

Received 6 February 2018 Accepted 26 February 2018

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic

Keywords: crystal structure; azobenzene; 2pyrrolidone; cyclic γ -aminobutyric acid derivative; GABA; racetam.

CCDC reference: 1826009

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 2-oxopyrrolidin-3-yl 4-(2-phenyldiazen-1-yl)benzoate

Igor Elkin,^a Thierry Maris,^b Alexandre Melkoumov,^c Patrice Hildgen,^c Xavier Banquy,^c Grégoire Leclair^c and Christopher Barrett^a*

^aOtto Maass Chemistry Building, Office 430, Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, Canada, H3A 0B8, ^bDepartment of Chemistry, Université de Montréal, 2900 Edouard-Montpetit Blvd., Montreal, Quebec, Canada, H3C 3J7, and ^cFaculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit Blvd., Montreal, Quebec, Canada, H3C 3J7. *Correspondence e-mail: chris.barrett@mcgill.ca

In the title compound, $C_{17}H_{15}N_3O_3$, the plane of the pyrrolidone ring is inclined at an angle of 59.791 (2)° to that of the azobenzene segment, which adopts a configuration close to planar. In the crystal, molecules are oriented pairwise by (2-oxopyrrolidin-3-yl)oxy moieties at an angle of 76.257 (3)°, linked by hydrogen bonds and π -stacking interactions, forming zigzag supramolecular chains parallel to [010] further linked *via* additional C–H··· π interactions.

1. Chemical context

Cyclic derivatives of γ -aminobutyric acid, GABA, are still constituting a very promising avenue for developing new drugmolecules for improving neuronal, vascular and general cognitive functions (Malykh *et al.*, 2010). In this context, the goal of the present study was to obtain crystals and to characterize the molecular structure of a new representative of the cyclic-GABA family (racetams), 2-oxopyrrolidin-3-yl 4-(2-phenyldiazen-1-yl)benzoate.

2. Structural commentary

The molecular structure of the title compound (Fig. 1) comprises the expected 4-phenylazobenzoyl and (2-oxopyrrolidin-3-yl)oxy segments linked by the carboxyester bond -C1(=O2)-O1. The phenylazobenzoyl segment comprises two aromatic rings, one of which is linked at its *para*-position to the carbonyl C8 atom, and exhibits the more stable *trans* configuration to the azo group formed by N1-N2 atoms with a distance of 1.251 (5) Å. No residual peaks are observed around the N=N double bond as for pure azobenzene where such peaks are observed due to a dynamic pedal-like motion orientational disorder (Harada *et al.*, 2004). The angle between the two phenyl rings is 4.29 (13)° and is consistent with a slight deviation of the 3-oxy-substituted 2-pyrrolidone

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

segment are close to known data (Clark *et al.*, 2006), with a typical deviation from planarity for the non-aromatic system as shown by the torsion angles C15–C14–C17–C16 of 22.2 (4)° and C17–C14–C15–N3 of –16.3 (4)°. The Cremer & Pople puckering parameters of the five-membered ring are Q = 0.222 (4) Å and $\varphi = 279.4$ (11)° conforming to an envelope on C17 (Boeyens, 1978; Cremer & Pople, 1975).

3. Supramolecular features

The packing of the title molecules in the crystal (Fig. 2) is mainly determined by the presence of (2-oxopyrrolidin-3yl)oxy moieties interacting with each other pairwise, by forming hydrogen bonds between secondary amine and carbonyl groups (Table 1), similarly to other 3-oxy-substituted 2-pyrrolidone derivatives (Clark *et al.*, 2006). This interaction

Cg3 is the centrod of the C8-C13 ring.

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3-H3 A ···O3 ⁱ	0.88	1.99	2.868 (4)	175
$C11 - H11 \cdots Cg3^{ii}$	0.95	2.76	3.596 (5)	147

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, -z + 1; (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, -z + 2.

together with a π - π interaction between the two different phenyl rings from the azobenzene moieties of adjacent molecules [distance between centroids of 3.934 (2) Å] define a chain of corrugated molecules running along the *b*-axis direction (Fig. 2). The interactions between these chains proceed through C-H··· π contacts involving the C8-C13 ring and the terminal atom C11 (Table 1)

4. Database survey

A search in the Cambridge Structural Database (Version 5.39 with one update, Groom *et al.*, 2016) returned 101 entries for unsubstituted azobenzene, including the dynamic disorder study of Harada & Ogawa (2004); five entries for *O-para*-phenylazobenzoyl monoesters (Fitjer *et al.*, 1984; Fujino *et al.*, 2007; Nakatsuji *et al.*, 2007, Park *et al.*, 2015); and only two entries for 3-oxy-substituted 2-pyrrolidone (Clark *et al.*, 2006).

5. Purification and crystallization

Before recrystallization, 3-oxy(4-phenylazobenzoyl)-2-pyrro-

To the second se

lidone was purified by the technique of flash chromatography on silica on Combi Flash Rf 150 (Teledine ISCO, Lincoln, Nebraska, USA) equipped with a SiliaSep FLH-R10030B-(40 g, ISO40) flash-cartridge provided by SiliCycle Inc. (Quebec, QC, Canada), using as eluent the 0-100% gradient of hexaneethyl acetate, respectively. The purity and structure of the eluate components were confirmed by the LC-MS method on an Agilent Technologies 1260 Infinity LC-MS spectrometer (Santa Clara, CA, US) in ESI positive and negative modes, equipped with an Agilent Poroshell 120 EC-C18 2.7 µm column, using as eluent

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	C ₁₇ H ₁₅ N ₃ O ₃
$M_{\rm r}$	309.32
Crystal system, space group	Monoclinic, C2
Temperature (K)	150
a, b, c (Å)	10.2069 (3), 6.3761 (2), 23.2265 (7
β (°)	101.454 (1)
$V(Å^3)$	1481.48 (8)
Z	4
Radiation type	Ga $K\alpha$, $\lambda = 1.34139$ Å
$\mu (\text{mm}^{-1})$	0.51
Crystal size (mm)	$0.38 \times 0.09 \times 0.06$
Data collection	
Diffractometer	Bruker Venture Metaljet
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.433, 0.581
No. of measured, independent and	21356, 3382, 3014
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.046
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.070, 0.201, 1.10
No. of reflections	3382
No. of parameters	210
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.43, -0.26
Absolute structure	Refined as an inversion twin.

Computer programs: SAINT and APEX3 (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

the 0–100% gradient of solvent mixtures A and B [where A: water-acetonitrile (95%–5%) and acetic acid (0.1%); B: acetonitrile (100%) and acetic acid (0.1%)] at the following conditions: a capillary voltage of ESI source of 3000 V; a vaporizer temperature of 433 K, a nebulization pressure of 60 psig, a dry gas temperature of 573 K, and a gas flow of 5 L min⁻¹.

The crystals of the purified product were obtained by the vapor-diffusion method. A solution of 0.05 g of 3-oxy(4-phenylazobenzoyl)-2-pyrrolidone in 1 mL of chloroform, in a small open container, was placed in a sealed larger container filled with hexane, above the level of the solvent, to give orange needle-shaped crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bound to C and N were positioned geometrically with C–H = 0.95–1.00 Å and N–H = 0.88 Å, and refined using a riding model with $U_{\rm iso}({\rm H})$ = 1.2 $U_{\rm eq}({\rm C \ or \ N})$.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada; Fonds de Recherche du Québec – Nature et Technologies.

References

- Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- Bruker (2016). *APEX3* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clark, R. C., Pfeiffer, S. S. & Boger, D. L. (2006). J. Am. Chem. Soc. 128, 2587–2593.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fitjer, L., Wehle, D., Noltemeyer, M., Egert, E. & Sheldrick, G. M. (1984). *Chem. Ber.* **117**, 203–221.
- Fujino, M., Hasegawa, S., Akutsu, H., Yamada, J. & Nakatsuji, S. (2007). Polyhedron, 26, 1989–1992.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Harada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539-3544.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Malykh, A. G. & Sadaie, M. R. (2010). Drugs, 70, 287-312.
- Nakatsuji, S., Fujino, M., Hasegawa, S., Akutsu, H., Yamada, J., Gurman, V. S. & Vorobiev, A. K. (2007). J. Org. Chem. 72, 2021– 2029.
- Park, J. H., Jeong, A. R., Hastuti, D. K. A. K., Jeong, M. J. & Min, K. S. (2015). J. Incl Phenom. Macrocycl Chem. 82, 153–162.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2018). E74, 458-460 [https://doi.org/10.1107/S205698901800333X]

Crystal structure of 2-oxopyrrolidin-3-yl 4-(2-phenyldiazen-1-yl)benzoate

Igor Elkin, Thierry Maris, Alexandre Melkoumov, Patrice Hildgen, Xavier Banquy, Grégoire Leclair and Christopher Barrett

Computing details

Data collection: *SAINT* (Bruker, 2016); cell refinement: *APEX3* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009) and *publCIF* (Westrip, 2010).

2-Oxopyrrolidin-3-yl 4-(2-phenyldiazen-1-yl)benzoate

Crystal data

 $C_{17}H_{15}N_{3}O_{3}$ $M_{r} = 309.32$ Monoclinic, C2 a = 10.2069 (3) Å b = 6.3761 (2) Å c = 23.2265 (7) Å $\beta = 101.454 (1)^{\circ}$ $V = 1481.48 (8) Å^{3}$ Z = 4

Data collection

Bruker Venture Metaljet diffractometer Radiation source: Metal Jet, Gallium Liquid Metal Jet Source Helios MX Mirror Optics monochromator Detector resolution: 10.24 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.070$ $wR(F^2) = 0.201$ S = 1.103382 reflections 210 parameters 1 restraint Primary atom site location: dual F(000) = 648 $D_x = 1.387 \text{ Mg m}^{-3}$ Ga Ka radiation, $\lambda = 1.34139 \text{ Å}$ Cell parameters from 9959 reflections $\theta = 3.4-60.6^{\circ}$ $\mu = 0.51 \text{ mm}^{-1}$ T = 150 KNeedle, orange $0.38 \times 0.09 \times 0.06 \text{ mm}$

 $T_{\min} = 0.433, T_{\max} = 0.581$ 21356 measured reflections
3382 independent reflections
3014 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.046$ $\theta_{\text{max}} = 60.7^{\circ}, \theta_{\text{min}} = 3.4^{\circ}$ $h = -13 \rightarrow 13$ $k = -8 \rightarrow 8$ $l = -30 \rightarrow 30$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1386P)^2 + 0.8495P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.43$ e Å⁻³ $\Delta\rho_{min} = -0.26$ e Å⁻³ Extinction correction: (SHELXL2018; Sheldrick, 2015b), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0052 (14) Absolute structure: Refined as an inversion twin.

Special details

Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.6922 (3)	0.2037 (6)	0.83351 (15)	0.0367 (7)	
O1	0.5843 (2)	0.9207 (5)	0.64242 (11)	0.0330 (6)	
C1	0.4923 (4)	0.8542 (6)	0.67255 (17)	0.0329 (8)	
C2	0.5463 (4)	0.6943 (6)	0.71746 (16)	0.0309 (7)	
O2	0.3783 (3)	0.9167 (6)	0.66315 (14)	0.0473 (8)	
N2	0.6075 (3)	0.0794 (5)	0.84632 (15)	0.0367 (7)	
C3	0.6825 (4)	0.6531 (6)	0.73359 (17)	0.0337 (8)	
Н3	0.744646	0.733246	0.717269	0.040*	
N3	0.6575 (3)	1.2842 (6)	0.54545 (15)	0.0359 (7)	
H3A	0.708694	1.324852	0.521220	0.043*	
O3	0.6895 (3)	0.9284 (5)	0.53780 (13)	0.0447 (7)	
C4	0.7272 (4)	0.4953 (6)	0.77341 (17)	0.0345 (8)	
H4	0.820379	0.470969	0.785656	0.041*	
C5	0.6365 (4)	0.3719 (6)	0.79569 (16)	0.0327 (8)	
C6	0.4994 (4)	0.4147 (7)	0.78038 (16)	0.0351 (8)	
H6	0.437535	0.333176	0.796487	0.042*	
C7	0.4545 (4)	0.5760 (7)	0.74172 (17)	0.0344 (8)	
H7	0.361682	0.606899	0.731581	0.041*	
C8	0.6650 (4)	-0.0912 (7)	0.88292 (16)	0.0344 (8)	
C9	0.8026 (4)	-0.1300 (6)	0.89767 (18)	0.0373 (9)	
Н9	0.863800	-0.040498	0.883635	0.045*	
C10	0.8484 (4)	-0.2998 (7)	0.93287 (18)	0.0411 (9)	
H10	0.941490	-0.328690	0.942456	0.049*	
C11	0.7596 (4)	-0.4287 (7)	0.95435 (19)	0.0429 (9)	
H11	0.792211	-0.543911	0.978995	0.051*	
C12	0.6235 (5)	-0.3897 (7)	0.93991 (19)	0.0421 (9)	
H12	0.562923	-0.477628	0.954888	0.051*	
C13	0.5753 (4)	-0.2218 (7)	0.90350 (19)	0.0398 (9)	
H13	0.481869	-0.196631	0.892795	0.048*	
C14	0.5379 (4)	1.0742 (6)	0.59755 (16)	0.0316 (8)	
H14	0.447555	1.034414	0.574841	0.038*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C15	0.6388 (4)	1.0822 (6)	0.55688 (16)	0.0324 (7)
C16	0.5864 (4)	1.4325 (7)	0.57621 (16)	0.0364 (8)
H16A	0.511318	1.499253	0.548791	0.044*
H16B	0.647322	1.543044	0.595920	0.044*
C17	0.5353 (4)	1.2951 (6)	0.62119 (17)	0.0380 (9)
H17A	0.594166	1.307299	0.660417	0.046*
H17B	0.443319	1.335774	0.624282	0.046*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0382 (16)	0.0309 (16)	0.0394 (17)	-0.0030 (14)	0.0036 (13)	0.0042 (14)
01	0.0343 (12)	0.0310 (13)	0.0353 (12)	0.0018 (11)	0.0110 (10)	0.0067 (11)
C1	0.0342 (17)	0.0311 (18)	0.0353 (17)	-0.0006 (14)	0.0112 (14)	0.0014 (14)
C2	0.0353 (17)	0.0255 (16)	0.0326 (17)	0.0003 (15)	0.0082 (14)	-0.0005 (14)
O2	0.0379 (14)	0.0525 (18)	0.0542 (17)	0.0101 (14)	0.0154 (12)	0.0194 (16)
N2	0.0376 (16)	0.0315 (16)	0.0401 (16)	-0.0028 (14)	0.0054 (13)	0.0052 (14)
C3	0.0338 (18)	0.032 (2)	0.0356 (18)	-0.0040 (14)	0.0078 (14)	0.0005 (15)
N3	0.0408 (17)	0.0307 (16)	0.0383 (16)	-0.0016 (13)	0.0124 (13)	0.0019 (13)
O3	0.0593 (17)	0.0332 (14)	0.0482 (15)	0.0062 (14)	0.0266 (13)	0.0002 (13)
C4	0.0340 (17)	0.0296 (17)	0.0392 (19)	-0.0018 (15)	0.0056 (14)	0.0019 (15)
C5	0.0364 (17)	0.0278 (19)	0.0338 (17)	-0.0016 (14)	0.0064 (14)	0.0002 (14)
C6	0.0341 (17)	0.0358 (19)	0.0364 (17)	-0.0029 (16)	0.0094 (13)	0.0030 (17)
C7	0.0335 (17)	0.0322 (19)	0.0391 (18)	-0.0003 (15)	0.0109 (14)	0.0025 (16)
C8	0.0401 (18)	0.0289 (18)	0.0331 (17)	0.0007 (16)	0.0045 (14)	0.0017 (15)
C9	0.0396 (19)	0.034 (2)	0.0379 (18)	-0.0004 (16)	0.0071 (15)	0.0014 (15)
C10	0.044 (2)	0.035 (2)	0.042 (2)	0.0030 (17)	0.0034 (17)	0.0014 (17)
C11	0.052 (2)	0.0306 (19)	0.043 (2)	0.0007 (18)	0.0033 (17)	0.0040 (17)
C12	0.048 (2)	0.035 (2)	0.043 (2)	-0.0058 (18)	0.0077 (17)	0.0048 (17)
C13	0.041 (2)	0.0339 (19)	0.044 (2)	-0.0036 (16)	0.0051 (16)	0.0024 (17)
C14	0.0337 (16)	0.0301 (17)	0.0319 (16)	0.0031 (14)	0.0087 (13)	0.0032 (14)
C15	0.0356 (17)	0.0312 (17)	0.0308 (16)	0.0004 (14)	0.0080 (13)	-0.0004 (14)
C16	0.0454 (19)	0.0282 (18)	0.0367 (18)	0.0008 (17)	0.0108 (15)	0.0007 (16)
C17	0.048 (2)	0.0310 (19)	0.0374 (19)	0.0051 (16)	0.0149 (16)	-0.0018 (16)

Geometric parameters (Å, °)

N1—N2	1.251 (5)	С7—Н7	0.9500	
N1C5	1.431 (5)	C8—C9	1.400 (5)	
01—C1	1.347 (4)	C8—C13	1.391 (6)	
O1-C14	1.440 (4)	С9—Н9	0.9500	
C1—C2	1.484 (5)	C9—C10	1.381 (6)	
C1—O2	1.208 (5)	C10—H10	0.9500	
C2—C3	1.391 (5)	C10—C11	1.387 (6)	
C2—C7	1.406 (5)	C11—H11	0.9500	
N2	1.433 (5)	C11—C12	1.386 (7)	
С3—Н3	0.9500	C12—H12	0.9500	
C3—C4	1.381 (5)	C12—C13	1.392 (6)	

supporting information

N3—H3A	0.8800	С13—Н13	0.9500
N3—C15	1.336 (5)	C14—H14	1.0000
N3—C16	1.462 (5)	C14—C15	1.530 (5)
O3—C15	1.232 (5)	C14—C17	1.514 (5)
C4—H4	0.9500	C16—H16A	0.9900
C4—C5	1.391 (5)	C16—H16B	0.9900
C5—C6	1.400 (5)	C16—C17	1.532 (5)
С6—Н6	0.9500	С17—Н17А	0.9900
C6—C7	1.383 (6)	С17—Н17В	0.9900
N2—N1—C5	114.3 (3)	C9—C10—H10	119.7
C1	115.3 (3)	C9—C10—C11	120.6 (4)
O1—C1—C2	112.4 (3)	C11—C10—H10	119.7
02—C1—O1	123.3 (4)	C10—C11—H11	119.9
O2—C1—C2	124.3 (4)	C12—C11—C10	120.1 (4)
C3—C2—C1	122.1 (3)	C12—C11—H11	119.9
C3—C2—C7	120.1 (4)	C11—C12—H12	120.0
C7—C2—C1	117.8 (3)	C11—C12—C13	120.1 (4)
N1—N2—C8	113.6 (3)	C13—C12—H12	120.0
С2—С3—Н3	120.1	C8-C13-C12	119.5 (4)
C4—C3—C2	119.8 (4)	C8-C13-H13	120.3
С4—С3—Н3	120.1	С12—С13—Н13	120.3
C15 - N3 - H3A	122.5	01-C14-H14	110.2
C15 - N3 - C16	115.0 (3)	01-C14-C15	107.8 (3)
C16 - N3 - H3A	122.5	01-C14-C17	1134(3)
C3—C4—H4	119.8	C15—C14—H14	110.2
$C_3 - C_4 - C_5$	120 4 (4)	C17—C14—H14	110.2
C5-C4-H4	119.8	C17 - C14 - C15	104.8(3)
C4-C5-N1	116.1 (3)	N3-C15-C14	107.2(3)
C4-C5-C6	1200(3)	03-C15-N3	127.5(4)
C6-C5-N1	123.9(3)	03-C15-C14	127.0(1) 1253(4)
C5—C6—H6	120.1	N3—C16—H16A	111.1
C7—C6—C5	119.7 (4)	N3-C16-H16B	111.1
С7—С6—Н6	120.1	N3-C16-C17	103.4 (3)
C2—C7—H7	120.1	H16A—C16—H16B	109.0
C6—C7—C2	119.9 (3)	С17—С16—Н16А	111.1
C6—C7—H7	120.1	С17—С16—Н16В	111.1
C9—C8—N2	123.5 (3)	C14—C17—C16	104.6 (3)
C13—C8—N2	116.0 (3)	С14—С17—Н17А	110.8
C13—C8—C9	120.5 (4)	C14—C17—H17B	110.8
С8—С9—Н9	120.4	С16—С17—Н17А	110.8
C10—C9—C8	119.2 (4)	С16—С17—Н17В	110.8
С10—С9—Н9	120.4	H17A—C17—H17B	108.9
N1—N2—C8—C9	-6.9 (5)	C3—C4—C5—C6	-3.6 (6)
N1—N2—C8—C13	173.6 (4)	N3-C16-C17-C14	-20.1 (4)
N1—C5—C6—C7	-177.6 (4)	C4—C5—C6—C7	1.9 (6)
O1—C1—C2—C3	12.1 (5)	C5—N1—N2—C8	178.4 (3)

			/ ->
O1—C1—C2—C7	-164.8 (3)	C5—C6—C7—C2	0.8 (6)
O1-C14-C15-N3	-137.4 (3)	C7—C2—C3—C4	0.1 (6)
O1—C14—C15—O3	44.1 (5)	C8—C9—C10—C11	-1.2 (6)
O1—C14—C17—C16	139.4 (3)	C9—C8—C13—C12	1.2 (6)
C1-01-C14-C15	-163.5 (3)	C9-C10-C11-C12	0.9 (6)
C1-01-C14-C17	81.0 (4)	C10-C11-C12-C13	0.4 (6)
C1—C2—C3—C4	-176.7 (3)	C11—C12—C13—C8	-1.5 (6)
C1—C2—C7—C6	175.1 (4)	C13—C8—C9—C10	0.1 (6)
C2—C3—C4—C5	2.6 (6)	C14—O1—C1—C2	179.2 (3)
O2—C1—C2—C3	-168.9 (4)	C14—O1—C1—O2	0.2 (6)
O2—C1—C2—C7	14.2 (6)	C15—N3—C16—C17	10.8 (4)
N2—N1—C5—C4	-170.8 (3)	C15—C14—C17—C16	22.2 (4)
N2—N1—C5—C6	8.6 (5)	C16—N3—C15—O3	-178.1 (4)
N2-C8-C9-C10	-179.4 (4)	C16—N3—C15—C14	3.4 (4)
N2-C8-C13-C12	-179.2 (4)	C17—C14—C15—N3	-16.3 (4)
C3—C2—C7—C6	-1.8 (6)	C17—C14—C15—O3	165.1 (4)
C3—C4—C5—N1	175.9 (3)		

Hydrogen-bond geometry (Å, °)

Cg3 is the centrod of the C8–C13 ring.

D—H···A	D—H	H···A	D···A	D—H··· A
N3—H3A···O3 ⁱ	0.88	1.99	2.868 (4)	175
С11—Н11…Сд3іі	0.95	2.76	3.596 (5)	147

Symmetry codes: (i) -x+3/2, y+1/2, -z+1; (ii) -x+3/2, y-1/2, -z+2.