

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 12 January 2018 Accepted 31 January 2018

Edited by M. Weil, Vienna University of Technology, Austria

**Keywords:** crystal structure; ferrate complexes; 4-methoxypyridine; iron thiocyanate; octahedral coordination.

CCDC reference: 1821019

**Supporting information**: this article has supporting information at journals.iucr.org/e





Crystal structure of octakis(4-methoxypyridinium) bis(4-methoxypyridine- $\kappa N$ )tetrakis(thiocyanato- $\kappa N$ )ferrate(III) bis[(4-methoxypyridine- $\kappa N$ )pentakis(thiocyanato- $\kappa N$ )ferrate(III)] hexakis(thiocyanato- $\kappa N$ )ferrate(III) with iron in three different octahedral coordination environments

### Aleksej Jochim,\* Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany. \*Correspondence e-mail: ajochim@ac.uni-kiel.de

The crystal structure of the title salt,  $(C_6H_8NO)_8[Fe(NCS)_4(C_6H_7NO)_2]$ -[Fe(NCS)<sub>5</sub>(C<sub>6</sub>H<sub>7</sub>NO)]<sub>2</sub>[Fe(NCS)<sub>6</sub>], comprises three negatively charged octahedral Fe<sup>III</sup> complexes with different coordination environments in which the Fe<sup>III</sup> atoms are coordinated by a different number of thiocyanate anions and 4-methoxypyridine ligands. Charge balance is achieved by 4-methoxypyridinium cations. The asymmetric unit consists of three Fe<sup>III</sup> cations, one of which is located on a centre of inversion, one on a twofold rotation axis and one in a general position, and ten thiocyanate anions, two 4-methoxypyridine ligands and 4-methoxypyridinium cations (one of which is disordered over two sets of sites). Beside to Coulombic interactions between organic cations and the ferrate(III) anions, weak N-H···S hydrogen-bonding interactions involving the pyridinium N-H groups of the cations and the thiocyanate S atoms of the complex anions are mainly responsible for the cohesion of the crystal structure.

## 1. Chemical context

Recently, the synthesis of new coordination compounds based on paramagnetic metal cations has become increasingly interesting. In particular, compounds in which the paramagnetic metal cations are linked by small-sized anionic ligands that can mediate magnetic exchange are of special importance. For example, this can be achieved by thio- or selenocyanate anions that are able to coordinate to a central metal cation in different ways (Palion-Gazda et al., 2015; Guillet et al., 2016; Prananto et al., 2017). Most of the reported compounds contain terminally N-bonded thiocyanate ligands, whereas compounds with these ligands in a bridging mode are relatively rare. Nevertheless, the latter can be obtained by thermal decomposition of precursor complexes with terminal anionic ligands, as we have recently shown. With monodentate co-ligands, such as simple pyridine derivatives substituted in the 4-position, we were able to synthesize a number of compounds (predominantly including divalent cobalt or nickel), in which the metal cations are linked by pairs of anionic ligands into chains (Rams et al., 2017a,b; Wöhlert et al., 2012; Werner et al., 2015). In this context, divalent iron compounds are also of interest, but are scarce in comparison to divalent cobalt or nickel compounds because they are more difficult to synthesize in solution due to the poor oxidation

# research communications

stability of  $\text{Fe}^{II}$ . Therefore, we attempted to prepare either a coordination polymer with planned composition  $[\text{Fe}(\text{NCS})_2(4-\text{methoxypyridine})_2]_n$  or a discrete complex with composition  $[\text{Fe}(\text{NCS})_2(4-\text{methoxypyridine})_4]$ , which on thermal annealing might be transformed into the desired coordination polymer. 4-Methoxypyridine was selected because this ligand exhibits a strong donor substituent in the 4-position in comparison to the pyridine or 1,2-bis(4-pyridyl)ethylene ligands we have already investigated (Boeckmann & Näther, 2012; Wöhlert *et al.*, 2013). In the course of these investigations, we accidently obtained crystals of the title compound,  $(C_6H_8\text{NO})_8$ - $[\text{Fe}(\text{NCS})_4(C_6H_7\text{NO})_2][\text{Fe}(\text{NCS})_5(C_6H_7\text{NO})]_2[\text{Fe}(\text{NCS})_6]$ , indicating that Fe<sup>II</sup> was oxidized to Fe<sup>III</sup>.



The asymmetric unit of the title compound comprises three

iron(III) cations, of which one is located on a centre of inversion (Fe3), one on a twofold rotation axis (Fe1) and one

in a general position (Fe2), as well as ten thiocyanate anions, two 4-methoxypyridine ligands and four 4-methoxypyridinium

The three Fe<sup>III</sup> cations form discrete anionic complexes that

are charge-balanced by the 4-methoxypyridinium cations. For

each of the cations, the N-H hydrogen atom was clearly

located, indicating an oxidation state of +III for iron. Each of

the three Fe<sup>III</sup> cations shows a different octahedral coordin-

cations, one of which is disordered over two sets of sites.

2. Structural commentary

# Table 1 Selected geometric parameters (Å, °).

| Selected geometric        | purumeters (ri, ) |                          |             |
|---------------------------|-------------------|--------------------------|-------------|
| Fe1-N2                    | 2.030 (2)         | Fe2-N5                   | 2.045 (2)   |
| Fe1-N1                    | 2.038 (2)         | Fe2-N4                   | 2.074 (3)   |
| Fe1-N11                   | 2.1551 (19)       | Fe2-N21                  | 2.158 (2)   |
| Fe2-N6                    | 2.034 (3)         | Fe3-N10                  | 2.030 (2)   |
| Fe2-N3                    | 2.036 (3)         | Fe3-N9                   | 2.049 (2)   |
| Fe2-N7                    | 2.039 (3)         | Fe3–N8                   | 2.075 (2)   |
| N2-Fe1-N2 <sup>i</sup>    | 93.91 (15)        | N6-Fe2-N4                | 90.10 (11)  |
| N2-Fe1-N1 <sup>i</sup>    | 176.31 (10)       | N3-Fe2-N4                | 176.00 (10) |
| N2-Fe1-N1                 | 89.62 (10)        | N7-Fe2-N4                | 90.25 (12)  |
| N1 <sup>i</sup> -Fe1-N1   | 86.87 (12)        | N5-Fe2-N4                | 88.73 (10)  |
| N2-Fe1-N11 <sup>i</sup>   | 87.37 (8)         | N6-Fe2-N21               | 89.70 (9)   |
| N2-Fe1-N11                | 87.05 (8)         | N3-Fe2-N21               | 88.88 (9)   |
| N1 <sup>i</sup> -Fe1-N11  | 94.19 (8)         | N7-Fe2-N21               | 177.30 (12) |
| N1-Fe1-N11                | 91.75 (8)         | N5-Fe2-N21               | 90.29 (9)   |
| N11 <sup>i</sup> -Fe1-N11 | 171.82 (11)       | N4-Fe2-N21               | 87.34 (9)   |
| N6-Fe2-N3                 | 91.15 (12)        | N10-Fe3-N9 <sup>ii</sup> | 89.53 (9)   |
| N6-Fe2-N7                 | 89.08 (11)        | N10-Fe3-N9               | 90.46 (9)   |
| N3-Fe2-N7                 | 93.56 (12)        | N10-Fe3-N8 <sup>ii</sup> | 90.66 (9)   |
| N6-Fe2-N5                 | 178.84 (12)       | N9-Fe3-N8 <sup>ii</sup>  | 90.35 (9)   |
| N3-Fe2-N5                 | 90.01 (11)        | N10-Fe3-N8               | 89.34 (9)   |
| N7-Fe2-N5                 | 90.87 (11)        | N9-Fe3-N8                | 89.65 (9)   |

Symmetry codes: (i) -x + 1, y,  $-z + \frac{3}{2}$ ; (ii) -x + 1, -y, -z + 1.

ation environment. Fe1 is coordinated by two pairs of symmetry-related terminal-N-bonding thiocyanate anions defining the equatorial plane of the octahedron, whereas the two axial positions are occupied by the N atoms of two symmetry-related 4-methoxypyridine ligands (Fig. 1). The Fe1-N distances to the anionic ligands are similar and significantly shorter than those to the neutral 4-methoxypyridine co-ligands (Table 1). Fe2 is coordinated by five crystallographically independent N-bonding thiocyanate anions and by one 4-methoxypyridine ligand that occupies one of the axial positions (Fig. 1). The Fe2-N bond lengths are comparable to those of Fe1, except that of an equatorial thiocyanate anion (N4) that is somewhat elongated. Interestingly, the distance to the N7 atom of the thiocyanate anion that is *trans* to the 4-methoxypridine ligand is comparable to



the other short Fe-N distances (Table 1). Fe3 is octahedrally coordinated by three pairs of N-bonding thiocyanate anions related by a centre of inversion (Fig. 1). The Fe-Ndistances scatter over a wider range between 2.030 (2) and 2.075 (2) Å (Table 1). То investigate the deviations of the N-Fe-N bond angles from the ideal values, the octahedral angle variance  $\sigma_{\theta \text{(oct)}}^2$ , which was introduced as a measure of distortion in

### Figure 1

View of the three different coordination spheres of the Fe<sup>III</sup> cations in the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, y,  $\frac{3}{2} - z$ ; (ii) 1 - x, -y, 1 - z.]

Table 2Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                       | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|----------------------------------------|------|-------------------------|--------------|------------------|
| C21 1121 N5                            | 0.05 | 2.00                    | 2 1 41 (2)   | 110              |
| $C21 - H21 \cdots N5$                  | 0.95 | 2.66                    | 3.141 (3)    | 112              |
| $C25 - H25 \cdots N6$                  | 0.95 | 2.58                    | 3.079 (4)    | 113              |
| $N31-H31A\cdots S4^{iii}$              | 0.88 | 2.67                    | 3.359 (3)    | 136              |
| $N41 - H41A \cdot \cdot \cdot S2$      | 0.88 | 2.62                    | 3.320(3)     | 137              |
| $C46-H46C\cdots S10^{iv}$              | 0.98 | 2.85                    | 3.691 (5)    | 144              |
| $N41' - H41B \cdot \cdot \cdot S2^{i}$ | 0.88 | 2.60                    | 3.225 (14)   | 129              |
| $N41' - H41B \cdot \cdot \cdot S9$     | 0.88 | 2.88                    | 3.676 (15)   | 151              |
| $C42' - H42' \cdots S5^v$              | 0.95 | 2.98                    | 3.83 (3)     | 151              |
| $C45' - H45' \cdots S1^{vi}$           | 0.95 | 2.86                    | 3.370 (18)   | 115              |
| $C45' - H45' \cdots S2^i$              | 0.95 | 2.92                    | 3.394 (19)   | 112              |
| C46′-H46D···S3                         | 0.98 | 2.81                    | 3.52 (2)     | 130              |
| $N51-H51A\cdots S1$                    | 0.88 | 2.78                    | 3.464 (3)    | 135              |
| $C54-H54\cdots S8^{vii}$               | 0.95 | 2.97                    | 3.885 (3)    | 163              |
| $C56-H56B\cdots S7^{viii}$             | 0.98 | 2.90                    | 3.793 (4)    | 152              |
| $N61 - H61A \cdot \cdot \cdot S8^{iv}$ | 0.88 | 2.62                    | 3.419 (3)    | 151              |
| $C62 - H62 \cdot \cdot \cdot S5^{v}$   | 0.95 | 2.93                    | 3.831 (3)    | 160              |
| $C65 - H65 \cdots N8^{iv}$             | 0.95 | 2.68                    | 3.608 (4)    | 167              |

Symmetry codes: (i)  $-x + 1, y, -z + \frac{3}{2}$ ; (iii)  $-x + \frac{3}{2}, y - \frac{3}{2}, -z + \frac{3}{2}$ ; (iv) x, y + 1, z; (v)  $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$ ; (vi)  $-x + 1, y - 1, -z + \frac{3}{2}$ ; (vii)  $x, -y + 1, z + \frac{1}{2}$ ; (viii)  $-x + \frac{3}{2}, -y + \frac{3}{2}, -z + 2$ .

octahedra (Robinson *et al.*, 1971), was calculated for each of the discrete complexes. The greatest value of  $\sigma_{\theta(oct)}^2$  is found for Fe1 ( $\sigma_{\theta(oct)}^2 = 8.89$ ) followed by Fe2 ( $\sigma_{\theta(oct)}^2 = 2.34$ ) and Fe3 ( $\sigma_{\theta(oct)}^2 = 0.28$ ). Thus for Fe1, the bond angles deviate more from the ideal values compared to Fe2 and Fe3, with the latter showing the smallest distortion from an ideal octahedron.

It is noted that a number of discrete anionic complexes based, for example, on Mn<sup>II</sup> or Fe<sup>II</sup> thiocyanates, are reported in which the metal cations are four-, five-, or sixfold coordinated by anionic and additional neutral co-ligands. What makes the title compound so special is the fact that its crystal structure contains three different coordination spheres for iron in one crystal structure, suggesting a snapshot of the species that might be present in equillibrium in solution. Therefore it is not surprising that pure samples were not obtained under the given conditions. X-ray powder diffraction revealed that for all batches, large amounts of additional crystalline phases were present that could not be identified (see Fig. S1 in the Supporting information).

The negative charges of the anionic complexes in the title compound (-1 for Fe1,  $2 \times -2$  for Fe2 and -3 for Fe3) are compensated by eight 4-methoxypyridinium cations, of which each two are pairwise related by symmetry (Fig. 2).

#### 3. Supramolecular features

The discrete anionic complexes are linked with the cations through weak intermolecular  $N-H\cdots S$  hydrogen bonds between the pyridinium hydrogen atoms and the thiocyanate sulfur atoms (Fig. 3, Table 2). The complex containing Fe3 is additionally involved in weak  $C_{aromatic}-H\cdots N$  hydrogen bonding. Other short contacts indicate further weak  $C_{aromatic}-H\cdots S$  and  $C_{methyl}-H\cdots S$  hydrogen bonds, respectively, connecting the cations and anionic complexes into a three-dimensional network.



Figure 2

View of the four crystallographically independent 4-methoxypyridinium cations. Displacement ellipsoids are drawn at the 50% probability level. The disorder of one of the cations is shown with solid (major component) and open (minor component) bonds.

### 4. Database survey

In the Cambridge Structure Database (Version 5.38, last update 2017; Groom et al., 2016) only one structure containing both 4-methoxypyridine and thiocyanate ligands is reported. It consists of discrete complexes with ruthenium(II) as the central cation coordinated by two thiocyanate anions and four 4-methoxypyridine molecules (Cadranel et al., 2016). The structures of several ferrate complexes are deposited where Fe<sup>II</sup> or Fe<sup>III</sup> cations are present. With Fe<sup>II</sup>, this includes  $((C_2H_5)_4N)_4[Fe(NCS)_6]$  (Krautscheid & Gerber, 1999) or  $(2,2'-Hbpe)_4$ [Fe(NCS)<sub>6</sub>]·4H<sub>2</sub>O where 2,2'-Hbpe is 1-(2pyridinium)-2-(2-pyridyl)ethylene (Briceño & Hill, 2012). Several complexes in which the Fe<sup>III</sup> cation is octahedrally coordinated by six thiocyanate anions are also known, like in  $(C_4H_{12}N)_3$ [Fe(SCN)<sub>6</sub>]·4H<sub>2</sub>O (Addison *et al.*, 2005), or in  $[Ru(phen)_3](NCS)[Fe(NCS)_4] \cdot H_2O$  (phen: 1,10-phenanthroline), in which it is tetrahedrally coordinated (Ghazzali et al., 2008). Moreover, with pyridine as ligand and pyridinium as cation, two structures are reported with a coordination identical to those in the title compound. In the structure of  $(C_5H_6N)_2$ [Fe(SCN)<sub>5</sub>(C<sub>5</sub>H<sub>5</sub>N)]·C<sub>5</sub>H<sub>5</sub>N, the Fe<sup>III</sup> cations are octahedrally coordinated by five thiocyanate anions and one pyridine ligand (Wood et al., 2015). In the structure of  $(C_5H_6N)[Fe(SCN)_4(C_5H_5N)_2]$  the Fe<sup>III</sup> cations are coordinated by two neutral pyridine ligands and four thiocyanate anions (Shylin et al., 2013). However, structures in which three different coordination spheres are simultaneously present like in the title compound have not been reported to date.

# research communications



Figure 3

Crystal structure of the title compound in a view along [010]. Intermolecular  $N-H\cdots S$  hydrogen bonding is shown as dashed lines. The minor component of the disordered 4-methoxypyridine cation is not shown for clarity.

### 5. Synthesis and crystallization

Iron(II) chloride tetrahydrate was obtained from Sigma Aldrich, potassium thiocyanate from Fluka and 4-methoxypyridine from TCI. No further purification was carried out.

49.7 mg iron(II) chloride tetrahydrate (0.25 mmol) and 48.6 mg potassium thiocyanate (0.50 mmol) were reacted with 50.8  $\mu$ l 4-methoxypyridine (0.50 mmol) in 2.0 ml water at room temperature. After stirring the mixture for three hours, the resulting powder was filtered off and the filtrate was let to evaporate slowly at room temperature. After several weeks single crystals suitable for single crystal X-ray analysis were obtained. The synthesis of larger and pure amounts of the title compound was not successful because in all batches additional crystalline phases were present (Supplementary Fig. S1).

### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The C-H and N-H hydrogen

atoms were located in a difference-Fourier map but were positioned with idealized geometry (methyl H atoms were allowed to rotate but not to tip), and refined with  $U_{iso}(H) =$  $1.2U_{eq}(C \text{ or N})$  (1.5 for methyl H atoms) using a riding model with  $C_{aromatic}$ —H = 0.95 Å,  $C_{methyl}$ —H = 0.98 Å and N—H = 0.88 Å. One of the four crystallographically independent 4-methoxypyridinium cations is disordered over two sets of sites and was refined with a split model using restraints. The sites with minor occupation (occupancy 0.22) were refined with isotropic displacement parameters, the sites of the major component with anisotropic displacement parameters.

#### Acknowledgements

We thank Professor Dr. Wolfgang Bensch for access to his experimental facilities.

#### **Funding information**

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/5–2) and the State of Schleswig-Holstein. Table 3 Experimental details.

Crystal data Chemical formula

 $M_r$ Crystal system, space group Temperature (K) a, b, c (Å)

 $\beta (^{\circ})$ V (Å<sup>3</sup>) Ζ Radiation type  $\mu \,({\rm mm}^{-1})$ Crystal size (mm)

Data collection Diffractometer Absorption correction

No. of parameters

H-atom treatment

 $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 

(C6H8NO)8[Fe(NCS)4-(C<sub>6</sub>H<sub>7</sub>NO)<sub>2</sub>][Fe(NCS)<sub>5</sub>- $(C_6H_7NO)]_2[Fe(NCS)_6]$ 2702.57 Monoclinic, C2/c 170 35.5034 (8), 10.5199 (1), 35.7432 (8) 113.864 (2) 12208.5 (4) 4 Μο Κα 0.88  $0.42 \times 0.23 \times 0.13$ Stoe IPDS2 Numerical (X-RED and X-SHAPE; Stoe & Cie, 2008)

|                                                                          | , , , , , , , , , , , , , , , , , , , , |
|--------------------------------------------------------------------------|-----------------------------------------|
| $T_{\min}, T_{\max}$                                                     | 0.607, 0.806                            |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 41955, 10715, 9204                      |
| R <sub>int</sub>                                                         | 0.050                                   |
| $(\sin \theta / \lambda)_{\max} ( \mathring{A}^{-1} )$                   | 0.595                                   |
| Refinement                                                               |                                         |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.040, 0.106, 1.04                      |
| No. of reflections                                                       | 10715                                   |
| No. of parameters                                                        | 763                                     |

0.86, -0.67

H-atom parameters constrained

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 and XP (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2014) and publCIF (Westrip, 2010).

#### References

- Addison, A. W., Butcher, R. J., Homonnay, Z., Pavlishchuk, V. V., Prushan, M. J. & Thompson, L. K. (2005). Eur. J. Inorg. Chem. pp. 2404-2408.
- Boeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587-595.

- Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Briceño, A. & Hill, Y. (2012). CrystEngComm, 14, 6121-6125. Cadranel, A., Pieslinger, G. E., Tongying, P., Kuno, M. K., Baraldo, L. M. & Hodak, J. H. (2016). Dalton Trans. 45, 5464-5475. Ghazzali, M., Langer, V. & Öhrström, L. (2008). J. Solid State Chem. 181. 2191-2198. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179. Guillet, J. L., Bhowmick, I., Shores, M. P., Daley, C. J. A., Gembicky, M., Golen, J. A., Rheingold, A. L. & Doerrer, L. H. (2016). Inorg. Chem. 55, 8099-8109. Krautscheid, H. & Gerber, S. (1999). Z. Anorg. Allg. Chem. 625, 2041-2044. Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388. Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528 Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass,
- W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534-24544. Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner,
- J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232-3243.
- Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Shylin, S. I., Gural'skiy, I. A., Haukka, M., Kapshuk, A. A. & Prisyazhnaya, E. V. (2013). Acta Cryst. E69, m298-m299.
- Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893-2901.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715-2718.
- Wöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 1061-1068.
- Wood, P. A., Gass, I. & Brechin, E. (2015). Private communication (CCDC1411039). CCDC, Cambridge, England.

Acta Cryst. (2018). E74, 287-291 [https://doi.org/10.1107/S2056989018001883]

Crystal structure of octakis(4-methoxypyridinium) bis(4-methoxypyridine- $\kappa N$ )tetrakis(thiocyanato- $\kappa N$ )ferrate(III) bis[(4-methoxypyridine- $\kappa N$ )pentakis-(thiocyanato- $\kappa N$ )ferrate(III)] hexakis(thiocyanato- $\kappa N$ )ferrate(III) with iron in three different octahedral coordination environments

# Aleksej Jochim, Inke Jess and Christian Näther

## **Computing details**

Data collection: *X-AREA* (Stoe & Cie, 2008); cell refinement: *X-AREA* (Stoe & Cie, 2008); data reduction: *X-AREA* (Stoe & Cie, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *XP* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 2014); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Bis(4-methoxypyridine- $\kappa N$ )tetrakis(thiocyanato- $\kappa N$ )ferrate(III) bis[(4-methoxypyridine- $\kappa N$ )pentakis(thiocyanato- $\kappa N$ )ferrate(III)] hexakis(thiocyanato- $\kappa N$ )ferrate(III)

## Crystal data

## Data collection

Stoe IPDS-2 diffractometer  $\omega$  scans Absorption correction: numerical (*X-RED* and *X-SHAPE*; Stoe & Cie, 2008)  $T_{\min} = 0.607, T_{\max} = 0.806$ 41955 measured reflections

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.040$  $wR(F^2) = 0.106$  F(000) = 5552  $D_x = 1.470 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 41955 reflections  $\theta = 1.3-25.0^{\circ}$   $\mu = 0.88 \text{ mm}^{-1}$  T = 170 KBlock, brown  $0.42 \times 0.23 \times 0.13 \text{ mm}$ 

10715 independent reflections 9204 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.050$  $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.3^{\circ}$  $h = -42 \rightarrow 42$  $k = -11 \rightarrow 12$  $l = -42 \rightarrow 40$ 

S = 1.0410715 reflections 763 parameters 0 restraints Hydrogen site location: mixed H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0524P)^2 + 13.0479P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.003$  $\Delta\rho_{max} = 0.86$  e Å<sup>-3</sup>

### Special details

 $\Delta \rho_{\min} = -0.67 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc\*=kFc[1+0.001xFc<sup>2</sup>\lambda<sup>3</sup>/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00035 (6)

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|            | x           | У            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------------|-------------|--------------|-------------|-----------------------------|-----------|
| Fe1        | 0.5000      | 0.79411 (4)  | 0.7500      | 0.03724 (12)                |           |
| Fe2        | 0.71066 (2) | 1.07287 (4)  | 0.84000 (2) | 0.04926 (12)                |           |
| Fe3        | 0.5000      | 0.0000       | 0.5000      | 0.03680 (12)                |           |
| N1         | 0.52452 (6) | 0.9347 (2)   | 0.79210 (6) | 0.0445 (5)                  |           |
| C1         | 0.53236 (7) | 1.0362 (2)   | 0.80667 (7) | 0.0392 (5)                  |           |
| S1         | 0.54416 (2) | 1.17539 (7)  | 0.82712 (2) | 0.05421 (18)                |           |
| N2         | 0.52698 (7) | 0.6624 (2)   | 0.79435 (8) | 0.0556 (6)                  |           |
| C2         | 0.54258 (8) | 0.5929 (2)   | 0.82173 (8) | 0.0452 (6)                  |           |
| S2         | 0.56402 (3) | 0.49338 (7)  | 0.85800 (2) | 0.0700 (2)                  |           |
| N3         | 0.68743 (8) | 0.9154 (3)   | 0.85615 (8) | 0.0674 (7)                  |           |
| C3         | 0.67683 (8) | 0.8151 (4)   | 0.86277 (9) | 0.0601 (8)                  |           |
| S3         | 0.66233 (3) | 0.67745 (10) | 0.87176 (3) | 0.0744 (3)                  |           |
| N4         | 0.73167 (7) | 1.2305 (3)   | 0.81932 (8) | 0.0579 (6)                  |           |
| C4         | 0.74817 (8) | 1.3210 (3)   | 0.81490 (9) | 0.0510(6)                   |           |
| S4         | 0.77159 (3) | 1.44758 (9)  | 0.80971 (3) | 0.0805 (3)                  |           |
| N5         | 0.74237 (7) | 0.9600 (3)   | 0.81615 (7) | 0.0565 (6)                  |           |
| C5         | 0.76540 (8) | 0.8855 (3)   | 0.81352 (8) | 0.0443 (6)                  |           |
| S5         | 0.79698 (2) | 0.78076 (7)  | 0.81075 (3) | 0.0610(2)                   |           |
| N6         | 0.67957 (8) | 1.1883 (3)   | 0.86335 (8) | 0.0686 (7)                  |           |
| C6         | 0.67073 (8) | 1.2423 (3)   | 0.88703 (8) | 0.0475 (6)                  |           |
| S6         | 0.65888 (3) | 1.31425 (9)  | 0.92017 (4) | 0.0839 (3)                  |           |
| N7         | 0.76055 (8) | 1.0821 (3)   | 0.89460 (8) | 0.0776 (9)                  |           |
| C7         | 0.78393 (8) | 1.1252 (3)   | 0.92523 (8) | 0.0550 (7)                  |           |
| <b>S</b> 7 | 0.81637 (3) | 1.18196 (10) | 0.96765 (3) | 0.0776 (3)                  |           |
| N8         | 0.55865 (7) | 0.0555 (2)   | 0.53986 (7) | 0.0478 (5)                  |           |
| C8         | 0.59190 (8) | 0.0635 (3)   | 0.56455 (8) | 0.0455 (6)                  |           |
| <b>S</b> 8 | 0.63856 (2) | 0.07056 (9)  | 0.59923 (2) | 0.0672 (2)                  |           |
| N9         | 0.47535 (7) | 0.1365 (2)   | 0.52431 (7) | 0.0504 (5)                  |           |
| C9         | 0.46529 (8) | 0.2161 (2)   | 0.54081 (8) | 0.0440 (6)                  |           |
| S9         | 0.45060 (3) | 0.32654 (7)  | 0.56329 (3) | 0.0669 (2)                  |           |
| N10        | 0.49907 (7) | -0.1274 (2)  | 0.54230 (7) | 0.0515 (5)                  |           |
| C10        | 0.49663 (8) | -0.2122 (3)  | 0.56219 (8) | 0.0480 (6)                  |           |
| S10        | 0.49314 (3) | -0.33036 (9) | 0.58901 (3) | 0.0790 (3)                  |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| N11        | 0.44671 (6)              | 0.77950 (18)           | 0.76427 (6)              | 0.0391 (4)             |  |
|------------|--------------------------|------------------------|--------------------------|------------------------|--|
| C11        | 0.40853 (7)              | 0.7706 (2)             | 0.73448 (8)              | 0.0420 (5)             |  |
| H11        | 0.4052                   | 0.7838                 | 0.7070                   | 0.050*                 |  |
| C12        | 0.37417 (8)              | 0.7434(2)              | 0.74160 (8)              | 0.0439 (5)             |  |
| H12        | 0.3478                   | 0.7392                 | 0.7196                   | 0.053*                 |  |
| C13        | 0.37876 (8)              | 0.7224(2)              | 0.78148 (8)              | 0.0435 (6)             |  |
| C14        | 0.41790 (8)              | 0.7334 (2)             | 0.81264 (8)              | 0.0448 (6)             |  |
| H14        | 0.4220                   | 0.7209                 | 0.8403                   | 0.054*                 |  |
| C15        | 0.45048 (8)              | 0.7622(2)              | 0.80300 (7)              | 0.0419(5)              |  |
| H15        | 0 4770                   | 0 7705                 | 0.8246                   | 0.050*                 |  |
| 011        | 0.34810 (6)              | 0.6914 (2)             | 0.79279(6)               | 0.0558(5)              |  |
| C16        | 0.30703 (8)              | 0.6911(2)<br>0.6808(3) | 0.79279(0)               | 0.0550(5)<br>0.0643(8) |  |
| H16A       | 0.2982                   | 0.7638                 | 0.7479                   | 0.0015(0)              |  |
| H16R       | 0.2982                   | 0.6524                 | 0.7728                   | 0.096*                 |  |
| H16C       | 0.2000                   | 0.6190                 | 0.7728                   | 0.096*                 |  |
| N21        | 0.5071                   | 1.07258 (10)           | 0.7404                   | 0.090                  |  |
| N21<br>C21 | 0.03813(0)<br>0.66158(7) | 1.07238 (19)           | 0.78190(0)<br>0.74508(7) | 0.0390(4)              |  |
| U21        | 0.00136(7)               | 1.0028 (2)             | 0.74398(7)               | 0.0402 (3)             |  |
| H21<br>C22 | 0.0884                   | 1.0570                 | 0.7404                   | $0.048^{*}$            |  |
| U22        | 0.62854 (7)              | 1.0607 (2)             | 0.70855(7)               | 0.0415 (5)             |  |
| H22        | 0.6325                   | 1.0533                 | 0.6839                   | 0.050*                 |  |
| C23        | 0.58915 (7)              | 1.0696 (2)             | 0.70784 (7)              | 0.0401 (5)             |  |
| C24        | 0.58506 (7)              | 1.0811 (2)             | 0.74488 (7)              | 0.0394 (5)             |  |
| H24        | 0.5586                   | 1.0884                 | 0.7453                   | 0.047/*                |  |
| C25        | 0.61953 (7)              | 1.0817 (2)             | 0.78039 (7)              | 0.0391 (5)             |  |
| H25        | 0.6163                   | 1.0889                 | 0.8054                   | 0.047*                 |  |
| O21        | 0.55360 (5)              | 1.06869 (18)           | 0.67422 (5)              | 0.0500 (4)             |  |
| C26        | 0.55563 (10)             | 1.0511 (3)             | 0.63513 (8)              | 0.0603 (7)             |  |
| H26C       | 0.5717                   | 1.1203                 | 0.6304                   | 0.091*                 |  |
| H26B       | 0.5277                   | 1.0515                 | 0.6135                   | 0.091*                 |  |
| H26A       | 0.5689                   | 0.9696                 | 0.6349                   | 0.091*                 |  |
| N31        | 0.73444 (8)              | 0.1116 (4)             | 0.61226 (9)              | 0.0760 (8)             |  |
| H31A       | 0.7380                   | 0.1133                 | 0.6381                   | 0.091*                 |  |
| C31        | 0.74033 (11)             | 0.0049 (4)             | 0.59560 (13)             | 0.0812 (10)            |  |
| H31        | 0.7470                   | -0.0709                | 0.6114                   | 0.097*                 |  |
| C32        | 0.73708 (10)             | 0.0020 (4)             | 0.55662 (12)             | 0.0735 (9)             |  |
| H32        | 0.7416                   | -0.0746                | 0.5450                   | 0.088*                 |  |
| C33        | 0.72697 (9)              | 0.1138 (3)             | 0.53394 (9)              | 0.0618 (8)             |  |
| C34        | 0.72211 (9)              | 0.2252 (4)             | 0.55238 (10)             | 0.0655 (8)             |  |
| H34        | 0.7164                   | 0.3030                 | 0.5376                   | 0.079*                 |  |
| C35        | 0.72563 (9)              | 0.2221 (4)             | 0.59177 (10)             | 0.0697 (9)             |  |
| H35        | 0.7219                   | 0.2973                 | 0.6046                   | 0.084*                 |  |
| 031        | 0.72109 (8)              | 0.1230 (3)             | 0.49454 (7)              | 0.0789 (7)             |  |
| C36        | 0.72391 (14)             | 0.0086 (5)             | 0.47393 (14)             | 0.1034 (15)            |  |
| H36A       | 0.7520                   | -0.0249                | 0.4866                   | 0.155*                 |  |
| H36B       | 0.7170                   | 0.0273                 | 0.4450                   | 0.155*                 |  |
| H36C       | 0.7046                   | -0.0546                | 0.4760                   | 0.155*                 |  |
| N41        | 0.60287 (10)             | 0.4088 (3)             | 0.79138 (10)             | 0.0577 (8)             |  |
| H41A       | 0.6064                   | 0.4147                 | 0.8171                   | 0.069*                 |  |
|            |                          |                        |                          |                        |  |

0.78 0.78

| C41                  | 0.56493 (12) | 0.4082 (4)            | 0.76217 (14)           | 0.0584 (9)   | 0.78 |
|----------------------|--------------|-----------------------|------------------------|--------------|------|
| H41                  | 0.5421       | 0.4127                | 0.7696                 | 0.070*       | 0.78 |
| C42                  | 0.55780 (17) | 0.4013 (4)            | 0.7213 (2)             | 0.0517 (12)  | 0.78 |
| H42                  | 0.5306       | 0.4029                | 0.7006                 | 0.062*       | 0.78 |
| C43                  | 0.59162 (14) | 0.3921 (4)            | 0.71152 (19)           | 0.0500 (9)   | 0.78 |
| C44                  | 0.63139 (17) | 0.3912 (4)            | 0.74297 (19)           | 0.0556 (11)  | 0.78 |
| H44                  | 0.6548       | 0.3842                | 0.7366                 | 0.067*       | 0.78 |
| C45                  | 0.63606 (14) | 0.4005 (4)            | 0.7822 (2)             | 0.0588 (10)  | 0.78 |
| H45                  | 0.6629       | 0.4012                | 0.8035                 | 0.071*       | 0.78 |
| 041                  | 0.58854 (16) | 0.3815 (4)            | 0.67352 (15)           | 0.0650 (9)   | 0.78 |
| C46                  | 0.54772 (19) | 0.3796 (5)            | 0.64126 (18)           | 0.0760 (15)  | 0.78 |
| H46A                 | 0.5316       | 0.3117                | 0.6465                 | 0.114*       | 0.78 |
| H46B                 | 0.5496       | 0.3644                | 0.6150                 | 0.114*       | 0.78 |
| H46C                 | 0.5343       | 0.4616                | 0.6404                 | 0.114*       | 0.78 |
| N41′                 | 0.5283(4)    | 0.3881(14)            | 0.6671 (4)             | $0.078(4)^*$ | 0.22 |
| H41B                 | 0.5037       | 0.3847                | 0.6470                 | 0.094*       | 0.22 |
| C41′                 | 0 5639 (9)   | 0.387(2)              | 0.6578 (8)             | 0.068 (6)*   | 0.22 |
| H41C                 | 0.5614       | 0.3769                | 0.6304                 | 0.081*       | 0.22 |
| C42'                 | 0.6009(7)    | 0.399(2)              | 0.6891(7)              | 0.056 (6)*   | 0.22 |
| е 1 <u>2</u><br>H42′ | 0.6252       | 0.4012                | 0.6840                 | 0.067*       | 0.22 |
| C43'                 | 0.6232       | 0.1012<br>0.4100 (15) | 0.7292(5)              | 0.007        | 0.22 |
| C44'                 | 0.5661 (5)   | 0.4075(17)            | 0.7292(6)<br>0.7368(6) | 0.018(4)*    | 0.22 |
| H44'                 | 0.5672       | 0.4152                | 0.7637                 | 0.046*       | 0.22 |
| C45'                 | 0.5316(6)    | 0.3944(15)            | 0.7055 (5)             | 0.068 (4)*   | 0.22 |
| H45'                 | 0.5071       | 0 3890                | 0.7101                 | 0.081*       | 0.22 |
| 041'                 | 0.6404(4)    | 0.4209(13)            | 0.7590 (5)             | $0.061(4)^*$ | 0.22 |
| C46'                 | 0.6450 (6)   | 0.430(2)              | 0 8004 (6)             | 0.071 (6)*   | 0.22 |
| H46D                 | 0.6338       | 0.5110                | 0.8046                 | 0.107*       | 0.22 |
| H46E                 | 0.6743       | 0.4248                | 0.8186                 | 0.107*       | 0.22 |
| H46F                 | 0.6302       | 0.3597                | 0.8064                 | 0.107*       | 0.22 |
| N51                  | 0.59908 (9)  | 1.0443 (3)            | 0.92277 (9)            | 0.0739 (8)   |      |
| H51A                 | 0.5915       | 1.1152                | 0.9086                 | 0.089*       |      |
| C51                  | 0.59439 (14) | 0.9349 (4)            | 0.90294 (11)           | 0.0872 (12)  |      |
| H51                  | 0.5846       | 0.9352                | 0.8740                 | 0.105*       |      |
| C52                  | 0.60336 (12) | 0.8228 (3)            | 0.92326 (10)           | 0.0726 (9)   |      |
| H52                  | 0.5996       | 0.7448                | 0.9088                 | 0.087*       |      |
| C53                  | 0.61806 (8)  | 0.8244 (3)            | 0.96546 (9)            | 0.0534 (7)   |      |
| C54                  | 0.62320 (9)  | 0.9399 (3)            | 0.98531 (9)            | 0.0586 (7)   |      |
| H54                  | 0.6333       | 0.9430                | 1.0143                 | 0.070*       |      |
| C55                  | 0.61375 (9)  | 1.0490 (3)            | 0.96308 (11)           | 0.0658 (8)   |      |
| H55                  | 0.6177       | 1.1288                | 0.9766                 | 0.079*       |      |
| O51                  | 0.62817 (7)  | 0.7208 (2)            | 0.98876 (7)            | 0.0753 (6)   |      |
| C56                  | 0.62525 (15) | 0.5989 (4)            | 0.96868 (15)           | 0.1087 (16)  |      |
| H56A                 | 0.5970       | 0.5862                | 0.9484                 | 0.163*       |      |
| H56B                 | 0.6325       | 0.5308                | 0.9891                 | 0.163*       |      |
| H56C                 | 0.6442       | 0.5975                | 0.9550                 | 0.163*       |      |
| N61                  | 0.63662 (9)  | 0.7464 (3)            | 0.60504 (10)           | 0.0733 (8)   |      |
| H61A                 | 0.6463       | 0.8241                | 0.6110                 | 0.088*       |      |
|                      |              |                       |                        |              |      |

| C61  | 0.65506 (10) | 0.6400 (4) | 0.62406 (10) | 0.0738 (10) |
|------|--------------|------------|--------------|-------------|
| H61  | 0.6803       | 0.6450     | 0.6476       | 0.089*      |
| C62  | 0.63809 (9)  | 0.5255 (4) | 0.61004 (9)  | 0.0637 (8)  |
| H62  | 0.6512       | 0.4497     | 0.6236       | 0.076*      |
| C63  | 0.60118 (9)  | 0.5200 (3) | 0.57551 (8)  | 0.0516 (6)  |
| C64  | 0.58280 (9)  | 0.6310 (3) | 0.55646 (10) | 0.0603 (7)  |
| H64  | 0.5576       | 0.6291     | 0.5328       | 0.072*      |
| C65  | 0.60119 (10) | 0.7427 (3) | 0.57192 (12) | 0.0746 (9)  |
| H65  | 0.5887       | 0.8199     | 0.5590       | 0.089*      |
| O61  | 0.58606 (7)  | 0.4041 (2) | 0.56325 (7)  | 0.0689 (6)  |
| C66  | 0.54801 (13) | 0.3931 (4) | 0.52734 (11) | 0.0837 (11) |
| H66A | 0.5256       | 0.4317     | 0.5328       | 0.125*      |
| H66B | 0.5419       | 0.3032     | 0.5205       | 0.125*      |
| H66C | 0.5507       | 0.4370     | 0.5044       | 0.125*      |
|      |              |            |              |             |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|------------|-------------|-------------|-------------|---------------|--------------|---------------|
| Fe1        | 0.0402 (3)  | 0.0329 (2)  | 0.0371 (3)  | 0.000         | 0.0141 (2)   | 0.000         |
| Fe2        | 0.0431 (2)  | 0.0689 (3)  | 0.0364 (2)  | -0.00179 (18) | 0.01665 (16) | -0.00331 (17) |
| Fe3        | 0.0354 (2)  | 0.0376 (3)  | 0.0359 (2)  | 0.00046 (19)  | 0.0128 (2)   | -0.00297 (19) |
| N1         | 0.0445 (11) | 0.0497 (13) | 0.0382 (11) | -0.0020 (10)  | 0.0156 (9)   | -0.0005 (10)  |
| C1         | 0.0399 (12) | 0.0440 (14) | 0.0344 (11) | -0.0029 (10)  | 0.0158 (10)  | -0.0017 (11)  |
| S1         | 0.0670 (4)  | 0.0429 (4)  | 0.0535 (4)  | -0.0062 (3)   | 0.0252 (3)   | -0.0091 (3)   |
| N2         | 0.0540 (13) | 0.0515 (13) | 0.0674 (15) | 0.0090 (11)   | 0.0306 (12)  | 0.0143 (12)   |
| C2         | 0.0533 (14) | 0.0360 (13) | 0.0497 (15) | 0.0000 (11)   | 0.0243 (12)  | 0.0047 (12)   |
| S2         | 0.1166 (7)  | 0.0410 (4)  | 0.0453 (4)  | 0.0038 (4)    | 0.0255 (4)   | 0.0087 (3)    |
| N3         | 0.0582 (15) | 0.092 (2)   | 0.0496 (14) | 0.0032 (14)   | 0.0194 (12)  | 0.0181 (14)   |
| C3         | 0.0410 (14) | 0.096 (2)   | 0.0438 (15) | 0.0074 (15)   | 0.0170 (12)  | 0.0201 (15)   |
| S3         | 0.0578 (4)  | 0.0962 (7)  | 0.0681 (5)  | -0.0018 (4)   | 0.0242 (4)   | 0.0257 (5)    |
| N4         | 0.0519 (13) | 0.0652 (16) | 0.0581 (15) | -0.0100 (12)  | 0.0238 (12)  | -0.0140 (12)  |
| C4         | 0.0421 (14) | 0.0595 (17) | 0.0497 (15) | -0.0029 (13)  | 0.0167 (12)  | -0.0123 (13)  |
| S4         | 0.1028 (7)  | 0.0734 (6)  | 0.0786 (6)  | -0.0361 (5)   | 0.0504 (5)   | -0.0217 (5)   |
| N5         | 0.0493 (13) | 0.0680 (15) | 0.0513 (13) | 0.0066 (12)   | 0.0193 (11)  | 0.0020 (12)   |
| C5         | 0.0400 (13) | 0.0491 (15) | 0.0397 (13) | -0.0026 (12)  | 0.0119 (10)  | 0.0029 (11)   |
| S5         | 0.0506 (4)  | 0.0549 (4)  | 0.0701 (5)  | 0.0091 (3)    | 0.0168 (4)   | -0.0054 (4)   |
| N6         | 0.0565 (14) | 0.103 (2)   | 0.0492 (14) | -0.0064 (14)  | 0.0242 (12)  | -0.0212 (14)  |
| C6         | 0.0417 (13) | 0.0563 (16) | 0.0433 (14) | -0.0018 (12)  | 0.0158 (11)  | -0.0036 (12)  |
| S6         | 0.1018 (7)  | 0.0733 (6)  | 0.1058 (7)  | -0.0133 (5)   | 0.0722 (6)   | -0.0343 (5)   |
| N7         | 0.0529 (14) | 0.135 (3)   | 0.0435 (14) | -0.0044 (16)  | 0.0175 (12)  | -0.0062 (16)  |
| C7         | 0.0465 (15) | 0.076 (2)   | 0.0409 (15) | 0.0066 (14)   | 0.0165 (13)  | 0.0043 (14)   |
| S7         | 0.0787 (6)  | 0.0835 (6)  | 0.0521 (4)  | -0.0013 (5)   | 0.0072 (4)   | -0.0097 (4)   |
| N8         | 0.0423 (12) | 0.0512 (13) | 0.0470 (12) | -0.0013 (10)  | 0.0150 (10)  | -0.0038 (10)  |
| C8         | 0.0395 (14) | 0.0528 (15) | 0.0443 (14) | -0.0072 (11)  | 0.0170 (12)  | -0.0099 (12)  |
| <b>S</b> 8 | 0.0401 (4)  | 0.0985 (6)  | 0.0536 (4)  | -0.0165 (4)   | 0.0094 (3)   | -0.0112 (4)   |
| N9         | 0.0472 (12) | 0.0485 (13) | 0.0556 (13) | 0.0022 (10)   | 0.0209 (11)  | -0.0059 (11)  |
| C9         | 0.0434 (13) | 0.0418 (14) | 0.0479 (14) | -0.0017 (11)  | 0.0195 (11)  | -0.0038 (11)  |
| S9         | 0.0867 (6)  | 0.0474 (4)  | 0.0806 (5)  | 0.0039 (4)    | 0.0483 (5)   | -0.0143 (4)   |
|            |             |             |             |               |              |               |

| N10         | 0.0538 (13)          | 0.0515 (13)          | 0.0470 (12)              | -0.0035 (11) | 0.0181 (11)              | -0.0014 (11)         |
|-------------|----------------------|----------------------|--------------------------|--------------|--------------------------|----------------------|
| C10         | 0.0514 (15)          | 0.0517 (15)          | 0.0363 (13)              | -0.0091 (12) | 0.0131 (11)              | -0.0045 (12)         |
| S10         | 0.0975 (7)           | 0.0740 (6)           | 0.0533 (4)               | -0.0277 (5)  | 0.0180 (4)               | 0.0145 (4)           |
| N11         | 0.0425 (11)          | 0.0344 (10)          | 0.0386 (10)              | -0.0012 (8)  | 0.0145 (9)               | 0.0007 (8)           |
| C11         | 0.0442 (13)          | 0.0386 (13)          | 0.0404 (13)              | -0.0004 (10) | 0.0142 (11)              | 0.0019 (10)          |
| C12         | 0.0397 (12)          | 0.0447 (14)          | 0.0428 (13)              | 0.0000 (11)  | 0.0121 (11)              | 0.0015 (11)          |
| C13         | 0.0412 (13)          | 0.0424 (13)          | 0.0489 (14)              | 0.0035 (11)  | 0.0205 (11)              | 0.0039 (11)          |
| C14         | 0.0471 (13)          | 0.0479 (14)          | 0.0376 (13)              | 0.0048 (11)  | 0.0154 (11)              | 0.0035 (11)          |
| C15         | 0.0412 (12)          | 0.0412 (13)          | 0.0399 (13)              | 0.0017 (10)  | 0.0130 (10)              | 0.0000 (10)          |
| 011         | 0.0422 (10)          | 0.0753 (13)          | 0.0525 (11)              | 0.0000 (9)   | 0.0217 (9)               | 0.0084 (10)          |
| C16         | 0.0409 (14)          | 0.087 (2)            | 0.0641 (19)              | -0.0022 (15) | 0.0210 (14)              | 0.0042 (17)          |
| N21         | 0.0408 (10)          | 0.0408 (11)          | 0.0374 (10)              | -0.0014 (8)  | 0.0178 (9)               | -0.0010 (8)          |
| C21         | 0.0406 (12)          | 0.0445 (13)          | 0.0386 (12)              | 0.0005 (10)  | 0.0191 (10)              | -0.0005 (10)         |
| C22         | 0.0461 (13)          | 0.0445 (13)          | 0.0378 (12)              | 0.0031 (11)  | 0.0210 (11)              | 0.0006 (10)          |
| C23         | 0.0402 (12)          | 0.0381 (13)          | 0.0404 (13)              | 0.0004 (10)  | 0.0145 (10)              | 0.0016 (10)          |
| C24         | 0.0392 (12)          | 0.0376 (12)          | 0.0442 (13)              | 0.0000 (10)  | 0.0199 (11)              | 0.0014 (10)          |
| C25         | 0.0422 (12)          | 0.0410 (13)          | 0.0382 (12)              | -0.0012 (10) | 0.0203 (10)              | 0.0004 (10)          |
| O21         | 0.0444 (9)           | 0.0641 (12)          | 0.0374 (9)               | 0.0043 (8)   | 0.0123 (8)               | 0.0020 (8)           |
| C26         | 0.0614 (17)          | 0.076 (2)            | 0.0365 (14)              | 0.0080 (15)  | 0.0126 (13)              | -0.0004 (14)         |
| N31         | 0.0529 (15)          | 0.121 (3)            | 0.0520 (15)              | -0.0178 (17) | 0.0194 (12)              | 0.0008 (18)          |
| C31         | 0.064 (2)            | 0.095 (3)            | 0.081 (3)                | -0.010(2)    | 0.0256 (19)              | 0.014 (2)            |
| C32         | 0.0612 (19)          | 0.085 (3)            | 0.079 (2)                | -0.0132(17)  | 0.0332 (17)              | -0.0039(19)          |
| C33         | 0.0499 (16)          | 0.082 (2)            | 0.0572 (17)              | -0.0205(15)  | 0.0251 (14)              | -0.0133 (16)         |
| C34         | 0.0546 (17)          | 0.082 (2)            | 0.0592 (18)              | -0.0135 (16) | 0.0217 (15)              | -0.0070(16)          |
| C35         | 0.0484 (16)          | 0.101 (3)            | 0.0600 (19)              | -0.0145(17)  | 0.0217 (15)              | -0.0189(19)          |
| 031         | 0.0853 (16)          | 0.1038 (19)          | 0.0560 (13)              | -0.0289(14)  | 0.0372 (12)              | -0.0195(13)          |
| C36         | 0.101 (3)            | 0.131 (4)            | 0.097 (3)                | -0.043(3)    | 0.060 (3)                | -0.056(3)            |
| N41         | 0.0628 (19)          | 0.0545 (18)          | 0.0594 (19)              | 0.0086 (15)  | 0.0285 (16)              | -0.0037(15)          |
| C41         | 0.055(2)             | 0.053 (2)            | 0.073 (3)                | 0.0061 (17)  | 0.032 (2)                | -0.0064(19)          |
| C42         | 0.050(3)             | 0.048 (2)            | 0.054 (3)                | 0.0077 (18)  | 0.018 (3)                | -0.001(2)            |
| C43         | 0.059(2)             | 0.0353(19)           | 0.062 (3)                | 0.0048 (18)  | 0.030(3)                 | 0.006(2)             |
| C44         | 0.052(3)             | 0.046(2)             | 0.002(3)                 | 0.006(2)     | 0.034(3)                 | 0.006(2)             |
| C45         | 0.052(3)             | 0.043(2)             | 0.077(3)                 | 0.000(2)     | 0.023(2)                 | 0.000(2)             |
| 041         | 0.023(2)<br>0.071(3) | 0.015(2)             | 0.068(3)                 | 0.006(2)     | 0.023(2)<br>0.037(2)     | 0.001(2)             |
| C46         | 0.071(3)<br>0.087(4) | 0.003(2)<br>0.067(3) | 0.000(3)                 | 0.000(2)     | 0.037(2)<br>0.025(3)     | 0.013(2)<br>0.018(3) |
| N51         | 0.007(1)             | 0.007(3)             | 0.000(3)                 | 0.019(3)     | 0.029(3)                 | 0.010(3)             |
| C51         | 0.000(2)<br>0.124(3) | 0.0371(10)           | 0.0794(19)<br>0.0504(18) | 0.0100(15)   | 0.0294(10)               | 0.0167(14)           |
| C52         | 0.124(3)             | 0.077(2)             | 0.0304(10)<br>0.0496(17) | 0.022(2)     | 0.024(2)<br>0.0145(17)   | -0.0007(10)          |
| C52         | 0.090(3)             | 0.0570(19)           | 0.0490(17)               | -0.0010(13)  | 0.0143(17)<br>0.0147(12) | 0.0042(13)           |
| C54         | 0.0473(14)           | 0.0371(17)           | 0.0493(15)               | 0.0012(13)   | 0.0147(12)<br>0.0215(13) | -0.0028(13)          |
| C55         | 0.0509(13)           | 0.074(2)             | 0.0319(10)               | -0.0012(14)  | 0.0213(13)               | -0.0165(17)          |
| 051         | 0.0327(17)           | 0.0580(18)           | 0.064(2)                 | -0.0001(14)  | 0.0231(10)<br>0.0123(11) | 0.0103(17)           |
| 051<br>C56  | 0.0703(13)           | 0.0094(13)           | 0.0043(14)               | -0.0028(12)  | 0.0123(11)               | 0.0188(12)           |
| UJU<br>N61  | 0.112(3)             | 0.033(2)             | 0.113(3)                 | -0.005(2)    | 0.004(3)                 | -0.012(2)            |
| 1NU1<br>C61 | 0.0003(17)           | 0.0770(19)           | 0.003(2)                 | -0.006(2)    | 0.0390(10)               | 0.0243(17)           |
| C61         | 0.0302(17)           | 0.123(3)             | 0.0409(17)               | -0.000(2)    | 0.0180(14)               | -0.007(2)            |
| C02         | 0.0331(10)           | 0.087(2)             | 0.0462(10)               | 0.0120(10)   | 0.0100(14)               | 0.0145(10)           |
| 063         | 0.0528 (15)          | 0.0509 (17)          | 0.0464 (14)              | 0.0055(13)   | 0.0215(13)               | 0.0054(13)           |
| C64         | 0.0497 (15)          | 0.0589 (18)          | 0.0610 (18)              | 0.0065 (14)  | 0.0108 (14)              | 0.0077 (14)          |

| C65 | 0.0600 (19) | 0.060 (2)   | 0.095 (3)   | 0.0046 (16) | 0.0228 (19) | 0.0008 (18)  |
|-----|-------------|-------------|-------------|-------------|-------------|--------------|
| O61 | 0.0777 (14) | 0.0559 (13) | 0.0672 (13) | 0.0048 (11) | 0.0231 (12) | 0.0078 (10)  |
| C66 | 0.097 (3)   | 0.072 (2)   | 0.065 (2)   | -0.022 (2)  | 0.0148 (19) | -0.0037 (18) |

Geometric parameters (Å, °)

| Fe1—N2                | 2.030 (2)   | C43'—O41' | 1.31 (2)  |
|-----------------------|-------------|-----------|-----------|
| Fe1—N2 <sup>i</sup>   | 2.030 (2)   | C43'—C44' | 1.46 (3)  |
| Fe1—N1 <sup>i</sup>   | 2.037 (2)   | C44'—C45' | 1.29 (2)  |
| Fe1—N1                | 2.038 (2)   | O41′—C46′ | 1.42 (2)  |
| Fe1—N11 <sup>i</sup>  | 2.1550 (19) | N51—C55   | 1.320 (4) |
| Fe1—N11               | 2.1551 (19) | N51—C51   | 1.326 (5) |
| Fe2—N6                | 2.034 (3)   | C51—C52   | 1.353 (5) |
| Fe2—N3                | 2.036 (3)   | C52—C53   | 1.382 (4) |
| Fe2—N7                | 2.039 (3)   | C53—O51   | 1.329 (4) |
| Fe2—N5                | 2.045 (2)   | C53—C54   | 1.381 (4) |
| Fe2—N4                | 2.074 (3)   | C54—C55   | 1.358 (5) |
| Fe2—N21               | 2.158 (2)   | O51—C56   | 1.453 (5) |
| Fe3—N10               | 2.030 (2)   | N61—C65   | 1.334 (5) |
| Fe3—N10 <sup>ii</sup> | 2.030 (2)   | N61—C61   | 1.335 (5) |
| Fe3—N9 <sup>ii</sup>  | 2.049 (2)   | C61—C62   | 1.349 (5) |
| Fe3—N9                | 2.049 (2)   | C62—C63   | 1.391 (4) |
| Fe3—N8 <sup>ii</sup>  | 2.075 (2)   | C63—O61   | 1.332 (4) |
| Fe3—N8                | 2.075 (2)   | C63—C64   | 1.377 (4) |
| N1—C1                 | 1.171 (3)   | C64—C65   | 1.349 (5) |
| C1—S1                 | 1.614 (3)   | O61—C66   | 1.443 (4) |
| N2—C2                 | 1.166 (3)   | C11—H11   | 0.9500    |
| C2—S2                 | 1.600 (3)   | C12—H12   | 0.9500    |
| N3—C3                 | 1.176 (4)   | C14—H14   | 0.9500    |
| C3—S3                 | 1.612 (4)   | С15—Н15   | 0.9500    |
| N4—C4                 | 1.162 (4)   | C16—H16A  | 0.9800    |
| C4—S4                 | 1.619 (3)   | C16—H16B  | 0.9800    |
| N5—C5                 | 1.163 (3)   | C16—H16C  | 0.9800    |
| C5—S5                 | 1.604 (3)   | C21—H21   | 0.9500    |
| N6—C6                 | 1.162 (4)   | C22—H22   | 0.9500    |
| C6—S6                 | 1.599 (3)   | C24—H24   | 0.9500    |
| N7—C7                 | 1.165 (4)   | С25—Н25   | 0.9500    |
| C7—S7                 | 1.603 (3)   | C26—H26C  | 0.9800    |
| N8—C8                 | 1.156 (3)   | C26—H26B  | 0.9800    |
| C8—S8                 | 1.620 (3)   | C26—H26A  | 0.9800    |
| N9—C9                 | 1.161 (3)   | N31—H31A  | 0.8800    |
| C9—S9                 | 1.614 (3)   | C31—H31   | 0.9500    |
| N10—C10               | 1.166 (3)   | С32—Н32   | 0.9500    |
| C10—S10               | 1.605 (3)   | С34—Н34   | 0.9500    |
| N11—C11               | 1.346 (3)   | С35—Н35   | 0.9500    |
| N11—C15               | 1.348 (3)   | С36—Н36А  | 0.9800    |
| C11—C12               | 1.373 (3)   | С36—Н36В  | 0.9800    |
| C12—C13               | 1.385 (4)   | С36—Н36С  | 0.9800    |

| C13-O111.346 (3)N41-H41AC13-C141.390 (4)C41-H41C14-C151.368 (3)C42-H42O11-C161.447 (3)C44-H44N21-C211.342 (3)C45-H45N21-C251.353 (3)C46-H46AC21-C221.377 (3)C46-H46BC22-C231.392 (3)C46-H46C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8800<br>0.9500<br>0.9500<br>0.9500<br>0.9500<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9500<br>0.9500 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9500<br>0.9500<br>0.9500<br>0.9500<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.8800<br>0.9500                               |
| C14—C151.368 (3)C42—H42O11—C161.447 (3)C44—H44N21—C211.342 (3)C45—H45N21—C251.353 (3)C46—H46AC21—C221.377 (3)C46—H46BC22—C231.392 (3)C46—H46C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9500<br>0.9500<br>0.9500<br>0.9800<br>0.9800<br>0.9800<br>0.8800<br>0.9500<br>0.9500                                         |
| O11—C161.447 (3)C44—H44N21—C211.342 (3)C45—H45N21—C251.353 (3)C46—H46AC21—C221.377 (3)C46—H46BC22—C231.392 (3)C46—H46C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9500<br>0.9500<br>0.9800<br>0.9800<br>0.9800<br>0.8800<br>0.9500<br>0.9500                                                   |
| N21—C211.342 (3)C45—H45N21—C251.353 (3)C46—H46AC21—C221.377 (3)C46—H46BC22—C231.392 (3)C46—H46C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9500<br>0.9800<br>0.9800<br>0.9800<br>0.8800<br>0.9500<br>0.9500                                                             |
| N21—C251.353 (3)C46—H46AC21—C221.377 (3)C46—H46BC22—C231.392 (3)C46—H46C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800<br>0.9800<br>0.9800<br>0.8800<br>0.9500<br>0.9500                                                                       |
| C21—C221.377 (3)C46—H46BC22—C231.392 (3)C46—H46C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9800<br>0.9800<br>0.8800<br>0.9500<br>0.9500                                                                                 |
| C22—C23 1.392 (3) C46—H46C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9800<br>0.8800<br>0.9500<br>0.9500                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8800<br>0.9500<br>0.9500                                                                                                     |
| C23—O21 1.345 (3) N41′—H41B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9500<br>0.9500                                                                                                               |
| C23—C24 1.394 (3) C41'—H41C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9500                                                                                                                         |
| C24-C25 1.361 (3) $C42'-H42'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                |
| O21-C26 1.440 (3) C44'-H44'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9500                                                                                                                         |
| N31—C31 1 326 (5) C45'—H45'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9500                                                                                                                         |
| N31—C35 1 342 (5) C46′—H46D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9800                                                                                                                         |
| $C_{31}$ $C_{32}$ $C_{31}$ $C_{46'}$ | 0.9800                                                                                                                         |
| $C_{32}$ $C_{33}$ $C_{46'}$ $C_{46'$ | 0.9800                                                                                                                         |
| C33_O31 1 341 (4) N51_H51A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8800                                                                                                                         |
| $C_{33}$ $C_{34}$ $C_{34}$ $C_{34}$ $C_{51}$ $C$ | 0.9500                                                                                                                         |
| $C_{34} = C_{35} = C_{34} = C_{35} = C_{34} = C_{35} = C_{34} = C_{35} = C_{34} = C_{35} = C$ | 0.9500                                                                                                                         |
| 031-036 $1435(5)$ $052-1152$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9500                                                                                                                         |
| N41—C41 1 329 (5) C55—H55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500                                                                                                                         |
| N41—C45 1 348 (6) C56—H56A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9800                                                                                                                         |
| $C_{41}$ $C_{42}$ $C_{41}$ $C_{42}$ $C_{56}$ $C$ | 0.9800                                                                                                                         |
| C42 - C43 1 383 (6) $C56 - H56C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9800                                                                                                                         |
| C43—O41 1 323 (7) N61—H61A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8800                                                                                                                         |
| C43-C44 1405(7) $C61-H61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500                                                                                                                         |
| C44-C45 1 346 (8) $C62-H62$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9500                                                                                                                         |
| 041-C46 $1.442(7)$ $C64-H64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9500                                                                                                                         |
| N41'-C45' 1.33 (2) C65-H65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9500                                                                                                                         |
| N41'-C41' 1.43 (3) C66-H66A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9800                                                                                                                         |
| C41'-C42' 1.34 (3) C66-H66B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9800                                                                                                                         |
| C42'—C43' 1.40 (3) C66—H66C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9800                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |
| N2—Fe1—N2 <sup>i</sup> 93.91 (15) C51—C52—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53 118.5 (3)                                                                                                                   |
| $N2$ —Fe1— $N1^{i}$ 176.31 (10) 051—C53—C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54 116.9 (3)                                                                                                                   |
| $N2^{i}$ —Fe1—N1 <sup>i</sup> 89.62 (10) 051—C53—C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52 124.1 (3)                                                                                                                   |
| N2—Fe1—N1 89.62 (10) C54—C53—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52 119.0 (3)                                                                                                                   |
| N2 <sup>i</sup> —Fe1—N1 176.31 (10) C55—C54—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53 119.5 (3)                                                                                                                   |
| N1 <sup>i</sup> —Fe1—N1 86.87 (12) N51—C55—C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 54 120.1 (3)                                                                                                                   |
| N2—Fe1—N11 <sup>i</sup> 87.37 (8) C53—O51—C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56 117.8 (3)                                                                                                                   |
| N2 <sup>i</sup> —Fe1—N11 <sup>i</sup> 87.05 (8) C65—N61—C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61 121.3 (3)                                                                                                                   |
| N1 <sup>i</sup> —Fe1—N11 <sup>i</sup> 91.76 (8) N61—C61—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62 120.4 (3)                                                                                                                   |
| N1—Fe1—N11 <sup>i</sup> 94.19 (8) C61—C62—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53 119.0 (3)                                                                                                                   |
| N2—Fe1—N11 87.05 (8) 061—C63—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64 124.5 (3)                                                                                                                   |
| N2 <sup>i</sup> —Fe1—N11 87.37 (8) 061—C63—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52 116.1 (3)                                                                                                                   |
| N1 <sup>i</sup> —Fe1—N11 94.19 (8) C64—C63—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52 119.4 (3)                                                                                                                   |
| N1—Fe1—N11 91.75 (8) C65—C64—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53 118.9 (3)                                                                                                                   |
| N11 <sup>i</sup> —Fe1—N11 171.82 (11) N61—C65—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64 121.0 (3)                                                                                                                   |

| N6—Fe2—N3                          | 91.15 (12)             | C63—O61—C66                   | 118.3 (3) |
|------------------------------------|------------------------|-------------------------------|-----------|
| N6—Fe2—N7                          | 89.08 (11)             | C11—C12—H12                   | 120.6     |
| N3—Fe2—N7                          | 93.56 (12)             | C13—C12—H12                   | 120.6     |
| N6—Fe2—N5                          | 178.84 (12)            | C15—C14—H14                   | 120.3     |
| N3—Fe2—N5                          | 90.01 (11)             | C13—C14—H14                   | 120.3     |
| N7—Fe2—N5                          | 90.87 (11)             | N11—C15—H15                   | 118.5     |
| N6—Fe2—N4                          | 90.10 (11)             | C14—C15—H15                   | 118.5     |
| N3—Fe2—N4                          | 176.00 (10)            | 011—C16—H16A                  | 109 5     |
| N7—Fe2—N4                          | 90.25 (12)             | 011—C16—H16B                  | 109.5     |
| N5—Fe2—N4                          | 88 73 (10)             | $H_{16A}$ $C_{16}$ $H_{16B}$  | 109.5     |
| $N6_{Fe2}$ N21                     | 89 70 (9)              | 011 - C16 - H16C              | 109.5     |
| $N_{3}$ Fe <sup>2</sup> $N_{21}$   | 88 88 (9)              | $H_{16A}$ $-C_{16}$ $H_{16C}$ | 109.5     |
| $N7_{Fe2} N21$                     | 177 30 (12)            | $H_{16B}$ $C_{16}$ $H_{16C}$  | 109.5     |
| $N_{1} = 102 = 1021$<br>N5_Fe2_N21 | 90.29 (9)              | N21_C21_H21                   | 118.0     |
| $N_{4} = F_{2} = N_{2}$            | 90.29 (9)<br>87.34 (0) | $C_{22} = C_{21} = H_{21}$    | 118.0     |
| $N10  \text{Fe3}  N10^{\text{ii}}$ | 180.0                  | $C_{22} = C_{21} = H_{21}$    | 120.0     |
| $N10 = E_{2} = N0^{ii}$            | 80.53 (0)              | $C_{21} = C_{22} = H_{22}$    | 120.9     |
| N10 $Fe3$ $N9$                     | 09.55 (9)<br>00.46 (0) | $C_{23} = C_{22} = H_{22}$    | 120.9     |
| $N10^{-}-Fe3-N9^{-}$               | 90.46 (9)              | $C_{23} = C_{24} = H_{24}$    | 120.5     |
| N10 $Fe3$ $N9$                     | 90.40 (9)              | N21 C25 U25                   | 120.3     |
| $N10^{\circ}$ Fe3 N0               | 89.54 (9)              | N21-C25-H25                   | 118.3     |
| $N9^{}Fe3^{}N9$                    | 180.00(12)             | C24—C25—H25                   | 118.5     |
| $N10$ —Fe3— $N8^{\circ\circ}$      | 90.66 (9)              | 021 - 026 - H260              | 109.5     |
| $N10^{\circ}$ Fe3 $N0^{\circ}$     | 89.34 (9)              | 021—C26—H26B                  | 109.5     |
| $N9^{n}$ —Fe3—N8 <sup>n</sup>      | 89.65 (9)              | H26C—C26—H26B                 | 109.5     |
| N9—Fe3—N8 <sup>n</sup>             | 90.35 (9)              | O21—C26—H26A                  | 109.5     |
| N10—Fe3—N8                         | 89.34 (9)              | H26C—C26—H26A                 | 109.5     |
| $N10^{n}$ —Fe3—N8                  | 90.66 (9)              | H26B—C26—H26A                 | 109.5     |
| N9 <sup>n</sup> —Fe3—N8            | 90.35 (9)              | C31—N31—H31A                  | 120.5     |
| N9—Fe3—N8                          | 89.65 (9)              | C35—N31—H31A                  | 117.2     |
| N8 <sup>ii</sup> —Fe3—N8           | 180.0                  | N31—C31—H31                   | 119.4     |
| C1—N1—Fe1                          | 160.8 (2)              | С32—С31—Н31                   | 119.4     |
| N1—C1—S1                           | 178.8 (2)              | С31—С32—Н32                   | 120.8     |
| C2—N2—Fe1                          | 175.4 (2)              | С33—С32—Н32                   | 120.8     |
| N2—C2—S2                           | 177.7 (3)              | С35—С34—Н34                   | 120.2     |
| C3—N3—Fe2                          | 170.6 (3)              | С33—С34—Н34                   | 120.2     |
| N3—C3—S3                           | 179.9 (3)              | N31—C35—H35                   | 120.4     |
| C4—N4—Fe2                          | 168.0 (2)              | С34—С35—Н35                   | 120.4     |
| N4—C4—S4                           | 178.9 (3)              | O31—C36—H36A                  | 109.5     |
| C5—N5—Fe2                          | 161.5 (2)              | O31—C36—H36B                  | 109.5     |
| N5—C5—S5                           | 178.6 (3)              | H36A—C36—H36B                 | 109.5     |
| C6—N6—Fe2                          | 160.3 (3)              | O31—C36—H36C                  | 109.5     |
| N6—C6—S6                           | 178.9 (3)              | H36A—C36—H36C                 | 109.5     |
| C7—N7—Fe2                          | 158.5 (3)              | H36B—C36—H36C                 | 109.5     |
| N7—C7—S7                           | 179.0 (4)              | C41—N41—H41A                  | 119.5     |
| C8—N8—Fe3                          | 167.4 (2)              | C45—N41—H41A                  | 119.5     |
| N8—C8—S8                           | 178.4 (3)              | N41—C41—H41                   | 119.2     |
| C9—N9—Fe3                          | 173.3 (2)              | C42—C41—H41                   | 119.2     |
| N9—C9—S9                           | 179.1 (3)              | C41—C42—H42                   | 121.2     |

| C10—N10—Fe3                | 170.7 (2)                | C43—C42—H42                  | 121.2 |
|----------------------------|--------------------------|------------------------------|-------|
| N10-C10-S10                | 179.2 (3)                | C45—C44—H44                  | 120.2 |
| C11—N11—C15                | 116.9 (2)                | C43—C44—H44                  | 120.2 |
| C11—N11—Fe1                | 121.15 (16)              | C44—C45—H45                  | 119.8 |
| C15— $N11$ —Fe1            | 121.38 (16)              | N41—C45—H45                  | 119.8 |
| N11-C11-C12                | 123.6(2)                 | C45' - N41' - H41B           | 119.0 |
| C11-C12-C13                | 123.0(2)<br>1187(2)      | C41'—N41'—H41B               | 119.2 |
| 011 - 012 - 013            | 125.1(2)                 | C42'— $C41'$ —H41C           | 121.2 |
| 011 - 013 - 012            | 125.1(2)<br>116.6(2)     | N41' - C41' - H41C           | 121.2 |
| $C_{12}$ $C_{13}$ $C_{14}$ | 110.0(2)<br>118.3(2)     | CA1' $CA2'$ $HA2'$           | 121.2 |
| $C_{12} = C_{13} = C_{14}$ | 110.3(2)                 | $C_{+1} = C_{+2} = -1142$    | 120.1 |
| N11 C15 C14                | 119.3(2)<br>123.1(2)     | $C_{43} = C_{42} = 1142$     | 120.1 |
| $C_{12} = C_{13} = C_{14}$ | 123.1(2)<br>117.5(2)     | $C_{43} = C_{44} = 1144$     | 121.4 |
| $C_{13} = 011 = C_{10}$    | 117.3(2)<br>116.7(2)     | C43 - C44 - H44              | 121.4 |
| $C_{21} = N_{21} = C_{23}$ | 110.7(2)                 | C44 - C45 - H45              | 110.2 |
| $C_2 I = N_2 I = Fe_2$     | 122.91(10)<br>120.25(15) | N41 - C43 - H43              | 110.2 |
| C25—N21—Fe2                | 120.35 (15)              | 041 - C46 - H46D             | 109.5 |
| $N_2 I = C_2 I = C_2 Z_2$  | 124.0 (2)                | U41 - U46 - H46E             | 109.5 |
| $C_{21} = C_{22} = C_{23}$ | 118.1(2)                 | H46D - C46' - H46E           | 109.5 |
| 021 - 023 - 022            | 126.1 (2)                | $041^{-}$ $-C46^{-}$ $-H46F$ | 109.5 |
| 021 - 023 - 024            | 115.4 (2)                | H46D - C46' - H46F           | 109.5 |
| $C_{22} = C_{23} = C_{24}$ | 118.6 (2)                | H46E—C46 <sup>7</sup> —H46F  | 109.5 |
| C25—C24—C23                | 119.1 (2)                | C55—N51—H51A                 | 119.3 |
| N21—C25—C24                | 123.4 (2)                | C51—N51—H51A                 | 119.1 |
| C23—O21—C26                | 118.1 (2)                | N51—C51—H51                  | 119.4 |
| C31—N31—C35                | 122.2 (3)                | С52—С51—Н51                  | 119.4 |
| N31—C31—C32                | 121.3 (4)                | C51—C52—H52                  | 120.7 |
| C31—C32—C33                | 118.4 (4)                | С53—С52—Н52                  | 120.7 |
| O31—C33—C34                | 116.2 (3)                | С55—С54—Н54                  | 120.2 |
| O31—C33—C32                | 124.5 (3)                | С53—С54—Н54                  | 120.2 |
| C34—C33—C32                | 119.3 (3)                | N51—C55—H55                  | 119.9 |
| C35—C34—C33                | 119.6 (4)                | С54—С55—Н55                  | 119.9 |
| N31—C35—C34                | 119.2 (3)                | O51—C56—H56A                 | 109.5 |
| C33—O31—C36                | 117.7 (3)                | O51—C56—H56B                 | 109.5 |
| C41—N41—C45                | 121.1 (4)                | H56A—C56—H56B                | 109.5 |
| N41—C41—C42                | 121.7 (4)                | O51—C56—H56C                 | 109.5 |
| C41—C42—C43                | 117.7 (5)                | H56A—C56—H56C                | 109.5 |
| O41—C43—C42                | 123.1 (5)                | H56B—C56—H56C                | 109.5 |
| O41—C43—C44                | 117.4 (4)                | C65—N61—H61A                 | 112.2 |
| C42—C43—C44                | 119.5 (6)                | C61—N61—H61A                 | 126.3 |
| C45—C44—C43                | 119.6 (5)                | N61—C61—H61                  | 119.8 |
| C44—C45—N41                | 120.5 (4)                | С62—С61—Н61                  | 119.8 |
| C43—O41—C46                | 117.5 (4)                | С61—С62—Н62                  | 120.5 |
| C45'—N41'—C41'             | 121.6 (18)               | С63—С62—Н62                  | 120.5 |
| C42'—C41'—N41'             | 118 (2)                  | С65—С64—Н64                  | 120.6 |
| C41'—C42'—C43'             | 120 (2)                  | С63—С64—Н64                  | 120.6 |
| O41'—C43'—C42'             | 117.9 (18)               | N61—C65—H65                  | 119.5 |
| O41'—C43'—C44'             | 122.3 (15)               | С64—С65—Н65                  | 119.5 |
| C42'—C43'—C44'             | 119.8 (18)               | O61—C66—H66A                 | 109.5 |

| C45'—C44'—C43' | 117.3 (18) | O61—C66—H66B  | 109.5 |
|----------------|------------|---------------|-------|
| C44'—C45'—N41' | 123.7 (18) | H66A—C66—H66B | 109.5 |
| C43'—O41'—C46' | 120.3 (16) | O61—C66—H66C  | 109.5 |
| C55—N51—C51    | 121.6 (3)  | H66A—C66—H66C | 109.5 |
| N51—C51—C52    | 121.2 (3)  | H66B—C66—H66C | 109.5 |

Symmetry codes: (i) -x+1, y, -z+3/2; (ii) -x+1, -y, -z+1.

# Hydrogen-bond geometry (Å, °)

| D—H···A                         | <i>D</i> —Н | H···A | D····A     | <i>D</i> —H··· <i>A</i> |
|---------------------------------|-------------|-------|------------|-------------------------|
| C21—H21…N5                      | 0.95        | 2.66  | 3.141 (3)  | 112                     |
| C25—H25…N6                      | 0.95        | 2.58  | 3.079 (4)  | 113                     |
| N31—H31A···S4 <sup>iii</sup>    | 0.88        | 2.67  | 3.359 (3)  | 136                     |
| N41—H41A···S2                   | 0.88        | 2.62  | 3.320 (3)  | 137                     |
| C46—H46C···S10 <sup>iv</sup>    | 0.98        | 2.85  | 3.691 (5)  | 144                     |
| N41'— $H41B$ ···S2 <sup>i</sup> | 0.88        | 2.60  | 3.225 (14) | 129                     |
| N41′—H41 <i>B</i> ···S9         | 0.88        | 2.88  | 3.676 (15) | 151                     |
| C42'— $H42'$ ···S5 <sup>v</sup> | 0.95        | 2.98  | 3.83 (3)   | 151                     |
| C45'—H45'····S $1^{vi}$         | 0.95        | 2.86  | 3.370 (18) | 115                     |
| $C45'$ — $H45'$ ···· $S2^{i}$   | 0.95        | 2.92  | 3.394 (19) | 112                     |
| C46'—H46D…S3                    | 0.98        | 2.81  | 3.52 (2)   | 130                     |
| N51—H51A···S1                   | 0.88        | 2.78  | 3.464 (3)  | 135                     |
| C54—H54····S8 <sup>vii</sup>    | 0.95        | 2.97  | 3.885 (3)  | 163                     |
| C56—H56B····S7 <sup>viii</sup>  | 0.98        | 2.90  | 3.793 (4)  | 152                     |
| N61—H61A····S8 <sup>iv</sup>    | 0.88        | 2.62  | 3.419 (3)  | 151                     |
| C62—H62···S5 <sup>v</sup>       | 0.95        | 2.93  | 3.831 (3)  | 160                     |
| C65—H65…N8 <sup>iv</sup>        | 0.95        | 2.68  | 3.608 (4)  | 167                     |

Symmetry codes: (i) -*x*+1, *y*, -*z*+3/2; (iii) -*x*+3/2, *y*-3/2, -*z*+3/2; (iv) *x*, *y*+1, *z*; (v) -*x*+3/2, *y*-1/2, -*z*+3/2; (vi) -*x*+1, *y*-1, -*z*+3/2; (vii) *x*, -*y*+1, *z*+1/2; (viii) -*x*+3/2, -*y*+3/2, -*z*+2.