COMMUNICATIONS

ISSN 2056-9890

Received 20 December 2017
Accepted 8 February 2018

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; bipyridine oxide; hydrobromide; hydrate.

CCDC reference: 1822822

Supporting information: this article has supporting information at journals.iucr.org/e

2,2'-Bipyridin-1'-ium 1-oxide bromide monohydrate

Katharina Heintz, ${ }^{\text {a }}$ Helmar Görls ${ }^{\text {b }}$ and Wolfgang Imhof ${ }^{\text {a* }}$

${ }^{a}$ University Koblenz - Landau, Institute of Integrated Natural Sciences, Universitätsstrasse 1, D-56070 Koblenz, Germany, and ${ }^{\mathbf{b}}$ Friedrich-Schiller-University, Insitute of Inorganic and Analytical Chemistry, Humboldtstrasse 8, D-07743 Jena, Germany. *Correspondence e-mail: imhof@uni-koblenz.de

The title compound $2,2^{\prime}$-bipyridin- 1^{\prime}-ium 1-oxide bromide crystallizes as a monohydrate, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$. Structural disorder is observed due to the fact that protonation, as well as oxidation, of the N atoms of $2,2^{\prime}$-bipyridine occurs at either of the N atoms. The disorder extends to the remainder of the cation, with a refined occupancy rate of 0.717 (4) for the major moiety. An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond forces the bipyridine unit into an s-cis conformation. Each pair of neighbouring $2,2^{\prime}$-bipyridin- 1^{\prime}-ium ions forms a dimeric aggregate by hydrogen bonds between their respective $\mathrm{N}-\mathrm{O}$ and the $\mathrm{N}-\mathrm{H}$ functions. These dimers and hydrogen-bonding interactions with bromide ions and the water molecule give rise to a complex supramolecular arrangement.

1. Chemical context

Bipyridine ligands are an important class of ligands with respect to the synthesis of transition metal complexes. They are especially well-known for their use in the development of complexes with specific photophysical (Thompson et al., 2013; Sun et al., 2015, Dongare et al., 2017) and/or photocatalytic (Wenger, 2013; Fukuzumi et al., 2016; Knoll et al., 2015; Duan et al., 2015; Pal \& Hanan, 2014) properties or for the construction of dye-sensitized solar cells (Happ et al., 2012; Bomben et al., 2012; Robson et al., 2012; Adeloye \& Ajibade, 2014; Lu et al., 2016; Omae, 2016). During our attempts to introduce substituents to $2,2^{\prime}$-bipyrdines that would allow us to use them as monomers in copolymerization reactions (Heintz et al., 2017), we treated 2,2'-bipyridine with a mixture of hydrobromic acid and hydrogen peroxide with the aim of getting direct access to 4 -bromo- $2,2^{\prime}$-bipyridine-1-oxide. After recrystallization, the title compound turned out to be the only isolable product.

The molecular structure of the cation of the title compound is depicted in Fig. 1, showing the disorder of the cations in which the oxygen atom and the proton are bonded to either N 1 or N 2 . The two cation moieties are disordered over the same

Figure 1
Molecular structure of the cation of the title compound. Non-hydrogen atoms showing displacement ellipsoids with octand shading represent the major component of the two disordered cations.
position in an approximate $3: 1$ ratio, with a refined occupancy for the major moiety of 0.717 (4). The disorder has been refined in terms of a whole molecule disorder, thus leading virtually identical bond lengths which, in addition, are of expected values. See the Refinement section for details of the refinement of the disorder. The two pyridine subunits of the $2,2^{\prime}$-bipyridine exhibit an s-cis conformation, which is stabilized by an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 1). The s-cis conformation also allows the cations to arrange themselves into dimeric aggregates via additional $\mathrm{N}-$ H…O hydrogen bonds (cf. Supramolecular features).

Figure 2
Dimer of cations formed by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). Hydrogen-bonded bromide anions and water molecules are also shown. Disorder of the cation is omitted for clarity.

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{O} 1$	0.88	1.76	$2.485(4)$	138
$\mathrm{~N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.88	2.41	$3.089(5)$	134
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.95	2.22	$3.138(6)$	163
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Br} 1^{\mathrm{ii}}$	0.95	2.75	$3.687(10)$	167
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Br} 1^{\mathrm{ii}}$	0.95	2.86	$3.769(10)$	160
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1 W$	0.95	2.34	$3.074(5)$	134
$\mathrm{~N} 2 B-\mathrm{H} 2 N 2 \cdots \mathrm{O} 1 B$	0.88	1.81	$2.500(15)$	134
$\mathrm{~N} 2 B-\mathrm{H} 2 N 2 \cdots \mathrm{O} 1 B^{\mathrm{i}}$	0.88	2.35	$3.117(18)$	146
$\mathrm{C} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 1 W$	0.95	2.09	$2.979(14)$	156
$\mathrm{C} 2 B-\mathrm{H} 2 B \cdots \mathrm{Br} 1^{\mathrm{iii}}$	0.95	2.80	$3.497(15)$	131
$\mathrm{C} 4 B-\mathrm{H} 4 B \cdots \mathrm{Br} 1^{\mathrm{ii}}$	0.95	2.77	$3.70(3)$	168
$\mathrm{C} 7 B-\mathrm{H} 7 B \cdots \mathrm{Br}^{1 i}$	0.95	2.92	$3.80(3)$	155
$\mathrm{C} 10 B-\mathrm{H} 10 B \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.95	2.40	$3.246(17)$	147
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{Br} 1$	$0.90(3)$	$2.47(3)$	$3.3475(18)$	$165(3)$
$\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{Br} 1^{\mathrm{iv}}$	$0.84(3)$	$2.57(3)$	$3.3754(17)$	$160(3)$

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y+1,-z+1$; (iii) $x+1, y, z$; (iv) $-x, y-\frac{1}{2},-z+\frac{3}{2}$.

3. Supramolecular features

Fig. 2 shows a dimeric aggregate built up by two cations of the title compound via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). In addition, the figure shows that hydrogen atoms in the $3,3^{\prime}, 4$ and 4^{\prime} positions of each bipyridine unit are engaged in $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (Desiraju \& Steiner, 2001) with the interactions of the 3 and 3^{\prime} hydrogen atoms being part of a bifurcated hydrogen bond towards the bromide anion. Hydrogen atoms in the 6 and 6^{\prime} positions are part of bifurcated hydrogen bonds towards the water molecule. Moreover, the hydrogen atoms of the water molecules are involved in hydrogen bonds of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ type. Bromide anions and water molecules form zigzag chains along the b-axis direction (Fig. 3). In summary, a complex network structure is realized by hydrogen bonds linking the constituents of this zigzag chain into dimers of cations.

4. Database survey

According to a CSD survey (Version 5.38; Groom et al., 2016) and in contrast to $2,2^{\prime}$-bipyridine or $2,2^{\prime}$-bipyridine-1-oxide, there are no metal complexes reported in which a protonated $2,2^{\prime}$-bipyridine-1-oxide acts as a ligand. Nevertheless, there are several closely related compounds that show different counter-ions. There are entries involving the hydrogensulfate (ESUMEL; Najafpour et al., 2010), the perrhenate (PEPDAP;

Figure 3
Zigzag chain of water molecules and bromide anions parallel to the b axis.

Englert et al., 1993) and the triiodide (SINBIB; Lin et al., 2007). All of these compounds, as well as the title compound itself, show an s-cis conformation of the bipyridine. Moreover, in all compounds, both rings of the bipyridine show an almost perfect coplanar arrangement with dihedral angles well below 10° [title compound: molecule 1: $1.2(6)^{\circ}$, molecule 2: $2(2)^{\circ}$; ESUMEL 5.9 ${ }^{\circ}$; PEPDAP 3.9°; SINBIB 2.7°]. This arrangement is most probably caused by the short intramolecular N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the protonated nitrogen atom and the oxygen atom (title compound: molecule 11.76 , molecule $2 ; 1.81$ Å; ESUMEL $1.73 \AA$; PEPDAP $1.71 \AA$ A ; SINBIB $1.73 \AA$). The supramolecular arrangement in ESUMEL and PEPDAP is identical, with the cations also forming hydrogenbonded dimers. Nevertheless, in contrast to the title compound, these dimers are formed by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds of aromatic $\mathrm{C}-\mathrm{H}$ functions towards the oxygen atom. All other hydrogen bonds are realized by oxygen atoms of the counter-ions acting as the hydrogen-bond acceptor sites. In SINBIB, the cations form an infinite plane realized by bifurcated hydrogen bonds of the oxygen atoms with aromatic $\mathrm{C}-\mathrm{H}$ functions. In addition, each cation shows a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interaction. In ESUMEL and SINBIB, the protonated $\mathrm{N}-\mathrm{H}$ groups are not involved in the hydrogenbond network, whereas in PEPDAP there is an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond to one of the perrhenate counter-ions. In summary, the hydrogen-bond network observed for the title compound is unique compared to the situation for other closely related crystal structures.

5. Synthesis and crystallization

2,2'-Bipyridine ($1 \mathrm{~g}, 6.5 \mathrm{mmol}$) was dissolved in 15 mL methanol. Then hydrobromic acid ($0.58 \mathrm{~g}, 7.2 \mathrm{mmol}$) and a 30% solution of hydrogen peroxide ($0.74 \mathrm{~mL}, 6.5 \mathrm{mmol}$) were added at 283 K . The solution was stirred at room temperature for 20 h . The clear solution turned yellow and a fine precipitate was formed, which dissolved again during the reaction time. After the solvent had evaporated, the colourless residue was dissolved in ethanol. Then water was added until a fine precipitate was formed. Storing the solution in the refrigerator (277 K) overnight led to the formation of crystals suitable for x-ray diffraction (yield: $126 \mathrm{mg}, 0.3 \mathrm{mmol}, 46 \%$).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Data were corrected for Lorentz and polarization effects. Water H atoms were freely refined All other hydrogen atoms were placed in idealized positions $(\mathrm{N}-\mathrm{H}=0.88, \mathrm{C}-\mathrm{H}=0.95 \AA)$ and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}$ or N$)$. The disorder was refined in terms of a whole molecule disorder. The geometry of major and minor moieties were restrained to be similar (SAME restraint in $S H E L X L$) and anisotropic displacement parameters of equivalent atoms in the two moieties were constrained to be identical. Site-occupation factors of the

Table 2
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{Br}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{\text {r }}$	271.12
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$
Temperature (K)	133
$a, b, c(\AA)$	5.7882 (1), 9.2095 (2), 20.2485 (4)
$\beta{ }^{\circ}$)	91.701 (1)
$V\left(\mathrm{~A}^{3}\right)$	1078.90 (4)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	3.79
Crystal size (mm)	$0.05 \times 0.04 \times 0.03$
Data collection	
Diffractometer	Nonius KappaCCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 2002)
$T_{\text {min }}, T_{\text {max }}$	0.557, 0.746
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	12419, 2465, 2226
$R_{\text {int }}$	0.030
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.649
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.023, 0.052, 1.07
No. of reflections	2465
No. of parameters	190
No. of restraints	32
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.46, -0.51

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski \& Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006).
atoms of the two disordered cations were refined using the FVAR instruction and were calculated to be 0.717 (4) (O1 to $\mathrm{H} 10)$ and 0.283 (4) (O1B to $\mathrm{H} 10 B)$.

Funding information

KH gratefully acknowledges a PhD grant from the 'Stiftung der deutschen Wirtschaft'.

References

Adeloye, A. O. \& Ajibade, P. A. (2014). Molecules, 19, 1242112460.

Bomben, P. G., Robson, K. C. D., Koivisto, B. D. \& Berlinguette, C. P. (2012). Coord. Chem. Rev. 256, 1438-1450.

Desiraju, G. R. \& Steiner, T. (2001). The Weak Hydrogen Bond. Oxford Science Publications.
Dongare, P., Myron, B. D. B., Wang, L., Thompson, D. W. \& Meyer, T. J. (2017). Coord. Chem. Rev. 345, 86-107.

Duan, L., Wang, L., Li, F., Li, F. \& Sun, L. (2015). Acc. Chem. Res. 48, 2084-2096.
Englert, U., Koelle, U. \& Nageswara, R. N. (1993). Z. Kristallogr. 206, 106-108.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Fukuzumi, S., Jung, J., Yamada, Y., Kojima, T. \& Nam, W. (2016). Chem. Asian J. 11, 1138-1150.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Happ, B., Winter, A., Hager, M. D. \& Schubert, U. S. (2012). Chem. Soc. Rev. 41, 2222-2255.

Heintz, K., Imhof, W. \& Görls, H. (2017). Monatsh. Chem. 148, 991998.

Knoll, J. D., Albani, B. A. \& Turro, C. (2015). Acc. Chem. Res. 48, 2280-2287.
Lin, X. L., Wang, Y. J., Chen, Z. R. \& Liu, J. B. (2007). Acta Cryst. E63, o4322.
Lu, C.-W., Wang, Y. \& Chi, Y. (2016). Chem. Eur. J. 22, 1789217908.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
Najafpour, M. M., Boghaei, D. M. \& Sjöberg, P. J. R. (2010). Spectrochim. Acta Part A, 75, 1168-1170.
Nonius, B. V. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Omae, I. (2016). Curr. Org. Chem. 20, 2848-2864.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pal, A. K. \& Hanan, G. S. (2014). Chem. Soc. Rev. 43, 6184-6197.
Robson, K. C. D., Bomben, P. G. \& Berlinguette, C. P. (2012). Dalton Trans. 41, 7814-7829.
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Sun, Q., Mosquera-Vazquez, S., Suffren, Y., Hankache, J., Amstutz, N., Lawson Daku, L. M., Vauthey, E. \& Hauser, A. (2015). Coord. Chem. Rev. 282-283, 87-99.
Thompson, D. W., Ito, A. \& Meyer, T. J. (2013). Pure Appl. Chem. 85, 1257-1305.
Wenger, O. S. (2013). Acc. Chem. Res. 46, 1517-1526.

supporting information

2,2'-Bipyridin-1'-ium 1-oxide bromide monohydrate

Katharina Heintz, Helmar Görls and Wolfgang Imhof

Computing details

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2006).

2,2'-Bipyridin-1'-ium 1-oxide bromide monohydrate

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{Br}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=271.12$
Monoclinic, $P 2_{1} / c$
$a=5.7882$ (1) \AA
$b=9.2095$ (2) \AA
$c=20.2485(4) \AA$
$\beta=91.701(1)^{\circ}$
$V=1078.90(4) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi- $+\omega$-scan
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\min }=0.557, T_{\text {max }}=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.052$
$S=1.07$
2465 reflections
190 parameters
32 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=544$
$D_{\mathrm{x}}=1.669 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 12419 reflections
$\theta=2.0-27.5^{\circ}$
$\mu=3.79 \mathrm{~mm}^{-1}$
$T=133 \mathrm{~K}$
Prism, colourless
$0.05 \times 0.04 \times 0.03 \mathrm{~mm}$

12419 measured reflections
2465 independent reflections
2226 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-7 \rightarrow 7$
$k=-9 \rightarrow 11$
$l=-26 \rightarrow 26$

Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0113 P)^{2}+0.9881 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.46 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Br1	-0.09302 (3)	0.63110 (2)	0.65415 (2)	0.02577 (7)	
O1	0.0960 (3)	-0.0036 (2)	0.43461 (9)	0.0270 (5)	0.717 (4)
N1	0.2649 (12)	0.0073 (8)	0.3908 (2)	0.0199 (9)	0.717 (4)
N2	0.3050 (9)	0.1763 (6)	0.5057 (2)	0.0206 (7)	0.717 (4)
H1N2	0.188837	0.116543	0.497651	0.025*	0.717 (4)
C1	0.2378 (9)	-0.0729 (6)	0.33445 (16)	0.0236 (8)	0.717 (4)
H1	0.103588	-0.130999	0.327701	0.028*	0.717 (4)
C2	0.4039 (8)	-0.0697 (6)	0.2875 (2)	0.0252 (9)	0.717 (4)
H2	0.385065	-0.126508	0.248510	0.030*	0.717 (4)
C3	0.5987 (11)	0.0160 (10)	0.2967 (4)	0.0254 (8)	0.717 (4)
H3	0.716054	0.016114	0.264870	0.031*	0.717 (4)
C4	0.620 (2)	0.1013 (15)	0.3526 (4)	0.0211 (11)	0.717 (4)
H4	0.748457	0.165180	0.358187	0.025*	0.717 (4)
C5	0.4539 (15)	0.0933 (9)	0.4009 (4)	0.0162 (9)	0.717 (4)
C6	0.4718 (14)	0.1856 (12)	0.4606 (3)	0.0174 (9)	0.717 (4)
C7	0.6635 (19)	0.2733 (8)	0.4752 (5)	0.0217 (11)	0.717 (4)
H7	0.791700	0.274957	0.447024	0.026*	0.717 (4)
C8	0.6624 (8)	0.3582 (9)	0.5321 (3)	0.0254 (9)	0.717 (4)
H8	0.783428	0.426128	0.540232	0.031*	0.717 (4)
C9	0.4864 (8)	0.3452 (6)	0.5776 (3)	0.0276 (11)	0.717 (4)
H9	0.491253	0.398271	0.617799	0.033*	0.717 (4)
C10	0.3066 (7)	0.2532 (5)	0.5621 (2)	0.0254 (9)	0.717 (4)
H10	0.182364	0.243774	0.591417	0.030*	0.717 (4)
O1B	0.1468 (8)	0.1100 (5)	0.5162 (2)	0.0283 (14)	0.283 (4)
N1B	0.330 (3)	0.1968 (18)	0.5193 (7)	0.0206 (7)	0.283 (4)
N2B	0.263 (3)	0.018 (2)	0.4059 (7)	0.0199 (9)	0.283 (4)
H2N2	0.165293	0.014377	0.438408	0.024*	0.283 (4)
C1B	0.361 (2)	0.2832 (16)	0.5724 (6)	0.0254 (9)	0.283 (4)
H1B	0.251328	0.281476	0.606250	0.030*	0.283 (4)
C2B	0.546 (3)	0.3722 (19)	0.5783 (8)	0.0276 (11)	0.283 (4)
H2B	0.556963	0.436182	0.615077	0.033*	0.283 (4)
C3B	0.716 (3)	0.373 (3)	0.5334 (10)	0.0254 (9)	0.283 (4)
H3B	0.858710	0.421752	0.541526	0.031*	0.283 (4)
C4B	0.668 (5)	0.299 (3)	0.4753 (13)	0.0217 (11)	0.283 (4)
H4B	0.756541	0.319587	0.437556	0.026*	0.283 (4)

C5B	$0.493(4)$	$0.196(3)$	$0.4710(10)$	$0.0174(9)$	$0.283(4)$
C6B	$0.450(4)$	$0.112(3)$	$0.4118(11)$	$0.0162(9)$	$0.283(4)$
C7B	$0.607(6)$	$0.094(4)$	$0.3618(13)$	$0.0211(11)$	$0.283(4)$
H7B	0.754015	0.139492	0.366763	0.025^{*}	$0.283(4)$
C8B	$0.558(3)$	$0.015(3)$	$0.3049(11)$	$0.0254(8)$	$0.283(4)$
H8B	0.657616	0.018628	0.268447	0.031^{*}	$0.283(4)$
C9B	$0.361(3)$	$-0.0716(19)$	$0.3024(7)$	$0.0252(9)$	$0.283(4)$
H9B	0.324956	-0.132271	0.265541	0.030^{*}	$0.283(4)$
C10B	$0.224(3)$	$-0.0649(19)$	$0.3544(5)$	$0.0236(8)$	$0.283(4)$
H10B	0.089399	-0.124292	0.353836	0.028^{*}	$0.283(4)$
O1W	$0.1320(3)$	$0.31147(18)$	$0.70149(8)$	$0.0383(4)$	
H1W1	$0.067(6)$	$0.400(4)$	$0.6970(16)$	$0.075(10)^{*}$	
H2W1	$0.117(5)$	$0.288(3)$	$0.7415(16)$	$0.064(9)^{*}$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.02760(10)$	$0.02744(12)$	$0.02241(10)$	$0.00035(7)$	$0.00334(7)$	$0.00392(7)$
O1	$0.0252(10)$	$0.0336(11)$	$0.0225(10)$	$-0.0067(8)$	$0.0068(7)$	$-0.0001(8)$
N1	$0.0208(8)$	$0.0207(15)$	$0.019(3)$	$0.0010(8)$	$0.0034(18)$	$0.002(2)$
N2	$0.0220(15)$	$0.024(2)$	$0.016(2)$	$-0.0026(11)$	$0.0018(14)$	$-0.0009(14)$
C1	$0.0280(13)$	$0.0231(12)$	$0.019(2)$	$-0.0009(10)$	$-0.006(2)$	$-0.004(2)$
C2	$0.030(2)$	$0.0272(11)$	$0.018(2)$	$0.0045(15)$	$0.0008(13)$	$-0.0047(17)$
C3	$0.022(3)$	$0.0337(11)$	$0.021(2)$	$0.0066(19)$	$0.0064(15)$	$-0.0024(15)$
C4	$0.0189(17)$	$0.0273(17)$	$0.017(3)$	$0.0011(11)$	$0.0040(17)$	$0.003(2)$
C5	$0.0186(8)$	$0.015(3)$	$0.015(3)$	$0.0039(14)$	$0.0018(16)$	$-0.0031(14)$
C6	$0.0199(18)$	$0.0198(19)$	$0.012(3)$	$0.0021(12)$	$-0.0014(18)$	$0.0032(18)$
C7	$0.0259(10)$	$0.017(3)$	$0.0225(9)$	$0.000(2)$	$0.0028(7)$	$0.0005(19)$
C8	$0.025(3)$	$0.025(2)$	$0.0259(10)$	$-0.004(2)$	$-0.005(2)$	$-0.0014(11)$
C9	$0.037(3)$	$0.028(3)$	$0.0183(10)$	$0.000(2)$	$0.0029(19)$	$-0.0003(15)$
C10	$0.030(2)$	$0.029(2)$	$0.0179(18)$	$-0.0004(15)$	$0.0043(14)$	$-0.0005(14)$
O1B	$0.025(2)$	$0.034(3)$	$0.026(3)$	$-0.011(2)$	$0.0061(19)$	$-0.004(2)$
N1B	$0.0220(15)$	$0.024(2)$	$0.016(2)$	$-0.0026(11)$	$0.0018(14)$	$-0.0009(14)$
N2B	$0.0208(8)$	$0.0207(15)$	$0.019(3)$	$0.0010(8)$	$0.0034(18)$	$0.002(2)$
C1B	$0.030(2)$	$0.029(2)$	$0.0179(18)$	$-0.0004(15)$	$0.0043(14)$	$-0.0005(14)$
C2B	$0.037(3)$	$0.028(3)$	$0.0183(10)$	$0.000(2)$	$0.0029(19)$	$-0.0003(15)$
C3B	$0.025(3)$	$0.025(2)$	$0.0259(10)$	$-0.004(2)$	$-0.005(2)$	$-0.0014(11)$
C4B	$0.0259(10)$	$0.017(3)$	$0.0225(9)$	$0.000(2)$	$0.0028(7)$	$0.0005(19)$
C5B	$0.0199(18)$	$0.0198(19)$	$0.012(3)$	$0.0021(12)$	$-0.0014(18)$	$0.0032(18)$
C6B	$0.0186(8)$	$0.015(3)$	$0.015(3)$	$0.0039(14)$	$0.0018(16)$	$-0.0031(14)$
C7B	$0.0189(17)$	$0.0273(17)$	$0.017(3)$	$0.0011(11)$	$0.0040(17)$	$0.003(2)$
C8B	$0.022(3)$	$0.0337(11)$	$0.021(2)$	$0.0066(19)$	$0.0064(15)$	$-0.0024(15)$
C9B	$0.030(2)$	$0.0272(11)$	$0.018(2)$	$0.0045(15)$	$0.0008(13)$	$-0.0047(17)$
C10B	$0.0280(13)$	$0.0231(12)$	$0.019(2)$	$-0.0009(10)$	$-0.006(2)$	$-0.004(2)$
O1W	$0.0614(10)$	$0.0280(8)$	$0.0259(8)$	$0.0023(8)$	$0.0041(7)$	$-0.0044(7)$

Geometric parameters (A, ${ }^{\circ}$)

O1-N1	1.343 (6)	N1B-C1B	1.345 (12)
N1-C5	1.361 (7)	N1B-C5B	1.378 (19)
N1-C1	1.364 (4)	N2B-C10B	1.307 (12)
N2-C10	1.344 (4)	N2B-C6B	1.386 (19)
N2-C6	1.351 (7)	$\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~N} 2$	0.8800
N2-H1N2	0.8800	C1B-C2B	1.347 (11)
C1-C2	1.373 (4)	C1B-H1B	0.9500
C1-H1	0.9500	C2B-C3B	1.362 (17)
C2-C3	1.384 (7)	C2B-H2B	0.9500
C2-H2	0.9500	C3B-C4B	1.38 (2)
C3-C4	1.381 (8)	C3B-H3B	0.9500
C3-H3	0.9500	C4B-C5B	1.392 (19)
C4- C 5	1.396 (7)	C4B-H4B	0.9500
C4-H4	0.9500	C5B-C6B	1.444 (12)
C5-C6	1.478 (4)	C6B-C7B	1.390 (19)
C6-C7	1.397 (8)	C7B-C8B	1.39 (2)
C7-C8	1.393 (8)	C7B-H7B	0.9500
C7-H7	0.9500	C8B-C9B	1.390 (17)
C8-C9	1.398 (6)	C8B-H8B	0.9500
C8-H8	0.9500	C9B-C10B	1.339 (11)
C9-C10	1.371 (4)	C9B-H9B	0.9500
C9-H9	0.9500	C10B-H10B	0.9500
C10-H10	0.9500	O1W-H1W1	0.90 (3)
O1B-N1B	1.330 (12)	O1W-H2W1	0.84 (3)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 5$	122.8 (4)	$\mathrm{O} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	121.8 (11)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	116.4 (5)	C1B-N1B-C5B	119.5 (12)
C5-N1-C1	120.8 (5)	C10B-N2B-C6B	123.3 (15)
C10-N2-C6	123.6 (4)	C10B-N2B-H2N2	118.4
C10-N2-H1N2	118.2	$\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~N} 2$	118.4
C6-N2-H1N2	118.2	$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	121.2 (14)
N1-C1-C2	120.2 (5)	N1B-C1B-H1B	119.4
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	119.9	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B}$	119.4
C2- $21-\mathrm{H} 1$	119.9	C1B-C2B-C3B	122.1 (15)
C1-C2-C3	120.2 (4)	C1B-C2B-H2B	119.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.9	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	119.0
C3-C2-H2	119.9	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	115.9 (15)
C4-C3-C2	119.3 (5)	C2B-C3B-H3B	122.1
C4-C3-H3	120.4	C4B-C3B-H3B	122.1
C2-C3-H3	120.4	C3B-C4B-C5B	121 (2)
C3-C4-C5	119.8 (7)	C3B-C4B-H4B	119.4
C3-C4-H4	120.1	C5B-C4B-H4B	119.4
C5-C4-H4	120.1	N1B-C5B-C4B	117.6 (17)
N1-C5-C4	119.6 (5)	N1B-C5B-C6B	119.0 (17)
N1-C5-C6	119.6 (6)	C4B-C5B-C6B	121.9 (19)
C4- $45-\mathrm{C} 6$	120.6 (7)	$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	113.1 (16)

N2-C6-C7	$118.2(6)$
N2-C6-C5	$118.8(6)$
C7-C6-C5	$122.8(7)$
C8-C7-C6	$118.5(8)$
C8-C7-H7	120.7
C6-C7-H7	120.7
C7-C8-C9	$121.2(5)$
C7-C8-H8	119.4
C9-C8-H8	119.4
C10-C9-C8	$117.8(5)$
C10-C9-H9	121.1
C8-C9-H9	121.1
N2-C10-C9	$120.4(4)$
N2-C10-H10	119.8
C9-C10-H10	119.8
O1B-N1B-C1B	$118.7(12)$

N2B-C6B-C5B	$121.5(18)$
C7B-C6B-C5B	$124(2)$
C8B-C7B-C6B	$123(2)$
C8B-C7B-H7B	118.5
C6B-C7B-H7B	118.5
C7B-C8B-C9B	$118.6(16)$
C7B-C8B-H8B	120.7
C9B-C8B-H8B	120.7
C10B-C9B-C8B	$116.8(14)$
C10B-C9B-H9B	121.6
C8B-C9B-H9B	121.6
N2B-C10B-C9B	$124.2(16)$
N2B-C10B-H10B	117.9
C9B-C10B-H10B	117.9
H1W1-O1W-H2W1	$106(3)$

Hydrogen-bond geometry (A, o)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{O} 1$	0.88	1.76	2.485 (4)	138
$\mathrm{N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{O} 1^{\text {i }}$	0.88	2.41	3.089 (5)	134
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 W^{1}$	0.95	2.22	3.138 (6)	163
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Br} 1^{\text {ii }}$	0.95	2.75	3.687 (10)	167
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Br} 1^{\text {ii }}$	0.95	2.86	3.769 (10)	160
C10-H10 $\cdots \mathrm{O} 1 W$	0.95	2.34	3.074 (5)	134
$\mathrm{N} 2 B-\mathrm{H} 2 N 2 \cdots \mathrm{O} 1 B$	0.88	1.81	2.500 (15)	134
$\mathrm{N} 2 B-\mathrm{H} 2 N 2 \cdots \mathrm{O} 1 B^{\text {i }}$	0.88	2.35	3.117 (18)	146
$\mathrm{C} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 1 W$	0.95	2.09	2.979 (14)	156
$\mathrm{C} 2 B-\mathrm{H} 2 B \cdots \mathrm{Br} 1^{\text {iii }}$	0.95	2.80	3.497 (15)	131
$\mathrm{C} 4 B-\mathrm{H} 4 B \cdots \mathrm{Br} 1^{\text {ii }}$	0.95	2.77	3.70 (3)	168
$\mathrm{C} 7 B-\mathrm{H} 7 B \cdots \mathrm{Br} 1^{\mathrm{ii}}$	0.95	2.92	3.80 (3)	155
$\mathrm{C} 10 B-\mathrm{H} 10 B \cdots \mathrm{O} 1 W^{\text {r }}$	0.95	2.40	3.246 (17)	147
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{Br} 1$	0.90 (3)	2.47 (3)	3.3475 (18)	165 (3)
$\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{Br} 1^{\text {iv }}$	0.84 (3)	2.57 (3)	3.3754 (17)	160 (3)

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y+1,-z+1$; (iii) $x+1, y, z$; (iv) $-x, y-1 / 2,-z+3 / 2$.

