy-3, 6, 9, 12, 15, 18hexaoxaicos-1-yl)oxy]-4,5-epoxymorphinan-3,14-diol} is a pegylated derivative of naloxone which serves as a peripherally acting *m*-opioid receptor antagonist. This compound was developed for the oral treatment of opioid-induced constipation in adults with chronic non-cancer pain, and is currently marketed under the trade name Movantik by AstraZeneca. Åslund et al. (2012) have described two forms, denoted as A and B, of naloxegol oxalate. Form B was reported as showing 'a sharp endothermic peak at 92.5° C' (365.5 K) in the DSC thermogram with a heat of fusion of $\Delta_{\text{fus}}H = 96.1 \text{ J g}^{-1}$ (71.29 kJ mol⁻¹). Herein we report the crystal structure of naloxegol hydrogen oxalate (I) $(C_{34}H_{54}NO_{11}^{+} C_2HO_4^{-})$, which is identical with form B described by Aslund et al. (2012). The unequivocal identity with form B is evidenced by the match of the X-ray powder diffraction data and the good agreement of the melting data $[T_{\text{fus(onset)}} = 363.9 \pm 0.3 \text{ K}, T_{\text{fus(peak)}} = 366.7 \pm 0.3 \text{ K}, \Delta_{\text{fus}}H =$ $70.4 \pm 0.6 \text{ kJ mol}^{-1}$ with those reported by Åslund *et al.* (2012).

2. Structural commentary

The geometry of the morphine scaffold in the title structure (I) is very similar to that of the parent molecule in the naloxone hydrochloride dihydrate structure (Klein *et al.*, 1987), except for the conformation of the cyclohexyl ring (C2–C6/C11) (Figs.

Table 1Selected torsion angles (°).

C3-O19-C20-C21	-179.4(3)	C29-C30-O31-C32	60.2 (8)
O19-C20-C21-O22	69.0 (4)	C30-O31-C32-C33	80.4 (5)
C20-C21-O22-C23	-177.0(3)	O31-C32-C33-O34	-74.8(4)
C21-O22-C23-C24	-177.9(4)	C32-C33-O34-C35	-178.3(3)
O22-C23-C24-O25	-69.9(6)	C36-C35-O34-C33	-177.8(3)
C23-C24-O25-C26	-136.1(5)	O34-C35-C36-O37	-68.8(4)
C24-O25-C26-C27	-173.2(5)	C35-C36-O37-C38	174.7 (3)
O25-C26-C27-O28	-177.6(4)	C36-O37-C38-C39	-176.6(3)
C26-C27-O28-C29	-78.4(5)	O37-C38-C39-O40	-70.0(3)
C27-O28-C29-C30	-81.2(7)	C38-C39-O40-C41	-169.8(3)
O28-C29-C30-O31	-70.5(8)		

1 and 2). In (I), the puckering parameters for this ring of $q = 85.3 (2)^{\circ}$ and $\theta = 76.6 (3)^{\circ}$ indicate a conformation between boat and twist boat (Cremer & Pople, 1975; Boeyens, 1978). The conformation of the 2-propenyl group at N8 is characterised by the torsion angle N8-C43-C44-C45 of 133.6 $(4)^{\circ}$, which differs substantially from the corresponding value, -96.2° , in the naloxone hydrochloride dihydrate. The polyether unit adopts the shape of a squashed open letter O. Using the nomenclature for torsion angles recommended by Markley et al. (1998), the conformation of the fragment (C3, O19–C41) can be described by the sequence $tg^+t tg^-[[t]] ttg^$ $g^{-}g^{-}g^{+}g^{+}g^{-}t tg^{-}t tg^{-}t$. All O–C–C–O angles are gauche except for O25-C26-C27-O28. Six consecutive gauchetype torsion angles are associated with a 180° turn within the chain section (C26-O34) (Fig. 1, Table 1). The hydrogen oxalate anion displays a twisted conformation with a torsion angle O1O - C2O - C4O - O5O of $-143.3 (3)^{\circ}$.

3. Supramolecular features

The naloxegol cation contains one NH group and two OH groups, which can serve as hydrogen-bond donor groups, and the hydrogen oxalate contains another OH group. Neighbouring hydrogen oxalate ions are hydrogen bonded (Table 2) to one another $(O6O - H6O \cdots O1O^{iii})$, so that a chain structure parallel to the *b* axis is formed. Each naloxegol unit serves as a bridge between two such hydrogen oxalate chains in that

Figure 1

The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level and H atoms drawn as spheres of arbitrary size.

	2 ())			
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N8-H8···O1 O^{i}	0.88 (1)	2.23 (3)	2.911 (3)	134 (3)
$O42 - H42 \cdot \cdot \cdot O3O^{ii}$	0.84 (1)	2.12 (2)	2.906 (3)	157 (4)
O46−H46···O5 <i>O</i>	0.84(1)	2.09 (3)	2.853 (3)	151 (5)
$O6O - H6O \cdots O1O^{iii}$	0.85 (1)	1.69 (2)	2.536 (3)	173 (6)

Symmetry codes: (i) x, y - 1, z; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

it provides two bonds, $O42-H42\cdots O3O^{ii}$ and $N8-H8\cdots O1O^{i}$, to two different anions belonging to one hydrogen-bonded hydrogen oxalate chain, The third bond, $O46-H46\cdots O5O$, connects to a second anion chain (Fig. 3). Altogether, each naloxegol cation forms three hydrogen bonds to three hydrogen oxalate ions, and each anion is engaged in five one-point hydrogen-bonding interactions with two hydrogen oxalate and three naloxegol units. The 3,5connected layer structure (Fig. 4) resulting from these interactions lies in the *ab* plane. It possesses the **3,5L50** topology and has the point symbol $(3.5^2)(3^2.5^3.6^4.7)$, wherein the naloxegol and hydrogen oxalate nodes are represented by the string (3.5^2) and $(3^2.5^3.6^4.7)$, respectively.

4. Database survey

Crystal structures of a hydrochloride dihydrate (Karle, 1974; Sime *et al.*, 1975; Klein *et al.*, 1987; see Fig. 2) and a hydrochloride anhydrate (Sugimoto *et al.*, 2007) of the parent molecule naloxone are known.

Overlay of the morphine scaffolds of (I) and naloxone hydrochloride dihydrate (Klein *et al.*, 1987; coloured orange), obtained by least-squares fitting all ring atoms except for (C2–C6/C11).

research communications

Figure 3

Hydrogen-bonded layer structure of (I), viewed along the c axis. H and O atoms directly engaged in hydrogen bonding are drawn as balls. All other H atoms and the polyether group are omitted for clarity.

Heptaglyme (heptaethyleneglycol dimethyl ether) has been used as a multidentate ligand in Ba (FIXKAY; Wei *et al.*, 1987), Ca (RUFWUK; Arunasalam *et al.*, 1997) and Gd (YOMBUX; Baxter *et al.*, 1995) complexes. The heptaglyme conformations in these crystals differ substantially from the chain geometry found in (I). For example, the heptaglyme complex with barium thiocyanate displays a regular sequence $tg^+t tg^-t tg^+t tg^-t g^+t tg^- tg^+t$ with sign alternation (Wei *et al.*, 1987).

5. Synthesis and crystallization

Naloxegol was obtained as a viscous transparent yellow oil (purity 95.05%). Approximately 4000 mg (6.14 mmol) of the free base were dissolved in 30 ml of ethylacetate and 774 mg

Figure 4

Topological representation in the manner proposed by Hursthouse *et al.* (2015) of the hydrogen-bonded layer structure with the **3,5 L50** topology (Nal = naloxegol, Hox = hydrogen oxalate). The net is viewed along the *c* axis. Note that the naloxegol nodes are placed at the centroid of the molecule rather than the center of its morphine scaffold.

(1 meq) of oxalic acid dihydrate (Merck) suspended in 20 ml of ethylacetate. The free-base solution was added dropwise to the suspended counter-ion. Stirring at room temperature for 15 minutes transformed the gel-like material into a suspension. The oxalate salt formation was complete after continued stirring for 12 h at ambient temperature. The slurry was then separated from the mother liquor by centrifuge and then dried *in* vacuo at ambient temperature (yield 3700 mg = 4.99 mmol = 81% of theory). The PXRD pattern of the dried product was found to match that of form *B* reported in Åslund *et al.* (2012).

A sample of form B (50 mg) was dissolved in 0.3 ml of 2-propanol under slight heating. Filtration through a syringe filter (pore size 0.44 microns) yielded a clear solution. The solution was allowed to cool to room temperature. Crystal-lization in a closed vial yielded single crystals suitable for a crystal structure determination. Typical crystal morphologies of (I) obtained by evaporation from different organic solvents are shown in Fig. S1 of the Supporting information.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were identified in difference maps. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip and refined with $U_{\rm iso}$ set to $1.5U_{\rm eq}(C)$ of the parent carbon atom. All other H

Table 3	
Experimental	details.

Crystal data Chemical formula М., Crystal system, space group Temperature (K) a, b, c (Å) $V(Å^3)$

ZRadiation type $\mu \text{ (mm}^{-1}\text{)}$ Crystal size (mm)

Data collection Diffractometer

Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.809, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	58082, 6563, 6429
R _{int}	0.056
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.599
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.126, 1.03
No. of reflections	6563
No. of parameters	488
No. of restraints	4
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.73, -0.43
Absolute structure	Flack x determined using 2777 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al. 2013)
Absolute structure parameter	0.00 (4)
Absolute structure parameter	0.00 (4)

C34H54NO11+C2HO4-

Orthorhombic, $P2_12_12_1$

10.3581 (1), 13.4039 (1),

26.1689 (2)

 $0.25 \times 0.15 \times 0.05$

Rigaku Oxford Diffraction Xcalibur Ruby Gemini Ultra

3633.26 (5)

Cu Ka

0.88

741.81

173

4

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006), TOPOS (Blatov, 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010)

atoms bound to carbon atoms were positioned geometrically and refined with U_{iso} set to $1.2U_{eq}(C)$ of the parent carbon atom. Hydrogen atoms in OH and NH groups were refined with restrained distances [O-H = 0.84(1) Å; N-H =0.88(1) Å] and their U_{iso} parameters were refined freely. The absolute structure was established by anomalous-dispersion effects.

The largest residual peak of 0.73 e $Å^{-3}$ is located 1.00 Å from C30. An alternative refinement of a disorder model with a split C30 position was attempted, but resulted in a few unreasonably short intramolecular H...H distances for the minor disorder fragment. This feature could not be eliminated even with the aplication of a suitable anti-bumping restraint.

The topology of the hydrogen-bonded structures was determined and classified with the programs ADS and IsoTest of the TOPOS package (Blatov, 2006) in the manner described by Baburin & Blatov (2007).

Acknowledgements

We thank Professor V. Kahlenberg for providing access to the X-ray diffractometer used in this study.

References

- Arunasalam, V.-C., Baxter, I., Drake, S. R., Hursthouse, M. B., Abdul Malik, K. M., Miller, S. A. S., Mingos, D. M. P. & Otway, D. J. (1997). J. Chem. Soc. Dalton Trans. pp. 1331-1336.
- Åslund, B. L., Aurell, C. J., Bohlin, M. H., Healy, E. T., Jensen, D. R., Jonaitis, D. T., Parent, S., Sebhatu, T. & Ymén, B. I. (2012). Patent WO2012044243.
- Baburin, I. A. & Blatov, V. A. (2007). Acta Cryst. B63, 791-802.
- Baxter, I., Drake, S. R., Hursthouse, M. B., Abdul Malik, K. M., McAleese, J., Otway, D. J. & Plakatouras, J. C. (1995). Inorg. Chem. 34. 1384-1394.
- Blatov, V. A. (2006). IUCr Compcomm Newsletter, 7, 4-38.
- Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Hursthouse, M. B., Hughes, D. S., Gelbrich, T. & Threlfall, T. L. (2015). Chem. Cent. J. 9, 1.
- Karle, I. L. (1974). Acta Cryst. B30, 1682-1686.
- Klein, C. L., Majeste, R. J. & Stevens, E. D. (1987). J. Am. Chem. Soc. 109, 6675-6681.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., Wright, P. E. & Wüthrich, K. (1998). Eur. J. Biochem. 256, 1-15.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Rigaku OD (2015). CrysAlis PRO, Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sime, R. L., Forehand, R. & Sime, R. J. (1975). Acta Cryst. B31, 2326-2330.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sugimoto, K., Dinnebier, R. E. & Zakrzewski, M. (2007). J. Pharm. Sci. 96, 3316-3323.
- Wei, Y. Y., Tinant, B., Declercq, J.-P., Van Meerssche, M. & Dale, J. (1987). Acta Cryst. C43, 1279-1281.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2018). E74, 474-477 [https://doi.org/10.1107/S2056989018003675]

Naloxegol hydrogen oxalate displaying a hydrogen-bonded layer structure

Thomas Gelbrich, Christoph Langes, Marijan Stefinovic and Ulrich J. Griesser

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2015); cell refinement: *CrysAlis PRO* (Rigaku OD, 2015); data reduction: *CrysAlis PRO* (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008), *Mercury* (Macrae *et al.*, 2006) and *TOPOS* (Blatov, 2006); software used to prepare material for publication: *PLATON* (Spek, 2009), *publCIF* (Westrip, 2010) and *TOPOS* (Blatov, 2006).

 $(5\alpha, 6\alpha)$ -6-[(2,5,8,11,14,17,20-Heptaoxadocosan-22-yl)oxy]-3,14-dihydroxy-17-\ (prop-2-en-1-yl)-4,5-epoxymorphinan-17-ium hydrogen oxalate

Crystal data

 $C_{34}H_{54}NO_{11}^+C_2HO_4^ M_r = 741.81$ Orthorhombic, $P2_12_12_1$ a = 10.3581 (1) Å b = 13.4039 (1) Å c = 26.1689 (2) Å V = 3633.26 (5) Å³ Z = 4F(000) = 1592

Data collection

Riguaku Oxford Diffraction Xcalibur Ruby Gemini Ultra diffractometer Radiation source: fine-focus sealed X-ray tube, Enhance Ultra (Cu) X-ray Source Mirror monochromator Detector resolution: 10.3575 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.126$ S = 1.036563 reflections 488 parameters 4 restraints $D_x = 1.356 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 31215 reflections $\theta = 3.4-67.5^{\circ}$ $\mu = 0.88 \text{ mm}^{-1}$ T = 173 KPlate, colourless $0.25 \times 0.15 \times 0.05 \text{ mm}$

 $T_{\min} = 0.809, T_{\max} = 1.000$ 58082 measured reflections 6563 independent reflections 6429 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.056$ $\theta_{\max} = 67.5^{\circ}, \theta_{\min} = 3.4^{\circ}$ $h = -12 \rightarrow 12$ $k = -16 \rightarrow 16$ $l = -31 \rightarrow 31$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0807P)^2 + 1.840P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.73 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.43 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 2777 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.00 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	v	Z	$U_{\rm iso}^*/U_{\rm eq}$	
01	0.7271 (2)	0.23153 (15)	0.60003 (8)	0.0220 (4)	
C2	0.6886 (3)	0.1258 (2)	0.60078 (11)	0.0196 (6)	
H2	0.7575	0.0854	0.6177	0.024*	
C3	0.5616 (3)	0.1131 (2)	0.62988 (11)	0.0223 (6)	
H3	0.5480	0.0404	0.6366	0.017 (8)*	
C4	0.4487 (3)	0.1516 (2)	0.59856 (12)	0.0238 (6)	
H4A	0.4632	0.2229	0.5904	0.029*	
H4B	0.3688	0.1468	0.6192	0.029*	
C5	0.4304 (3)	0.0928 (2)	0.54844 (11)	0.0229 (6)	
H5A	0.3603	0.0436	0.5534	0.027*	
H5B	0.4025	0.1398	0.5214	0.027*	
C6	0.5516(3)	0.0375 (2)	0.52989 (11)	0.0196 (6)	
C7	0.5514 (3)	0.0269 (2)	0.47054 (11)	0.0204 (6)	
H7	0.4709	-0.0094	0.4607	0.025*	
N8	0.6650 (2)	-0.03899 (18)	0.45687 (9)	0.0225 (5)	
H8	0.656 (4)	-0.0951 (17)	0.4738 (13)	0.028 (9)*	
C9	0.7908 (3)	0.0108 (2)	0.47010 (12)	0.0233 (6)	
H9A	0.8002	0.0730	0.4501	0.028*	
H9B	0.8635	-0.0340	0.4612	0.028*	
C10	0.7950 (3)	0.0347 (2)	0.52665 (11)	0.0218 (6)	
H10A	0.8735	0.0743	0.5341	0.026*	
H10B	0.8004	-0.0282	0.5463	0.026*	
C11	0.6759 (3)	0.0933 (2)	0.54401 (11)	0.0178 (5)	
C12	0.6642 (3)	0.1937 (2)	0.51828 (10)	0.0180 (5)	
C13	0.6953 (3)	0.2674 (2)	0.55230 (11)	0.0184 (5)	
C14	0.6840 (3)	0.3679 (2)	0.53902 (11)	0.0196 (5)	
C15	0.6339 (3)	0.3874 (2)	0.49073 (11)	0.0218 (6)	
H15	0.6254	0.4548	0.4801	0.026*	
C16	0.5954 (3)	0.3121 (2)	0.45718 (11)	0.0222 (6)	
H16	0.5598	0.3289	0.4248	0.025 (9)*	
C17	0.6093 (3)	0.2118 (2)	0.47115 (11)	0.0187 (5)	
C18	0.5532 (3)	0.1265 (2)	0.44095 (11)	0.0217 (6)	
H18A	0.6041	0.1178	0.4093	0.026*	
H18B	0.4637	0.1438	0.4309	0.026*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

019	0.5624 (2)	0.16457 (16)	0.67753 (8)	0.0282 (5)
C20	0.6280 (4)	0.1130 (3)	0.71702 (12)	0.0382 (8)
H20A	0.7192	0.1023	0.7072	0.046*
H20B	0.5875	0.0469	0.7225	0.046*
C21	0.6215 (4)	0.1731 (3)	0.76544 (13)	0.0401 (8)
H21A	0.6797	0.1434	0.7913	0.048*
H21B	0.6513	0.2420	0.7586	0.048*
O22	0.4955 (3)	0.1756 (2)	0.78457 (9)	0.0424 (6)
C23	0.4912 (5)	0.2381 (4)	0.82948 (15)	0.0527 (11)
H23A	0.5172	0.3068	0.8201	0.063*
H23B	0.5536	0.2128	0.8550	0.063*
C24	0.3631 (5)	0.2404 (5)	0.85200 (16)	0.0654 (15)
H24A	0.3331	0.1710	0.8571	0.079*
H24B	0.3687	0.2722	0.8861	0.079*
025	0.2718 (3)	0.2915 (3)	0.82276 (11)	0.0669 (11)
C26	0.1924 (5)	0.3545 (3)	0.85016 (16)	0.0472 (10)
H26A	0.2447	0.4096	0.8646	0.057*
H26B	0.1535	0.3173	0.8790	0.057*
C27	0.0876 (4)	0.3971 (4)	0.81770 (16)	0.0474 (9)
H27A	0.1269	0.4316	0.7881	0.057*
H27B	0.0337	0.3420	0.8044	0.057*
O28	0.0081 (3)	0.4650 (2)	0.84424 (12)	0.0524 (7)
C29	-0.0852 (6)	0.4273 (6)	0.8764 (2)	0.0780 (17)
H29A	-0.1057	0.4793	0.9020	0.094*
H29B	-0.0469	0.3703	0.8951	0.094*
C30	-0.2056 (6)	0.3937 (5)	0.8542 (2)	0.0805 (18)
H30A	-0.1831	0.3463	0.8267	0.097*
H30B	-0.2506	0.3546	0.8809	0.097*
031	-0.2970(3)	0.4601 (3)	0.83377 (12)	0.0574 (8)
C32	-0.2612 (4)	0.5223 (3)	0.79260 (15)	0.0418 (8)
H32A	-0.1729	0.5478	0.7987	0.050*
H32B	-0.3202	0.5804	0.7916	0.050*
C33	-0.2645(4)	0.4709 (3)	0.74176 (15)	0.0407 (8)
H33A	-0.3453	0.4321	0.7385	0.049*
H33B	-0.2624	0.5211	0.7140	0.049*
C35	-0.1524(4)	0.3577 (3)	0.68942 (13)	0.0352 (8)
H35A	-0.1437	0.4074	0.6616	0.042*
H35B	-0.2330	0.3195	0.6838	0.042*
034	-0.1574(2)	0.4068(2)	0.73736 (9)	0.0376 (6)
C36	-0.0393(3)	0.2888(3)	0.68912 (13)	0.0337(7)
H36A	-0.0422	0.2453	0 7197	0.040*
H36B	-0.0427	0.2458	0.6584	0.040*
037	0.0775(2)	0.34491 (17)	0.68908 (9)	0.0305(5)
C38	0.1863(4)	0.2810(3)	0.69353(13)	0.0339(7)
H38A	0.1900	0.2360	0.6636	0.0335 (7)
H38B	0.1773	0.2393	0.7246	0.041*
C39	0.3081(4)	0.2393 0.3401 (3)	0.69666 (13)	0 0348 (8)
H39A	0 2995	0 3922	0 7233	0.047*
110/11	0.4110	0.0/22	0.1400	0.074

H39B	0.3806	0.2958	0.7063	0.042*
O40	0.3342 (2)	0.3856 (2)	0.64859 (9)	0.0360 (5)
C41	0.4599 (4)	0.4277 (3)	0.64774 (16)	0.0426 (9)
H41A	0.4677	0.4773	0.6751	0.064*
H41B	0.4748	0.4600	0.6147	0.064*
H41C	0.5241	0.3749	0.6529	0.064*
O42	0.5589 (2)	-0.06069 (15)	0.55118 (8)	0.0240 (4)
H42	0.490 (2)	-0.091 (3)	0.5438 (15)	0.035 (11)*
C43	0.6689 (3)	-0.0737 (2)	0.40195 (12)	0.0297 (7)
H43A	0.6894	-0.0160	0.3798	0.036*
H43B	0.7394	-0.1230	0.3981	0.036*
C44	0.5460 (4)	-0.1197 (3)	0.38398 (14)	0.0366 (8)
H44	0.5046	-0.1676	0.4052	0.044*
C45	0.4926 (5)	-0.0967 (3)	0.34005 (16)	0.0479 (10)
H45A	0.5324	-0.0490	0.3183	0.058*
H45B	0.4141	-0.1277	0.3300	0.058*
O46	0.7208 (2)	0.44043 (15)	0.57269 (8)	0.0261 (5)
H46	0.702 (5)	0.495 (2)	0.5584 (16)	0.048 (13)*
010	0.7871 (2)	0.77819 (16)	0.49246 (11)	0.0347 (6)
C2O	0.7474 (3)	0.6898 (2)	0.49807 (13)	0.0236 (6)
030	0.8110 (2)	0.61333 (17)	0.49334 (13)	0.0470 (7)
C4O	0.6050 (3)	0.6764 (2)	0.51321 (12)	0.0216 (6)
050	0.5729 (2)	0.61010 (17)	0.54246 (9)	0.0322 (5)
060	0.5275 (2)	0.73960 (17)	0.49151 (10)	0.0315 (5)
H6O	0.449 (2)	0.730 (4)	0.498 (2)	0.069 (16)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0265 (10)	0.0180 (10)	0.0216 (9)	-0.0045 (8)	-0.0056 (8)	0.0002 (8)
C2	0.0226 (13)	0.0147 (13)	0.0215 (13)	0.0003 (11)	-0.0028 (11)	0.0019 (10)
C3	0.0278 (15)	0.0193 (13)	0.0198 (14)	-0.0014 (12)	0.0013 (11)	0.0016 (10)
C4	0.0199 (13)	0.0241 (14)	0.0273 (14)	0.0014 (12)	0.0030 (12)	-0.0002 (12)
C5	0.0173 (13)	0.0243 (14)	0.0271 (14)	0.0003 (11)	0.0003 (11)	-0.0005 (12)
C6	0.0189 (13)	0.0150 (12)	0.0249 (14)	-0.0013 (11)	-0.0005 (11)	0.0032 (11)
C7	0.0197 (13)	0.0178 (13)	0.0238 (14)	0.0019 (11)	-0.0010 (11)	-0.0014 (11)
N8	0.0252 (12)	0.0179 (12)	0.0243 (12)	0.0017 (10)	-0.0004 (10)	-0.0020 (10)
C9	0.0182 (13)	0.0226 (13)	0.0291 (15)	0.0027 (11)	0.0023 (11)	0.0004 (12)
C10	0.0189 (13)	0.0203 (13)	0.0262 (14)	0.0019 (11)	-0.0016 (11)	0.0007 (11)
C11	0.0184 (13)	0.0135 (12)	0.0215 (13)	-0.0007 (10)	-0.0008 (10)	0.0023 (10)
C12	0.0163 (12)	0.0164 (12)	0.0212 (13)	0.0012 (10)	0.0001 (10)	0.0024 (10)
C13	0.0176 (12)	0.0161 (13)	0.0217 (13)	-0.0008 (10)	0.0012 (10)	0.0041 (10)
C14	0.0177 (12)	0.0169 (13)	0.0244 (14)	-0.0025 (10)	0.0000 (11)	-0.0005 (11)
C15	0.0211 (13)	0.0165 (12)	0.0277 (14)	0.0007 (11)	0.0005 (11)	0.0037 (11)
C16	0.0219 (13)	0.0228 (14)	0.0219 (14)	0.0014 (11)	-0.0008 (11)	0.0023 (11)
C17	0.0186 (12)	0.0156 (12)	0.0218 (13)	0.0022 (10)	0.0025 (11)	-0.0001 (11)
C18	0.0240 (13)	0.0198 (13)	0.0214 (13)	0.0010 (11)	-0.0028 (11)	-0.0021 (11)
019	0.0373 (13)	0.0283 (11)	0.0191 (10)	0.0036 (10)	0.0002 (9)	0.0000 (8)

C20	0.041 (2)	0.051 (2)	0.0220 (16)	0.0108 (17)	-0.0020 (14)	0.0020 (15)
C21	0.0387 (19)	0.058 (2)	0.0235 (16)	0.0002 (17)	-0.0030 (14)	-0.0006 (16)
O22	0.0419 (14)	0.0598 (17)	0.0256 (11)	0.0039 (13)	0.0025 (10)	-0.0024 (11)
C23	0.060 (3)	0.065 (3)	0.0329 (18)	0.004 (2)	-0.0070 (18)	-0.0092 (19)
C24	0.074 (3)	0.090 (4)	0.032 (2)	0.042 (3)	-0.008 (2)	-0.009 (2)
O25	0.071 (2)	0.102 (3)	0.0276 (13)	0.047 (2)	-0.0056 (14)	-0.0071 (15)
C26	0.058 (2)	0.044 (2)	0.039 (2)	0.0104 (19)	-0.0067 (18)	-0.0113 (17)
C27	0.047 (2)	0.056 (2)	0.039 (2)	0.0106 (19)	0.0011 (17)	-0.0036 (18)
O28	0.0580 (17)	0.0458 (16)	0.0534 (17)	0.0114 (14)	-0.0022 (14)	-0.0053 (13)
C29	0.070 (3)	0.105 (5)	0.059 (3)	0.026 (3)	0.016 (3)	0.020 (3)
C30	0.074 (4)	0.100 (5)	0.067 (3)	-0.013 (3)	-0.008 (3)	0.031 (3)
O31	0.0538 (18)	0.0617 (19)	0.0568 (18)	0.0099 (15)	0.0151 (14)	0.0050 (15)
C32	0.048 (2)	0.0321 (18)	0.045 (2)	0.0065 (17)	0.0026 (17)	-0.0059 (15)
C33	0.0324 (18)	0.049 (2)	0.0411 (19)	0.0085 (17)	-0.0011 (15)	-0.0056 (16)
C35	0.0342 (18)	0.047 (2)	0.0248 (16)	-0.0012 (16)	-0.0008 (13)	-0.0086 (14)
O34	0.0338 (12)	0.0496 (14)	0.0295 (12)	0.0102 (11)	-0.0037 (10)	-0.0114 (11)
C36	0.0366 (18)	0.0351 (18)	0.0294 (16)	-0.0035 (15)	0.0030 (14)	-0.0080 (14)
O37	0.0283 (11)	0.0313 (12)	0.0318 (12)	0.0049 (10)	-0.0001 (9)	-0.0001 (9)
C38	0.0380 (18)	0.0323 (17)	0.0315 (16)	0.0122 (15)	0.0023 (14)	0.0029 (13)
C39	0.0365 (18)	0.0407 (19)	0.0273 (16)	0.0099 (15)	-0.0043 (14)	0.0012 (14)
O40	0.0288 (12)	0.0489 (14)	0.0304 (12)	-0.0003 (11)	-0.0034 (9)	0.0052 (11)
C41	0.0294 (17)	0.055 (2)	0.044 (2)	-0.0014 (17)	-0.0054 (15)	0.0014 (17)
O42	0.0264 (11)	0.0151 (9)	0.0304 (11)	-0.0044 (8)	-0.0008 (9)	0.0043 (8)
C43	0.0410 (18)	0.0231 (15)	0.0248 (15)	0.0055 (14)	0.0005 (14)	-0.0067 (12)
C44	0.051 (2)	0.0250 (16)	0.0336 (17)	-0.0065 (15)	-0.0033 (16)	-0.0062 (13)
C45	0.057 (2)	0.044 (2)	0.043 (2)	-0.0039 (19)	-0.0128 (19)	-0.0030 (17)
O46	0.0336 (12)	0.0146 (10)	0.0302 (11)	-0.0038 (9)	-0.0051 (9)	-0.0006 (8)
010	0.0209 (10)	0.0170 (10)	0.0662 (16)	-0.0015 (8)	0.0043 (10)	0.0062 (10)
C2O	0.0180 (13)	0.0163 (13)	0.0364 (16)	0.0010 (11)	-0.0023 (12)	0.0000 (12)
030	0.0223 (11)	0.0216 (11)	0.097 (2)	0.0050 (9)	0.0067 (13)	-0.0051 (13)
C4O	0.0189 (13)	0.0140 (12)	0.0319 (15)	-0.0007 (10)	-0.0010 (11)	-0.0021 (11)
050	0.0284 (11)	0.0259 (11)	0.0422 (13)	-0.0028 (9)	0.0019 (10)	0.0087 (10)
060	0.0174 (10)	0.0288 (11)	0.0482 (14)	0.0057 (9)	-0.0007 (10)	0.0111 (10)

Geometric parameters (Å, °)

01—C13	1.378 (3)	C24—H24B	0.9900
O1—C2	1.473 (3)	O25—C26	1.380 (5)
С2—С3	1.529 (4)	C26—C27	1.492 (6)
C2-C11	1.553 (4)	C26—H26A	0.9900
С2—Н2	1.0000	C26—H26B	0.9900
C3—O19	1.425 (4)	C27—O28	1.411 (5)
C3—C4	1.519 (4)	C27—H27A	0.9900
С3—Н3	1.0000	C27—H27B	0.9900
C4—C5	1.542 (4)	O28—C29	1.377 (7)
C4—H4A	0.9900	C29—C30	1.447 (9)
C4—H4B	0.9900	C29—H29A	0.9900
C5—C6	1.537 (4)	C29—H29B	0.9900

С5—Н5А	0.9900	C30—O31	1.405 (7)
С5—Н5В	0.9900	C30—H30A	0.9900
C6—O42	1.431 (3)	C30—H30B	0.9900
C6—C11	1.534 (4)	O31—C32	1.412 (5)
С6—С7	1.560 (4)	C32—C33	1.499 (5)
C7—N8	1.514 (4)	С32—Н32А	0.9900
C7—C18	1.543 (4)	С32—Н32В	0.9900
С7—Н7	1.0000	C33—O34	1.408 (4)
N8—C9	1.505 (4)	С33—Н33А	0.9900
N8—C43	1.512 (4)	С33—Н33В	0.9900
N8—H8	0.879 (14)	C35—O34	1.418 (4)
C9—C10	1.515 (4)	C35—C36	1.492 (5)
C9—H9A	0.9900	C35—H35A	0.9900
C9—H9B	0.9900	C35—H35B	0.9900
C10—C11	1 531 (4)	C36—O37	1 425 (4)
C10—H10A	0.9900	C36—H36A	0.9900
C10—H10B	0.9900	C36—H36B	0.9900
C_{11} C_{12}	1 509 (4)	037-038	1420(4)
C12 - C13	1 368 (4)	C_{38} C_{39}	1.420(4) 1 492(5)
C12 - C13	1 379 (4)	C38_H384	0.0000
C12 - C17	1.375 (4)	C38_H38B	0.9900
C13 - C14	1.350 (4)	$C_{39} - O_{40}$	1.424(4)
C14 - C15	1.307 (3)	C_{39} H394	0.9900
C15 C16	1.391 (4)	C30 H30R	0.9900
C15_H15	0.9500	$O_{40} C_{41}$	1.420(5)
C16 C17	1 400 (4)	C_{41} H41A	0.9800
C16 H16	0.9500	$C_{41} = H_{41}R$	0.9800
C17 - C18	1 506 (4)	C41—H41C	0.9800
C18 $H18A$	0.0000	O_{42} H42	0.9800
C18 H18R	0.9900	C_{42} C_{43} C_{44}	1.491(5)
C_{10} C_{20}	1.417(A)	$C_{43} = U_{43} \wedge U$	0.0000
C_{20} C_{21}	1.417(4) 1.503(5)	C_{43} H_{43} H_{43} C_{43} H_{43} H_{43} C_{43} H_{43} H	0.9900
C_{20} H_{20A}	1.303 (3)	C43 - H43B	0.9900
C20—H20A	0.9900	C44 - C43	1.312(0)
C20—H20B	0.9900	$C44$ — $\Pi44$ $C45$ — $\Pi45$ Å	0.9300
C_{21} C	1.596 (5)	C45 = H45R	0.9300
C_{21} H21A	0.9900	C43—II43B	0.9300
C21—H21B	0.9900	040 - 620	0.642(14)
022-023	1.444(3) 1.452(7)	010-020	1.205(4)
$C_{23} = C_{24}$	1.432(7)	C20—030	1.223 (4)
C23—H23A	0.9900	C20—C40	1.538 (4)
C23—H23B	0.9900	C40—050	1.219 (4)
C24—025	1.396 (5)	C40—060	1.298 (4)
C24—H24A	0.9900	О6О—Н6О	0.848 (14)
C13—O1—C2	106.4 (2)	O22—C23—H23B	109.3
O1—C2—C3	110.3 (2)	C24—C23—H23B	109.3
O1—C2—C11	106.2 (2)	H23A—C23—H23B	107.9
C3—C2—C11	111.9 (2)	O25—C24—C23	114.0 (4)

O1—C2—H2	109.5	O25—C24—H24A	108.7
C3—C2—H2	109.5	C23—C24—H24A	108.7
С11—С2—Н2	109.5	O25—C24—H24B	108.7
O19—C3—C4	108.1 (2)	C23—C24—H24B	108.7
O19—C3—C2	112.2 (2)	H24A—C24—H24B	107.6
C4—C3—C2	110.8 (2)	$C_{26} = 0.25 = C_{24}$	114.8 (3)
019-03-H3	108.5	025 - C26 - C27	111.8 (3)
C4—C3—H3	108 5	025—C26—H26A	109.3
C2-C3-H3	108.5	C27—C26—H26A	109.3
$C_{2} = C_{3} = C_{4} = C_{5}$	112 3 (2)	025 - C26 - H26B	109.3
$C_3 - C_4 - H_4 \Delta$	100 1	C27_C26_H26B	109.3
C5_C4_H4A	109.1	$H_{26}^{-} = C_{26}^{-} = H_{26}^{-} B$	107.9
$C_{2} = C_{4} = H_{4}P_{4}$	109.1	028 C27 C26	107.9 112.1(2)
$C_5 = C_4 = H_4 P_1$	109.1	028 - 027 - 020	115.1 (5)
	109.1	$O_{20} = C_{27} = H_{27}$	109.0
H4A - C4 - H4B	107.9	$C_{20} = C_{27} = H_{27} = H_{27}$	109.0
C_{6}	114.5 (2)	028 - C2/-H2/B	109.0
C6—C5—H5A	108.6	C26—C2/—H2/B	109.0
C4—C5—H5A	108.6	H2/A—C2/—H2/B	107.8
C6—C5—H5B	108.6	C29—O28—C27	118.3 (4)
C4—C5—H5B	108.6	O28—C29—C30	118.3 (5)
H5A—C5—H5B	107.6	O28—C29—H29A	107.7
O42—C6—C11	108.1 (2)	С30—С29—Н29А	107.7
O42—C6—C5	111.3 (2)	O28—C29—H29B	107.7
C11—C6—C5	112.0 (2)	С30—С29—Н29В	107.7
O42—C6—C7	107.7 (2)	H29A—C29—H29B	107.1
C11—C6—C7	106.6 (2)	O31—C30—C29	122.4 (6)
C5—C6—C7	110.9 (2)	O31—C30—H30A	106.7
N8—C7—C18	112.2 (2)	С29—С30—Н30А	106.7
N8—C7—C6	106.7 (2)	O31—C30—H30B	106.7
C18—C7—C6	114.9 (2)	С29—С30—Н30В	106.7
N8—C7—H7	107.6	H30A—C30—H30B	106.6
С18—С7—Н7	107.6	C30—O31—C32	119.2 (4)
С6—С7—Н7	107.6	O31—C32—C33	113.6 (3)
C9—N8—C43	109.4 (2)	O31—C32—H32A	108.8
C9—N8—C7	111.1 (2)	С33—С32—Н32А	108.8
C43—N8—C7	115.2 (2)	O31—C32—H32B	108.8
C9—N8—H8	111 (3)	C33—C32—H32B	108.8
C43 - N8 - H8	103(3)	H32A_C32_H32B	107.7
C7—N8—H8	107(3)	034-033-032	107.7 109.6(3)
N8-C9-C10	1101(2)	O34—C33—H33A	109.0 (3)
	109.6	C32_C33_H33A	109.0
C10 C9 H9A	109.6	034_C33_H33B	109.0
N8 C0 H0P	100.6	C32 C33 H33B	109.0
C10 C0 H0B	109.0	$H_{33} = C_{33} = H_{33} D$	109.0
	102.0	0.24 0.25 0.26	100.2 108.7(2)
$C_{0} C_{10} C_{11}$	100.2	034 035 1254	110.7 (3)
$C_{0} = C_{10} = C_{11}$	112.1(2)	$C_{26} = C_{25} = H_{25} A$	110.0
C_{2}	109.2	C_{30} C_{33} T_{33} T_{33} C_{34} C_{25} U_{25} U_{25}	110.0
UII—UIU—ПІUА	109.2	U34—U33—II33B	110.0

C9—C10—H10B	109.2	C36—C35—H35B	110.0
C11—C10—H10B	109.2	H35A—C35—H35B	108.3
H10A-C10-H10B	107.9	C33—O34—C35	112.6 (3)
C12—C11—C10	112.9 (2)	O37—C36—C35	109.9 (3)
C12—C11—C6	105.0 (2)	O37—C36—H36A	109.7
C10—C11—C6	110.7 (2)	С35—С36—Н36А	109.7
C12—C11—C2	100.6 (2)	O37—C36—H36B	109.7
C10—C11—C2	111.1 (2)	С35—С36—Н36В	109.7
C6—C11—C2	115.9 (2)	H36A—C36—H36B	108.2
C13—C12—C17	123.5 (3)	C38—O37—C36	110.8 (3)
C13—C12—C11	109.5 (2)	O37—C38—C39	110.8 (3)
C17—C12—C11	126.1 (2)	O37—C38—H38A	109.5
C12—C13—O1	113.2 (2)	C39—C38—H38A	109.5
C12—C13—C14	121.0 (3)	O37—C38—H38B	109.5
O1—C13—C14	125.6 (3)	С39—С38—Н38В	109.5
O46—C14—C15	123.8 (2)	H38A—C38—H38B	108.1
O46—C14—C13	120.2 (3)	O40—C39—C38	109.9 (3)
C15—C14—C13	116.0 (3)	O40—C39—H39A	109.7
C14—C15—C16	122.8 (3)	С38—С39—Н39А	109.7
C14—C15—H15	118.6	O40—C39—H39B	109.7
C16—C15—H15	118.6	С38—С39—Н39В	109.7
C15—C16—C17	120.0 (3)	H39A—C39—H39B	108.2
C15—C16—H16	120.0	C41—O40—C39	111.0 (3)
C17—C16—H16	120.0	O40—C41—H41A	109.5
C12—C17—C16	116.4 (3)	O40—C41—H41B	109.5
C12—C17—C18	119.7 (2)	H41A—C41—H41B	109.5
C16—C17—C18	123.5 (3)	O40—C41—H41C	109.5
C17—C18—C7	113.4 (2)	H41A—C41—H41C	109.5
C17—C18—H18A	108.9	H41B—C41—H41C	109.5
C7—C18—H18A	108.9	C6—O42—H42	108 (3)
C17—C18—H18B	108.9	C44—C43—N8	113.9 (3)
C7—C18—H18B	108.9	C44—C43—H43A	108.8
H18A—C18—H18B	107.7	N8—C43—H43A	108.8
C20—O19—C3	113.8 (2)	C44—C43—H43B	108.8
O19—C20—C21	109.4 (3)	N8—C43—H43B	108.8
O19—C20—H20A	109.8	H43A—C43—H43B	107.7
C21—C20—H20A	109.8	C45—C44—C43	122.6 (4)
O19—C20—H20B	109.8	C45—C44—H44	118.7
C21—C20—H20B	109.8	C43—C44—H44	118.7
H20A-C20-H20B	108.2	C44—C45—H45A	120.0
O22—C21—C20	110.9 (3)	C44—C45—H45B	120.0
O22—C21—H21A	109.5	H45A—C45—H45B	120.0
C20—C21—H21A	109.5	C14—O46—H46	106 (3)
O22—C21—H21B	109.5	030	126.7 (3)
C20—C21—H21B	109.5	030-C20-C40	116.4 (3)
H21A—C21—H21B	108.1	010-C20-C40	116.9 (2)
C21—O22—C23	109.6 (3)	050—C40—O60	125.6 (3)
O22—C23—C24	111.8 (4)	050	120.5 (3)
	~ /		× /

O22—C23—H23A	109.3	060—C40—C20	113.8 (3)
C24—C23—H23A	109.3	C4O—O6O—H6O	114 (4)
C13—O1—C2—C3	-102.0(2)	C17—C12—C13—C14	-6.1(4)
C13—O1—C2—C11	19.4 (3)	C11—C12—C13—C14	-175.8(3)
O1—C2—C3—O19	-47.5 (3)	C2-01-C13-C12	-12.2(3)
$C_{11} - C_{2} - C_{3} - O_{19}$	-165.5(2)	$C_{2} = 01 = C_{13} = C_{14}$	162.7(3)
01-C2-C3-C4	73.5 (3)	C_{12} C_{13} C_{14} O_{46}	-177.2(3)
$C_{11} - C_{2} - C_{3} - C_{4}$	-44.5(3)	01-C13-C14-046	8.3 (4)
019-03-04-05	-1739(2)	C_{12} C_{13} C_{14} C_{15}	30(4)
C_{2} C_{3} C_{4} C_{5}	627(3)	01-C13-C14-C15	-1715(3)
C_{3} C_{4} C_{5} C_{6}	-220(3)	046-C14-C15-C16	-179.2(3)
C4-C5-C6-O42	88 8 (3)	C_{13} C_{14} C_{15} C_{16}	0.6(4)
C4 - C5 - C6 - C11	-324(3)	C_{14} C_{15} C_{16} C_{17}	-14(4)
C4-C5-C6-C7	-1513(2)	C_{13} C_{12} C_{17} C_{16}	50(4)
042 - C6 - C7 - N8	-511(3)	C_{11} C_{12} C_{17} C_{16}	173.0(3)
C_{11} C_{6} C_{7} N8	64.7(3)	$C_{11}^{12} = C_{12}^{12} = C_{17}^{12} = C_{10}^{13}$	-167.3(3)
$C_{1} = C_{0} = C_{1} = N_{0}$	-173.2(2)	$C_{13} - C_{12} - C_{17} - C_{18}$	107.3(3)
C_{3} C_{6} C_{7} C_{18}	175.2(2) -176.1(2)	$C_{11} = C_{12} = C_{17} = C_{18}$	-1.3(4)
$C_{11} C_{6} C_{7} C_{18}$	-60.2(2)	$C_{15} = C_{16} = C_{17} = C_{12}$	1.3(4) 1708(2)
$C_{11} = C_{0} = C_{10} = C_{10}$	-00.3(3)	$C_{12} = C_{17} = C_{18} = C_{7}$	1/0.0(3)
$C_{3} = C_{0} = C_{1} = C_{18}$	61.9(3)	$C_{12} = C_{17} = C_{18} = C_{7}$	-165 4 (2)
$C_{10} - C_{7} - N_{0} - C_{9}$	-65.2(2)	10 - 17 - 18 - 17	-103.4(3) -07.0(3)
$C_{0} - C_{7} - N_{0} - C_{9}$	-03.2(3)	$N_{0} - C_{1} - C_{10} - C_{17}$	-97.9(3)
$C_{10} - C_{7} - N_{0} - C_{43}$	-03.7(3)	$C_{0} = C_{1} = C_{10} = C_{10}$	24.1(3) 1575(2)
$C_{0} - C_{1} - N_{0} - C_{43}$	109.7(2)	$C_4 = C_3 = O_{19} = C_{20}$	137.3(3)
C43 - N8 - C9 - C10	-1/5.1(2)	$C_2 = C_3 = O_{19} = C_{20}$	-80.0(3)
$C = N_{0} = C_{10} = C_{10}$	58.0(3)	C_{3} $- 019$ $- 020$ $- 021$ $- 022$	-1/9.4(3)
	-52.4(3)	019 - 020 - 021 - 022	177.0(2)
C9 - C10 - C11 - C12	-62.4(3)	$C_{20} = C_{21} = 0_{22} = C_{23}$	-1/.0(3)
$C_{0} = C_{10} = C_{11} = C_{0}$	55.1 (3)	$C_{21} = 0_{22} = C_{23} = C_{24}$	-1//.9(4)
C9_C10_C11_C2	-1/4.6(2)	022 - 023 - 024 - 025	-69.9 (6)
042	177.3 (2)	C_{23} — C_{24} — O_{25} — C_{26}	-136.1 (5)
C5-C6-C11-C12	-59.7(3)	$C_{24} = 0_{25} = C_{26} = C_{27}$	-1/3.2(3)
C/C6C11C12	61.8 (3)	025-026-027-028	-177.6(4)
042	55.1 (3)	C26—C27—O28—C29	-/8.4 (5)
C5—C6—C11—C10	178.1 (2)	C27—O28—C29—C30	-81.2 (7)
C/C6C11C10	-60.4 (3)	028-029-030-031	-/0.5 (8)
042—C6—C11—C2	-72.6 (3)	C29—C30—O31—C32	60.2 (8)
C5—C6—C11—C2	50.4 (3)	C30—O31—C32—C33	80.4 (5)
C7—C6—C11—C2	171.8 (2)	O31—C32—C33—O34	-74.8 (4)
O1—C2—C11—C12	-18.8 (3)	C32—C33—O34—C35	-178.3 (3)
C3—C2—C11—C12	101.6 (3)	C36—C35—O34—C33	-177.8 (3)
O1—C2—C11—C10	101.0 (3)	O34—C35—C36—O37	-68.8 (4)
C3—C2—C11—C10	-138.6 (2)	C35—C36—O37—C38	174.7 (3)
01-C2-C11-C6	-131.4 (2)	C36—O37—C38—C39	-176.6 (3)
C3—C2—C11—C6	-11.0 (3)	O37—C38—C39—O40	-70.0 (3)
C10-C11-C12-C13	-106.3 (3)	C38—C39—O40—C41	-169.8 (3)
C6-C11-C12-C13	132.9 (2)	C9—N8—C43—C44	-177.1(3)

C2—C11—C12—C13	12.2 (3)	C7—N8—C43—C44	-51.1 (3)
C10-C11-C12-C17	84.4 (3)	N8—C43—C44—C45	133.6 (4)
C6—C11—C12—C17	-36.4 (4)	030-C20-C40-050	35.8 (5)
C2-C11-C12-C17	-157.2 (3)	010-C20-C40-050	-143.3 (3)
C17—C12—C13—O1	169.0 (2)	030-C20-C40-060	-143.1 (3)
C11—C12—C13—O1	-0.7 (3)	010-C20-C40-060	37.8 (4)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N8—H8…O1 <i>O</i> ⁱ	0.88 (1)	2.23 (3)	2.911 (3)	134 (3)
O42—H42···O3 <i>O</i> ⁱⁱ	0.84 (1)	2.12 (2)	2.906 (3)	157 (4)
O46—H46…O5 <i>O</i>	0.84 (1)	2.09 (3)	2.853 (3)	151 (5)
06 <i>0</i> —H6 <i>0</i> ····O1 <i>0</i> ⁱⁱⁱ	0.85 (1)	1.69 (2)	2.536 (3)	173 (6)

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*-1/2, -*y*+1/2, -*z*+1; (iii) *x*-1/2, -*y*+3/2, -*z*+1.