

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 30 January 2018 Accepted 3 February 2018

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: Schiff bas; crystal structure; DFT; 5-bromo-3-ethoxy-2-hydroxybenzaldehyde; 2-methoxyaniline.

CCDC reference: 1457124

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis, crystal structure and computational studies of a new Schiff base compound: (*E*)-4-bromo-2-ethoxy-6-{[(2-methoxyphenyl)imino]methyl}phenol

Arzu Özek Yıldırım,^a* Murat Gülsu^a and Çiğdem Albayrak Kaştaş^b

^aDepartment of Physics, Faculty of Arts and Sciences, Giresun University, Turkey, and ^bDepartment of Chemistry, Faculty of Arts and Sciences, Sinop University, Turkey. *Correspondence e-mail: arzu.ozek.yildirim@giresun.edu.tr

The title compound, $C_{16}H_{16}BrNO_3$, which shows enol-imine tautomerism, crystallizes in the monoclinic $P2_1/c$ space group. All non-H atoms of the molecule are nearly coplanar, with a maximum deviation of 0.274 (3) Å. In the crystal, molecules are held together by weak $C-H\cdots O$, $\pi-\pi$ and $C-H\cdots\pi$ interactions. The E/Z isomerism and enol/keto tautomerism energy barriers of the compound have been calculated by relaxed potential energy surface scan calculations with DFT methods. To observe the changes in the aromatic ring, HOMA aromaticity indexes were calculated during the scan process. Total energy and HOMA change curves were obtained to visualize results of the scan calculations.

1. Chemical context

The synthesis and chemistry of Schiff bases have received considerable attention over the last several decades, primarily owing to their remarkable potential pharmacological (Hu et al., 2012), anti-tumor (Kamel et al., 2010) and biological properties (Lozier et al., 1975). Furthermore, Schiff bases can display photo-chromic and thermo-chromic effect (Hadjoudis & Mavridis, 2004). These effects depend on the prototropic tautomerism and molecular planarity in Schiff bases (Moustakali-Mavridis et al., 1978; Hadjoudis et al., 1987). Prototropic tautomerism emerges from the intramolecular H-atom transfer between an enol-imine (Özdemir Tarı et al., 2016) and a keto-amine tautomer (Özek et al., 2006). The present work is part of our ongoing studies on Schiff bases (Özek Yıldırım et al., 2016, 2017; Albayrak et al., 2012). We report herein the synthesis, crystal structure and computational studies of the title compound, (E)-4-bromo-2-ethoxy-6-{[(2-methoxyphenyl)imino]methyl}phenol, obtained from the condensation of 5bromo-3-ethoxy-2-hydroxybenzaldehyde with 2-methoxyaniline.

research communications

Figure 1

2. Structural commentary

Fig. 1 represents the molecular structure of the title compound. All non-H atoms lie in the plane formed by the aromatic rings with a maximum deviation of 0.274 (3) Å. The dihedral angle between the aromatic rings C1–C6 and C10–C15 is 2.25 (13)°. In the chelate moiety, which comprises atoms C1, C2, O1, H1, N1 and C9, C9=N1 [1.281 (3)] is a typical double bond while C2–O1 [1.333 (3)] is a typical single bond; these are similar to those in related structures (Petek *et al.*, 2010; Gül *et al.*, 2007). The harmonic oscillator model of aromaticity (HOMA; Kruszewski & Krygowski, 1972) values were calculated [0.88 for C1–C6 and 0.98 for the C10–C15 ring] to observe the effect of substituent groups on the rings. There are no significant deformations of the rings when compared to those in (*E*)-2-ethoxy-6-[(2-methoxyphenyl-

Figure 2

View of the inversion dimers, which are connected by π - π interactions, propagating along the *c*-axis direction. [Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x, y + 1, z; (iii) x, y - 1, z; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, -y + 2, -z + 1.]

Table 1	
Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C6 and C10-C15 rings, respectively.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
O1-H1 \cdots N1 C16-H16 A \cdots O1 ⁱ C7-H7 A \cdots Cg1 ⁱⁱ C13-H13 \cdots Cg2 ⁱⁱⁱ	0.81 (5) 0.96 0.97 0.93	1.80 (5) 2.55 2.80 2.79	2.566 (3) 3.293 (3) 3.662 (3) 3.629 (3)	157 (5) 135 149 150
Symmetry codes: $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}.$	(i) $-x + 1, -$	y, -z + 1; (ii)	$) -x + \frac{1}{2}, y + \frac{1}{2}$	$z_{i}, -z + \frac{1}{2};$ (iii)

imino)methyl]phenol (Petek *et al.*, 2010). The chelate moiety forms an S(6) graph-set motif through a strong intramolecular O1-H1···N1 hydrogen bond (Table 1).

3. Supramolecular features

In the crystal, inversion dimers with an R_2^2 motif are generated by the weak C16—H16A···O1(-x + 1, -y, -z + 1) hydrogen bonds (Table 1). As shown in Fig. 2, these dimers are connected to each other by $\pi - \pi$ interactions [Cg1···Cg2(x, y + 1, z) = 3.6237 (16) Å; Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively]. C–H··· π interactions (Table 1) generate zigzag chains along the [100] direction as shown in Fig. 3.

4. Computational Studies

Relaxed potential energy surface scan calculations were performed using the DFT/B3LYP/6-311G++(d,p) method with *Gaussian 09W* software (Frisch *et al.*, 2009) to investigate the connection between the molecular conformation and physical properties of a Schiff base. The results of a torsional angle scan and a proton-transfer scan on the $O-H\cdots N$ pathway are given in Fig. 4. The torsional barrier between the E/Z isomers was found to be 1.94 kcal mol⁻¹ and the enol-keto tauto-

The packing, viewed down the *c* axis, showing molecules connected by $C-H\cdots\pi$ interactions [Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2};$ (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (iv) x, y + 1, z; (v) x - 1, y, z; (vi) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2};$ (vii) x + 1, y, z.]

Figure 4

The potential energy curves for the torsional scan (a) and the O-H bond scan (b). Relative energies are calculated with respect to the global minimum of each curve.

merism barrier was $1.92 \text{ kcal mol}^{-1}$. The effects of the conformational changes on the aromatic ring can be visualized by calculating HOMA values during the scan calculations. Fig. 5a shows that changes in the HOMA indices are very limited with an average fluctuation of 2%. As can be seen in Fig. 5b, the aromaticity of the C1–C6 ring depends strongly on the prototropic tautomerism.

5. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.37, update May 2017; Groom *et al.*, 2016) for the (*E*)-4-bromo-2-ethoxy-6-[(methylimino)methyl]phenol unit of the title compound reveals five compounds, *viz*. OCOVEK (Kaştaş *et al.*, 2017*a*), OCOVIO (Kaştaş *et al.*, 2017*b*), OCOVOU (Kaştaş *et al.*, 2017*c*), OCOVUA (Kaştaş *et al.*, 2017*d*) and LUWZIO (Özek Yıldırım *et al.*, 2016). The molecular structures of the latter two compounds are planar, in which they are similar to the title compound, while the others are not planar.

6. Synthesis and crystallization

The title compound was prepared by refluxing a mixture of a solution containing 5-bromo-3-ethoxy-2-hydroxy-benzaldehyde (0.5 g, 2 mmol) in 20 ml ethanol and a solution containing 2-methoxyaniline (0.25 g, 2 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 h under reflux. Crystals suitable for X-ray analysis were obtained from an ethanol solution by slow evaporation (yield 70%).

Figure 5

Graphics showing the variation of HOMA values with scan coordinate.

Table	2	
Experi	mental details.	

Crystal data	
Chemical formula	C ₁₆ H ₁₆ BrNO ₃
M _r	350.21
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	15.3405 (8), 6.5204 (2), 15.3612 (10)
β (°)	98.716 (5)
$V(Å^3)$	1518.78 (14)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	2.72
Crystal size (mm)	$0.56 \times 0.28 \times 0.05$
Data collection	
Diffractometer	Stoe IPDS 2
Absorption correction	Integration (<i>X-RED32</i> ; Stoe & Cie, 2002)
T_{\min}, T_{\max}	0.437, 0.893
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	18156, 3491, 2754
R _{int}	0.042
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.091, 1.06
No. of reflections	3491
No. of parameters	194
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.28, -0.38

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2015), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydroxyl atom H1 was refined freely. All the other H atoms were located geometrically and refined using a riding model with C-H = 0.93-0.97 Å $U_{\rm iso}({\rm H})$ = 1.2 $U_{\rm eq}({\rm C})$.

Acknowledgements

The authors thank Professor Orhan Büyükgüngör for his guidance in this study.

Funding information

Funding for this research was provided by: Giresun University (FEN-BAP-A-250414-75).

References

- Albayrak, Ç., Odabaşoğlu, M., Özek, A. & Büyükgüngör, O. (2012). Spectrochim. Acta A, 85, 85–91.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M.,

research communications

Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). *GAUSSIAN09*. Gaussian Inc., USA.

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gül, Z. S., Ağar, A. A. & Işık, Ş. (2007). Acta Cryst. E63, 04564.
- Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588.
- Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). *Tetrahedron*, **43**, 1345–1360.
- Hu, G., Wang, G., Duan, N., Wen, X., Cao, T., Xie, S. & Huang, W. (2012). Acta Pharmaceutica Sinica B, **2(3)**, 312–317.
- Kamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. (2010). *Eur. J. Med. Chem.* 45, 572–580.
- Kaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017a). CSD Communication, https://doi. org/10.5517/ccdc.csd.cc12bq15.
- Kaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017b). CSD Communication, https://doi.org/10.5517/ccdc.csd.cc12bq37.

- Kaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017c). CSD Communication, https://doi. org/10.5517/ccdc.csd.cc12bq59.
- Kaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017d). CSD Communication, https://doi.org/10.5517/ccdc.csd.cc12bq6b.
- Kruszewski, J. & Krygowski, T. M. (1972). Tetrahedron Lett. 13, 3839– 3842.
- Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). *Biophys. J.* **15**, 955–962.
- Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715.
- Özdemir Tarı, G., Ceylan, Ü., Ümit, , Ağar, E. & Eserci, H. (2016). J. Mol. Struct. **1126**, 83–93.
- Özek, A., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, 0173–0177.
- Özek Yıldırım, A., Albayrak Kaştaş, Ç. & Gülsu, M. (2016). J. Mol. Struct. 1103, 311–318.
- Özek Yıldırım, A., Yıldırım, M. H. & Albayrak Kaştaş, Ç. (2017). J. Mol. Struct. 1127, 275–282.
- Petek, H., Albayrak, Ç., Odabaşoğlu, M., Şenel, İ. & Büyükgüngör, O. (2010). Struct. Chem. 21, 681–690.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Germany.

supporting information

Acta Cryst. (2018). E74, 319-322 [https://doi.org/10.1107/S2056989018002062]

Synthesis, crystal structure and computational studies of a new Schiff base compound: (*E*)-4-bromo-2-ethoxy-6-{[(2-methoxyphenyl)imino]methyl}phenol

Arzu Özek Yıldırım, Murat Gülsu and Çiğdem Albayrak Kaştaş

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-RED32* (Stoe & Cie, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2015); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

(E)-4-Bromo-2-ethoxy-6-{[(2-methoxyphenyl)imino]methyl}phenol

Crystal data	
$C_{16}H_{16}BrNO_3$ $M_r = 350.21$ Monoclinic, $P2_1/n$ a = 15.3405 (8) Å b = 6.5204 (2) Å c = 15.3612 (10) Å $\beta = 98.716$ (5)° V = 1518.78 (14) Å ³ Z = 4	F(000) = 712 $D_x = 1.532 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3491 reflections $\theta = 2.0-28.1^{\circ}$ $\mu = 2.72 \text{ mm}^{-1}$ T = 296 K Prism, orange $0.56 \times 0.28 \times 0.05 \text{ mm}$
Data collection	
Stoe IPDS 2 diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Detector resolution: 6.67 pixels mm ⁻¹ rotation method scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.437, T_{max} = 0.893$	18156 measured reflections 3491 independent reflections 2754 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -19 \rightarrow 19$ $k = -8 \rightarrow 8$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.091$ S = 1.06 3491 reflections 194 parameters 0 restraints	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0398P)^2 + 0.5265P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.38 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.44857 (16)	0.3446 (4)	0.18253 (15)	0.0403 (5)
C2	0.42497 (17)	0.3902 (4)	0.26511 (16)	0.0417 (5)
C3	0.37588 (17)	0.5714 (4)	0.27491 (17)	0.0440 (6)
C4	0.35124 (17)	0.6978 (4)	0.20324 (18)	0.0469 (6)
H4	0.318414	0.815670	0.208919	0.056*
C5	0.37596 (17)	0.6473 (4)	0.12266 (17)	0.0456 (6)
C6	0.42285 (18)	0.4758 (4)	0.11072 (16)	0.0457 (6)
H6	0.437777	0.445619	0.055674	0.055*
C7	0.3190 (2)	0.7984 (4)	0.3743 (2)	0.0574 (7)
H7A	0.260045	0.809407	0.341291	0.069*
H7B	0.354488	0.909669	0.356734	0.069*
C8	0.3155 (2)	0.8097 (5)	0.4713 (2)	0.0640 (8)
H8A	0.290087	0.938248	0.484727	0.077*
H8B	0.280127	0.699194	0.487896	0.077*
H8C	0.374171	0.799032	0.503274	0.077*
С9	0.50092 (17)	0.1655 (4)	0.17069 (16)	0.0442 (5)
H9	0.516428	0.138217	0.115620	0.053*
C10	0.57777 (16)	-0.1337 (4)	0.22892 (16)	0.0406 (5)
C11	0.59676 (16)	-0.2499 (4)	0.30608 (16)	0.0420 (5)
C12	0.64681 (19)	-0.4279 (4)	0.30608 (19)	0.0513 (6)
H12	0.659509	-0.505656	0.357194	0.062*
C13	0.67759 (18)	-0.4892 (5)	0.2304 (2)	0.0550 (7)
H13	0.711082	-0.608217	0.230857	0.066*
C14	0.6594 (2)	-0.3766 (5)	0.1542 (2)	0.0552 (7)
H14	0.680358	-0.419005	0.103432	0.066*
C15	0.60944 (19)	-0.1994 (4)	0.15371 (18)	0.0508 (6)
H15	0.596978	-0.123232	0.102130	0.061*
C16	0.5727 (2)	-0.2971 (5)	0.45460 (19)	0.0622 (8)
H16A	0.546330	-0.227372	0.499090	0.075*
H16B	0.544000	-0.426840	0.441808	0.075*
H16C	0.634215	-0.319190	0.475376	0.075*
N1	0.52630 (14)	0.0438 (3)	0.23498 (13)	0.0423 (5)
01	0.44838 (15)	0.2719 (3)	0.33548 (12)	0.0536 (5)
O2	0.35740 (14)	0.6041 (3)	0.35724 (12)	0.0546 (5)
O3	0.56318 (14)	-0.1756 (3)	0.37679 (12)	0.0558 (5)
Br1	0.34398 (2)	0.82939 (5)	0.02613 (2)	0.06603 (13)
H1	0.479 (3)	0.186 (8)	0.316 (3)	0.119 (18)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0405 (12)	0.0374 (12)	0.0424 (12)	-0.0003 (11)	0.0041 (10)	0.0031 (10)
C2	0.0433 (13)	0.0374 (13)	0.0443 (12)	0.0007 (10)	0.0064 (10)	0.0027 (10)
C3	0.0429 (14)	0.0415 (13)	0.0483 (13)	0.0002 (11)	0.0092 (11)	0.0009 (11)
C4	0.0441 (14)	0.0383 (14)	0.0583 (15)	0.0045 (11)	0.0081 (11)	0.0060 (11)
C5	0.0446 (14)	0.0415 (14)	0.0493 (13)	-0.0018 (11)	0.0021 (11)	0.0109 (11)
C6	0.0492 (14)	0.0476 (15)	0.0403 (12)	0.0025 (12)	0.0070 (11)	0.0067 (11)
C7	0.0640 (18)	0.0433 (16)	0.0674 (18)	0.0125 (13)	0.0184 (14)	0.0005 (13)
C8	0.074 (2)	0.0519 (17)	0.0698 (19)	0.0103 (15)	0.0230 (16)	-0.0074 (15)
C9	0.0514 (14)	0.0430 (13)	0.0387 (12)	-0.0004 (12)	0.0087 (10)	0.0010 (11)
C10	0.0404 (13)	0.0363 (13)	0.0458 (12)	-0.0001 (10)	0.0089 (10)	0.0016 (10)
C11	0.0392 (13)	0.0422 (13)	0.0450 (12)	-0.0001 (11)	0.0080 (10)	0.0031 (10)
C12	0.0491 (15)	0.0465 (15)	0.0576 (15)	0.0062 (12)	0.0061 (12)	0.0089 (13)
C13	0.0458 (15)	0.0433 (15)	0.0764 (19)	0.0074 (12)	0.0106 (14)	-0.0017 (14)
C14	0.0555 (17)	0.0534 (17)	0.0607 (16)	0.0041 (13)	0.0217 (13)	-0.0073 (13)
C15	0.0580 (16)	0.0498 (16)	0.0475 (14)	0.0037 (13)	0.0170 (12)	0.0037 (12)
C16	0.070 (2)	0.070 (2)	0.0473 (15)	0.0027 (16)	0.0107 (13)	0.0152 (14)
N1	0.0467 (12)	0.0375 (11)	0.0436 (10)	0.0035 (9)	0.0092 (9)	0.0030 (9)
O1	0.0730 (14)	0.0473 (11)	0.0425 (10)	0.0160 (10)	0.0152 (9)	0.0081 (8)
O2	0.0703 (13)	0.0445 (10)	0.0519 (10)	0.0137 (9)	0.0184 (9)	0.0025 (8)
O3	0.0709 (13)	0.0559 (11)	0.0434 (9)	0.0145 (10)	0.0176 (9)	0.0106 (9)
Br1	0.0763 (2)	0.05858 (19)	0.06202 (19)	0.01265 (16)	0.00668 (14)	0.02361 (15)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C2	1.403 (3)	C9—N1	1.281 (3)
C1—C6	1.405 (3)	С9—Н9	0.9300
C1—C9	1.444 (4)	C10—C15	1.387 (4)
C2—O1	1.333 (3)	C10—C11	1.400 (3)
C2—C3	1.421 (4)	C10—N1	1.412 (3)
C3—O2	1.354 (3)	C11—O3	1.360 (3)
C3—C4	1.381 (4)	C11—C12	1.392 (4)
C4—C5	1.388 (4)	C12—C13	1.379 (4)
C4—H4	0.9300	C12—H12	0.9300
C5—C6	1.356 (4)	C13—C14	1.373 (4)
C5—Br1	1.905 (2)	C13—H13	0.9300
С6—Н6	0.9300	C14—C15	1.386 (4)
С7—О2	1.438 (3)	C14—H14	0.9300
C7—C8	1.500 (4)	C15—H15	0.9300
С7—Н7А	0.9700	C16—O3	1.423 (3)
С7—Н7В	0.9700	C16—H16A	0.9600
C8—H8A	0.9600	C16—H16B	0.9600
C8—H8B	0.9600	C16—H16C	0.9600
C8—H8C	0.9600	01—H1	0.81 (5)
C2—C1—C6	120.0 (2)	N1—C9—H9	119.5

C2—C1—C9	120.7 (2)	С1—С9—Н9	119.5
C6—C1—C9	119.3 (2)	C15—C10—C11	118.9 (2)
O1-C2-C1	122.4 (2)	C15—C10—N1	125.3 (2)
O1—C2—C3	118.5 (2)	C11—C10—N1	115.8 (2)
C1—C2—C3	119.1 (2)	O3—C11—C12	125.0 (2)
O2—C3—C4	125.4 (2)	O3—C11—C10	115.3 (2)
O2—C3—C2	114.8 (2)	C12—C11—C10	119.7 (2)
C4—C3—C2	119.8 (2)	C13—C12—C11	120.1 (3)
C3—C4—C5	119.4 (2)	C13—C12—H12	120.0
C3—C4—H4	120.3	C_{11} $-C_{12}$ $-H_{12}$	120.0
C5-C4-H4	120.3	C14-C13-C12	120.0 120.8(3)
C6-C5-C4	120.5 122.6(2)	$C_{14} = C_{13} = C_{12}$	119.6
C6 $C5$ $Br1$	122.0(2) 110.2(2)	C_{12} C_{13} H_{13}	119.6
C_{4} C5 Br1	119.2(2) 118 23 (10)	$C_{12} - C_{13} - C_{15}$	119.0 110.5(3)
$C_{4} = C_{5} = D_{11}$	110.23(19)	$C_{13} = C_{14} = C_{13}$	119.5 (5)
$C_{5} = C_{6} = U_{6}$	119.2 (2)	C15 - C14 - H14	120.3
C_{3}	120.4	C13 - C14 - H14	120.5
	120.4		121.1 (3)
02 - 07 - 08	107.6 (2)		119.5
02—C/—H/A	110.2	C10—C15—H15	119.5
C8—C/—H/A	110.2	03—C16—H16A	109.5
O2—C7—H7B	110.2	O3—C16—H16B	109.5
С8—С7—Н7В	110.2	H16A—C16—H16B	109.5
H7A—C7—H7B	108.5	O3—C16—H16C	109.5
С7—С8—Н8А	109.5	H16A—C16—H16C	109.5
C7—C8—H8B	109.5	H16B—C16—H16C	109.5
H8A—C8—H8B	109.5	C9—N1—C10	124.4 (2)
С7—С8—Н8С	109.5	C2—O1—H1	102 (3)
H8A—C8—H8C	109.5	C3—O2—C7	117.3 (2)
H8B—C8—H8C	109.5	C11—O3—C16	118.0 (2)
N1-C9-C1	120.9 (2)		
C6-C1-C2-O1	-179.4 (2)	N1-C10-C11-O3	-0.2(3)
C9—C1—C2—O1	-0.7 (4)	C15-C10-C11-C12	0.1 (4)
C6—C1—C2—C3	-0.7 (4)	N1-C10-C11-C12	179.7 (2)
C9—C1—C2—C3	177.9 (2)	O3—C11—C12—C13	180.0 (3)
O1—C2—C3—O2	-0.3 (4)	C10-C11-C12-C13	0.1 (4)
C1—C2—C3—O2	-179.0(2)	C11—C12—C13—C14	-0.1(4)
01-C2-C3-C4	179.5 (2)	C12-C13-C14-C15	0.0 (5)
C1 - C2 - C3 - C4	0.8(4)	C_{13} C_{14} C_{15} C_{10}	0.1(5)
02-C3-C4-C5	1790(2)	C_{11} $-C_{10}$ $-C_{15}$ $-C_{14}$	-0.2(4)
$C_2 - C_3 - C_4 - C_5$	-0.9(4)	N1-C10-C15-C14	-179.8(3)
$C_{2}^{2} = C_{3}^{2} = C_{4}^{2} = C_{5}^{2} = C_{6}^{2}$	0.9(4)	C1 - C9 - N1 - C10	-179.8(3)
C_{3} C_{4} C_{5} B_{r1}	-178 1 (2)	C_{15} C_{10} N_{1} C_{0}	1, 9.0(2) 1 3 (A)
C_{4} C_{5} C_{6} C_{1}	-0.7(4)	C_{11} C_{10} C_{11} C_{10} C_{11} C_{10} C_{11} C_{10}	-1782(2)
$R_{r1} = C_{5} = C_{6} = C_{1}$	178 21 (10)	$C_{1} = C_{1} = C_{1} = C_{1}$	-8.4(4)
$C_{1}^{-} C_{2}^{-} C_{1}^{-} C_{2}^{-} C_{2}^{-} C_{2}^{-} C_{1}^{-} C_{2}^{-} C_{2$	1/0.21(19) 0.7(4)	$C_{1} = C_{2} = C_{2} = C_{1}$	0.4(4)
$C_2 - C_1 - C_0 - C_3$	(1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	$C_2 - C_3 - C_2 - C_1$	1/1.4(2)
$C_{2} = C_{1} = C_{2} = C_{2}$	-1/8.0(2)	$C_0 - C_1 - C_2 - C_3$	-1/2.8(2)
U2-U1-U9-NI	0.6 (4)	U12 - U11 - U3 - U16	-0.0 (4)

supporting information

C6—C1—C9—N1	179.3 (2)	C10-C11-O3-C16	173.9 (2)
C15-C10-C11-O3	-179.8 (2)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1-C6 and C10-C15 rings, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…N1	0.81 (5)	1.80 (5)	2.566 (3)	157 (5)
C16—H16A…O1 ⁱ	0.96	2.55	3.293 (3)	135
C7— $H7A$ ··· $Cg1$ ⁱⁱ	0.97	2.80	3.662 (3)	149
С13—Н13…Сд2 ^{ііі}	0.93	2.79	3.629 (3)	150

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iii) -*x*+3/2, *y*-1/2, -*z*+1/2.