

Received 31 January 2018 Accepted 6 February 2018

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; nitrile; isocyanide; C= $O\cdots$ Br contacts; C= $N\cdots$ Br contacts; N=C···C contacts

CCDC reference: 1525814

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of methyl 3,5-dibromo-4-cyanobenzoate and methyl 3,5-dibromo-4-isocyanobenzoate

Wayland E. Noland,* Ryan J. Herzig, Abigail J. Engwall, Renee C. Jensen and Kenneth I. Tritch

Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, USA, *Correspondence e-mail: nolan001@umn.edu

The title crystals, C₉H₅Br₂NO₂, are the first reported 2,6-dihalophenyl cyanideisocyanide pair that have neither three- nor two-dimensional isomorphism. Both crystals contain contacts between the carbonyl O atom and a Br atom. In the crystal of the cyanide, $R_2^2(10)$ inversion dimers form based on C=N···Br contacts, a common packing feature in this series of crystals. In the isocyanide, the corresponding N=C···Br contacts are not observed. Instead, the isocyano C atom forms contacts with the methoxy C atom. RNC was refined as a twocomponent pseudo-merohedral twin.

1. Chemical context & database survey

The crystal packing of 2,6-dihalophenyl cyanides and isocyanides is commonly influenced by $C = N \cdots X$ or $N = C \cdots X$ contacts, especially when X is Br or I (Desiraju & Harlow, 1989). The crystal structures of isomeric, non-ligand cyanides and isocyanides are usually very similar. There are six reported 2,6-dihalophenyl cyanide-isocyanide pairs (Fig. 1). Three are in the most recent update of the Cambridge

isomorphous

Figure 1

The six pairs of 2,6-dihalophenyl cyanides $(_a)$ and isocyanides $(_b)$ previously reported in the CSD. All corresponding crystal pairs are either isomorphous or polytypic.

research communications

Structural Database (CSD, Version 5.38, May 2017; Groom *et al.*, 2016), and three were recently completed by our group. The pentafluoro [(Ia); Bond *et al.*, 2001) and (Ib); Lentz & Preugschat, 1993)], 2,6-dibromo-4-methyl [(IIIa), (IIIb); Noland *et al.*, 2017b], 2,6-dibromo-4-chloro [(IVa); Britton, 2005 and (IIVb); Noland & Tritch, 2018], and 2,4,6-triiodo [(VIa), (VIb); Noland *et al.* 2018] pairs are each isomorphous. The 2,4,6-trichloro [(IIa), (IIb); Pink *et al.*, 2000] and 2,4,6-tribromo [(Va), (Vb); Britton *et al.*, 2016] pairs each have two-dimensional isomorphism and are polytypic.

Two simple 3,5-dibromobenzoate esters were found in the CSD (Fig. 2). Crystals of (VII) contain C(6) chains of C=O···Br contacts (Saeed *et al.*, 2010), and crystals of (VIII) contain C(5) chains of Br···Br contacts (Reinhold & Rosati, 1994). A co-crystal of cyano acid (IX*a*) with anthracene was recently reported by our group (Noland *et al.* 2017*a*). The corresponding isocyano acid (IX*b*) was not observed, probably because of the acid sensitivity of isocyanides (Ugi *et al.*, 1965), preventing crystallographic comparison of (IX*a*) and (IX*b*). The title cyanide (RCN) and isocyanide (RNC) were synthetic intermediates to (IX*a*) and (IX*b*), and their crystals are presented instead.

2. Structural commentary

Molecules of RCN and RNC (Fig. 3) occupy general positions and have similar, typical geometry. Both benzene rings are nearly planar, with mean atomic deviations of 0.005 (2) and 0.002 (3) Å for RCN and RNC, respectively. The most prominent difference between the molecular conformations is the bond angles about the methoxy O atoms, which are $117.1 (2)^{\circ}$ for C8–O2–C9, and $114.8 (3)^{\circ}$ for C18–O12–

Figure 2

3,5-Dibromobenzoates (VII) and (VIII) in the CSD. We recently reported (IXa); isocyano acid (IXb) was not observed.

$A - B \cdots C$	A - B	$B \cdot \cdot \cdot C$	$A - B \cdots C$
$C1 = N1 \cdots Br2^i$	1.138 (3)	3.041 (3)	128.6 (2)
C8≡O1···Br6 ⁱⁱ	1.201 (3)	3.025 (2)	143.7 (2)
N11 \equiv C17 $\cdot \cdot \cdot$ C19 ⁱⁱⁱ	1.162 (5)	3.240 (6)	112.9 (3)
C18= $O11 \cdots Br16^{iv}$	1.207 (5)	3.133 (3)	146.6 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) $x + 1, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$;

C19. In RNC, the compression about O12 is probably caused by repulsion between methyl groups in adjacent molecules, rather than the N11 \equiv C17 \cdots C19 short contact (Table 1), because the C9–O2 and C19–O12 bond lengths are nearly identical.

3. Supramolecular features

Molecules of RCN form $R_2^2(10)$ inversion dimers based on $C1 \equiv N1 \cdots Br2$ short contacts (Table 1), similar to the centric contacts found in crystals of (II) and (IV)-(VI). Adjacent dimers are connected along [201] by C8=O1···Br6 contacts similar to those found in (VII). Adjacent dimers are mutually inclined by $44.03 (7)^{\circ}$. The resulting sheet structure (Fig. 4) is staggered so that the methyl groups are spread apart to minimize steric congestion (Fig. 5). Crystals of RNC have a different packing motif, a slice of which is antiparallel ribbons parallel to [001] (Fig. 6). Each molecule of RNC participates in four short contacts between two pairs of molecules that are related by the (x + 1, y, z) translation, forming a threedimensional network. Contacted molecules are mutually inclined by $42.0 (1)^{\circ}$. Half of the contacts are C18=O11···Br16 contacts, similar to those found in RCN and (VII). The other half are N11≡C17···C19 contacts, instead of the anticipated N11=C17···Br12 contacts. It is interesting that the cyano group in RCN favors contacting a Br atom, but the isocyano group in RNC favors contacting the methoxy C atom.

igure 5

The molecular structures of (a) RCN and (b) RNC, with atom labeling and displacement ellipsoids at the 50% probability level.

Figure 4

The sheet structure in a crystal of RCN, viewed along [100]. Dashed magenta lines represent short contacts.

4. Synthesis and crystallization

Methyl 4-amino-3,5-dibromobenzoate (RNH2) and methyl 3,5-dibromo-4-cyanobenzoate (RCN) were taken from material prepared in our recent study (Noland *et al.* 2017*a*; Fig. 7).

Methyl 3,5-dibromo-4-formamidobenzoate (RFA) was prepared from (RNH2, 1.24 g) by the formylation procedure described by Britton *et al.* (2016), with 1,2-dichloroethane in place of tetrahydrofuran, giving white needles (1.31 g, 97%). M.p. 489–490 K; ¹H NMR (300 MHz, (CD₃)₂CO) δ 9.203 (*s*, 1H), 8.441 (*s*, 1H), 8.226 (*s*, 2H), 3.928 (*s*, 3H); ¹³C NMR (126 MHz, (CD₃)₂SO) δ 163.5 (1C), 160.2 (1C), 139.5 (1C), 132.5 (2C), 130.7 (1C), 123.5 (2C), 52.9 (1C); IR (KBr, cm⁻¹) 3153, 1727, 1664, 1524, 1282, 1154, 966, 765, 749; MS–ESI [*M* + Na]⁺ calculated for C₉H₇⁷⁹Br⁸¹BrNO₃ 359.8664, found 359.8662.

Methyl 3,5-dibromo-4-isocyanobenzoate (RNC) was prepared from (RFA, 594 mg) by the dehydration procedure described by Britton *et al.* (2016), giving a brown powder (490 mg), which was crystallized as described below (453 mg, 84%). M.p. 391–392 K; ¹H NMR (500 MHz, CD₂Cl₂) δ 8.278

Figure 5

The sheet structure in a crystal of RCN, viewed along [503]. The same molecules are shown as in Fig. 4.

Figure 6 A slice of a crystal of RNC parallel to (100), viewed nearly along [100].

(*s*, H13*A*, H15*A*), 3.930 (*s*, H19*A*, H19*B*, H19*C*); ¹³C NMR (126 MHz, $(CD_3)_2SO$) δ 174.1 (C17), 163.0 (C18), 132.5 (C13, C15), 132.3 (C14), 130.1 (C11), 121.0 (C12, C16), 53.2 (C19); IR (KBr, cm⁻¹) 3073, 2961, 2853, 2122, 1722, 1426, 1275, 971, 764, 753; MS-EI [*M*]⁺ calculated for $C_9H_5^{79}Br^{81}BrNO_2$ 316.8682, found 316.8699.

Crystallization: Crystals of RCN and RNC were grown by slow evaporation of solutions in dichloromethane–pentane, followed by decantation, washing with pentane, and then drying at room temperature and reduced pressure (10 Pa, 4 h). RCN was obtained as colorless blocks, and RNC was obtained as colorless needles.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. A direct-methods solution was calculated, followed by full-matrix least squares/difference-

Figure 7 The synthesis of RCN and RNC.

research communications

 Table 2

 Experimental details.

	RCN	RNC
Crystal data		
Chemical formula	$C_9H_5Br_2NO_2$	$C_0H_5Br_2NO_2$
$M_{\rm r}$	318.96	318.96
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/n$
Temperature (K)	173	173
a, b, c (Å)	3.9273 (18), 17.881 (8), 14.739 (7)	3.9233 (9), 13.554 (3), 18.672 (4)
β (°)	93.757 (7)	90.002 (3)
$V(Å^3)$	1032.9 (8)	992.9 (4)
Ζ	4	4
Radiation type	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	7.82	8.13
Crystal size (mm)	$0.32 \times 0.27 \times 0.25$	$0.50 \times 0.12 \times 0.03$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 1996)	Multi-scan (SADABS; Sheldrick, 1996)
T_{\min}, T_{\max}	0.414, 0.746	0.418, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11889, 2426, 2013	11400, 2277, 2132
R _{int}	0.043	0.053
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.657	0.650
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.026, 0.059, 1.07	0.029, 0.069, 1.02
No. of reflections	2426	2277
No. of parameters	128	129
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.37, -0.52	0.85, -0.65

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXT2014 (Sheldrick 2015a), SHELXL2014 (Sheldrick, 2015b), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Fourier cycles. All H atoms were placed in calculated positions and refined as riding atoms. For aryl H atoms, C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. For methyl H atoms, C-H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. RNC was refined as a two-component pseudo-merohedral twin in an 0.67:0.33 ratio, with a 180° rotation of [001] as the twinning symmetry element.

Acknowledgements

The authors thank Victor G. Young, Jr. (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystallographic determination, and the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this project. This work was taken in large part from the PhD thesis of KJT (Tritch, 2017).

References

- Bond, A. D., Davies, J. E., Griffiths, J. & Rawson, J. M. (2001). Acta Cryst. E57, 0231-0233.
- Britton, D. (2005). Acta Cryst. E61, o1726-o1727.
- Britton, D., Noland, W. E. & Tritch, K. J. (2016). *Acta Cryst.* E**72**, 178–183.
- Bruker (2012). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.

Desiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757–6764.

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Lentz, D. & Preugschat, D. (1993). Acta Cryst. C49, 52-54.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Noland, W. E., Britton, D., Sutton, G. K., Schneerer, A. K. & Tritch, K. J. (2018). Acta Cryst. E74, 98–102.
- Noland, W. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017a). Acta Cryst. E73, 1743–1746.
- Noland, W. E., Shudy, J. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017b). Acta Cryst. E73, 1913–1916.
- Noland, W. E. & Tritch, K. J. (2018). IUCrData, 3, x171819.
- Pink, M., Britton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. C56, 1271–1273.
- Reinhold, A. R. & Rosati, R. L. (1994). *Tetrahedron Asymmetry*, 5, 1187–1190.
- Saeed, A., Rafique, H., Simpson, J. & Ashraf, Z. (2010). Acta Cryst. E66, 0982–0983.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tritch, K. J. (2017). PhD thesis. University of Minnesota, Minneapolis, MN, USA.
- Ugi, I., Fetzer, U., Eholzer, U., Knupfer, H. & Offermann, K. (1965). Angew. Chem. Int. Ed. Engl. 4, 472–484.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2018). E74, 345-348 [https://doi.org/10.1107/S2056989018002256]

Crystal structures of methyl 3,5-dibromo-4-cyanobenzoate and methyl 3,5-dibromo-4-isocyanobenzoate

Wayland E. Noland, Ryan J. Herzig, Abigail J. Engwall, Renee C. Jensen and Kenneth J. Tritch

Computing details

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Methyl 3,5-dibromo-4-cyanobenzoate (RCN)

Crystal data $C_9H_5Br_2NO_2$ $D_{\rm x} = 2.051 {\rm Mg m^{-3}}$ $M_r = 318.96$ Melting point: 410 K Monoclinic, $P2_1/c$ a = 3.9273 (18) Åb = 17.881 (8) Å $\theta = 2.7 - 27.6^{\circ}$ *c* = 14.739 (7) Å $\mu = 7.82 \text{ mm}^{-1}$ $\beta = 93.757 (7)^{\circ}$ T = 173 KV = 1032.9 (8) Å³ Block, colourless Z = 4F(000) = 608Data collection Bruker APEXII CCD diffractometer Radiation source: sealed tube $R_{\rm int} = 0.043$ φ and ω scans $h = -5 \rightarrow 5$ Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $k = -23 \rightarrow 23$ $T_{\rm min} = 0.414, \ T_{\rm max} = 0.746$ $l = -19 \rightarrow 19$ 11889 measured reflections Refinement Refinement on F^2 Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.059$ S = 1.072426 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\text{max}} = 0.37 \text{ e} \text{ Å}^{-3}$ 128 parameters 0 restraints $\Delta \rho_{\rm min} = -0.52 \ {\rm e} \ {\rm \AA}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 2977 reflections $0.32 \times 0.27 \times 0.25 \text{ mm}$

2426 independent reflections 2013 reflections with $I > 2\sigma(I)$ $\theta_{\rm max} = 27.8^\circ, \, \theta_{\rm min} = 1.8^\circ$

Hydrogen site location: inferred from H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0274P)^2 + 0.0295P]$ where $P = (F_0^2 + 2F_c^2)/3$

Special details

Experimental. Dr. K.J. Tritch / Prof. W.E. Noland

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates an	d isotropic or	equivalent	isotropic	displacemen	t parameters	$(Å^2)$	
----------------------------------	----------------	------------	-----------	-------------	--------------	---------	--

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.6370 (6)	0.65590 (14)	0.86321 (17)	0.0196 (5)	
C2	0.7731 (6)	0.67398 (14)	0.95078 (16)	0.0199 (5)	
Br2	0.74408 (8)	0.60384 (2)	1.04534 (2)	0.02954 (9)	
C3	0.9245 (6)	0.74304 (14)	0.96807 (17)	0.0204 (5)	
H3A	1.0169	0.7548	1.0275	0.024*	
C4	0.9412 (6)	0.79516 (14)	0.89815 (17)	0.0197 (5)	
C5	0.8100 (6)	0.77825 (14)	0.81049 (16)	0.0193 (5)	
H5A	0.8216	0.8138	0.7629	0.023*	
C6	0.6624 (6)	0.70889 (15)	0.79351 (16)	0.0193 (5)	
Br6	0.49149 (7)	0.68383 (2)	0.67451 (2)	0.02395 (9)	
C7	0.4695 (7)	0.58481 (16)	0.84529 (18)	0.0251 (6)	
N1	0.3333 (6)	0.52966 (14)	0.82991 (16)	0.0359 (6)	
C8	1.1066 (6)	0.86917 (14)	0.92064 (17)	0.0203 (5)	
01	1.2632 (5)	0.88220 (11)	0.99159 (14)	0.0357 (5)	
O2	1.0590 (5)	0.91760 (10)	0.85308 (13)	0.0292 (5)	
C9	1.2078 (8)	0.99150 (15)	0.8667 (2)	0.0326 (7)	
H9A	1.1628	1.0215	0.8115	0.049*	
H9B	1.4548	0.9868	0.8798	0.049*	
H9C	1.1063	1.0161	0.9179	0.049*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0183 (13)	0.0179 (13)	0.0226 (13)	0.0008 (11)	0.0018 (10)	-0.0010 (11)
C2	0.0187 (13)	0.0237 (14)	0.0174 (12)	0.0018 (11)	0.0022 (10)	0.0039 (10)
Br2	0.03760 (18)	0.02881 (17)	0.02189 (15)	-0.00681 (12)	-0.00044 (12)	0.00724 (11)
C3	0.0225 (13)	0.0220 (14)	0.0164 (12)	0.0024 (11)	-0.0001 (10)	-0.0013 (10)
C4	0.0174 (13)	0.0198 (13)	0.0219 (13)	0.0036 (10)	0.0021 (10)	-0.0002 (10)
C5	0.0213 (14)	0.0189 (14)	0.0177 (13)	0.0009 (10)	0.0011 (10)	0.0011 (10)
C6	0.0164 (13)	0.0256 (14)	0.0158 (12)	0.0028 (10)	0.0002 (10)	-0.0029 (10)
Br6	0.02657 (15)	0.02717 (16)	0.01735 (14)	-0.00102 (11)	-0.00436 (10)	-0.00197 (10)
C7	0.0273 (15)	0.0289 (16)	0.0189 (13)	-0.0006 (12)	0.0009 (11)	0.0023 (11)
N1	0.0486 (17)	0.0303 (15)	0.0282 (13)	-0.0132 (12)	-0.0021 (11)	0.0024 (11)
C8	0.0214 (13)	0.0207 (14)	0.0187 (13)	0.0020 (11)	0.0014 (10)	0.0007 (10)
01	0.0487 (13)	0.0283 (11)	0.0283 (11)	-0.0060 (10)	-0.0112 (10)	0.0008 (9)
O2	0.0403 (12)	0.0195 (10)	0.0270 (10)	-0.0074 (9)	-0.0036 (9)	0.0025 (8)
C9	0.0387 (17)	0.0196 (15)	0.0388 (17)	-0.0077 (12)	-0.0018 (13)	0.0053 (12)

Geometric parameters (Å, °)

C1—C2	1.402 (4)	С5—Н5А	0.9500
C1—C6	1.406 (4)	C6—Br6	1.890 (2)
C1—C7	1.448 (4)	C7—N1	1.138 (3)
C2—C3	1.387 (3)	C8—O1	1.201 (3)
C2—Br2	1.884 (3)	C8—O2	1.324 (3)
C3—C4	1.394 (3)	O2—C9	1.454 (3)
С3—НЗА	0.9500	С9—Н9А	0.9800
C4—C5	1.393 (3)	С9—Н9В	0.9800
C4—C8	1.502 (4)	С9—Н9С	0.9800
C5—C6	1.385 (4)		
C2—C1—C6	118.4 (2)	C5—C6—C1	121.4 (2)
C2—C1—C7	120.8 (2)	C5—C6—Br6	119.93 (19)
C6—C1—C7	120.8 (2)	C1—C6—Br6	118.71 (19)
C3—C2—C1	120.5 (2)	N1—C7—C1	178.6 (3)
C3—C2—Br2	120.19 (19)	O1—C8—O2	124.6 (2)
C1—C2—Br2	119.32 (19)	O1—C8—C4	123.6 (2)
C2—C3—C4	120.0 (2)	O2—C8—C4	111.9 (2)
С2—С3—Н3А	120.0	C8—O2—C9	117.1 (2)
С4—С3—Н3А	120.0	O2—C9—H9A	109.5
C5—C4—C3	120.5 (2)	O2—C9—H9B	109.5
C5—C4—C8	121.6 (2)	H9A—C9—H9B	109.5
C3—C4—C8	117.8 (2)	O2—C9—H9C	109.5
C6—C5—C4	119.2 (2)	Н9А—С9—Н9С	109.5
С6—С5—Н5А	120.4	H9B—C9—H9C	109.5
C4—C5—H5A	120.4		
C6—C1—C2—C3	0.9 (4)	C4—C5—C6—Br6	-178.62 (18)
C7—C1—C2—C3	-178.1 (2)	C2-C1-C6-C5	-1.6 (4)
C6-C1-C2-Br2	-179.76 (18)	C7—C1—C6—C5	177.4 (2)
C7—C1—C2—Br2	1.2 (3)	C2-C1-C6-Br6	178.18 (18)
C1—C2—C3—C4	0.2 (4)	C7—C1—C6—Br6	-2.8 (3)
Br2—C2—C3—C4	-179.11 (18)	C5—C4—C8—O1	-169.5 (3)
C2—C3—C4—C5	-0.7 (4)	C3—C4—C8—O1	10.1 (4)
C2—C3—C4—C8	179.8 (2)	C5—C4—C8—O2	10.4 (3)
C3—C4—C5—C6	0.0 (4)	C3—C4—C8—O2	-170.0 (2)
C8—C4—C5—C6	179.5 (2)	O1—C8—O2—C9	0.0 (4)
C4—C5—C6—C1	1.2 (4)	C4—C8—O2—C9	-179.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C3—H3A····Br6 ⁱ	0.95	2.97	3.878 (3)	160

Symmetry code: (i) x+1, -y+3/2, z+1/2.

Methyl 3,5-dibromo-4-isocyanobenzoate (RNC)

Crystal data

C₉H₅Br₂NO₂ $M_r = 318.96$ Monoclinic, $P2_1/n$ *a* = 3.9233 (9) Å b = 13.554(3) Å c = 18.672 (4) Å $\beta = 90.002 (3)^{\circ}$ V = 992.9 (4) Å³ Z = 4F(000) = 608

Data collection

Bruker APEXII CCD diffractometer	2277 independent reflections 2132 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{\rm int} = 0.053$
φ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.1^{\circ}$
Absorption correction: multi-scan	$h = -5 \rightarrow 5$
(SADABS; Sheldrick, 1996)	$k = -17 \rightarrow 17$
$T_{\min} = 0.418, T_{\max} = 0.746$	$l = -24 \rightarrow 24$
11400 measured reflections	
Refinement	

Refinement on F^2

Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.029$ H-atom parameters constrained $wR(F^2) = 0.069$ $w = 1/[\sigma^2(F_o^2) + (0.0385P)^2]$ S = 1.02where $P = (F_0^2 + 2F_c^2)/3$ 2277 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.85 \text{ e } \text{\AA}^{-3}$ 129 parameters $\Delta \rho_{\rm min} = -0.65 \text{ e} \text{ Å}^{-3}$ 0 restraints

Special details

Experimental. Dr. K.J. Tritch / Prof. W.E. Noland

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $D_{\rm x} = 2.134 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.2 - 27.4^{\circ}$

 $\mu = 8.13 \text{ mm}^{-1}$ T = 173 K

Needle, colourless

 $0.50 \times 0.12 \times 0.03 \text{ mm}$

Melting point: 391 K

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 2953 reflections

Refinement. Refined as a 2-component pseudo-merohedral twin in an 0.67:0.33 ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.5312 (10)	0.5930 (3)	0.6880 (2)	0.0187 (7)	
C12	0.6653 (9)	0.5605 (2)	0.6228 (2)	0.0193 (7)	
Br12	0.85319 (11)	0.43306 (2)	0.61597 (2)	0.02497 (11)	
C13	0.6606 (10)	0.6211 (2)	0.5634 (2)	0.0216 (8)	
H13A	0.7504	0.5983	0.5192	0.026*	
C14	0.5246 (10)	0.7153 (2)	0.56835 (19)	0.0188 (8)	
C15	0.3900 (9)	0.7501 (2)	0.63284 (19)	0.0185 (8)	
H15A	0.2971	0.8147	0.6360	0.022*	

supporting information

C16	0.3944 (9)	0.6887 (3)	0.69219 (18)	0.0181 (7)	
Br16	0.21859 (11)	0.73312 (2)	0.78028 (2)	0.02528 (11)	
N11	0.5307 (9)	0.5321 (2)	0.74742 (17)	0.0240 (7)	
C17	0.5282 (15)	0.4800 (3)	0.7968 (2)	0.0402 (11)	
C18	0.5255 (11)	0.7760 (2)	0.5011 (2)	0.0210 (8)	
011	0.6712 (9)	0.75012 (19)	0.44732 (15)	0.0321 (7)	
012	0.3467 (8)	0.85902 (17)	0.50681 (14)	0.0270 (6)	
C19	0.3135 (13)	0.9150 (3)	0.4408 (2)	0.0306 (9)	
H19A	0.1794	0.9747	0.4498	0.046*	
H19B	0.1984	0.8745	0.4046	0.046*	
H19C	0.5404	0.9335	0.4234	0.046*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0214 (19)	0.0192 (16)	0.0153 (18)	-0.0050 (15)	-0.0002 (15)	-0.0001 (14)
C12	0.0169 (19)	0.0166 (15)	0.0246 (19)	-0.0021 (13)	-0.0002 (18)	-0.0022 (13)
Br12	0.0280 (2)	0.01584 (15)	0.0310(2)	0.00238 (13)	0.0011 (2)	-0.00255 (14)
C13	0.021 (2)	0.0209 (16)	0.0231 (19)	-0.0018 (15)	0.0031 (16)	-0.0034 (14)
C14	0.023 (2)	0.0176 (16)	0.0160 (18)	-0.0025 (14)	0.0008 (15)	-0.0007 (14)
C15	0.020 (2)	0.0185 (15)	0.0175 (19)	-0.0019 (13)	-0.0019 (15)	-0.0022 (13)
C16	0.0196 (19)	0.0210 (16)	0.0138 (16)	-0.0049 (14)	0.0001 (14)	-0.0060 (13)
Br16	0.0296 (2)	0.02670 (18)	0.01950 (19)	-0.00182 (15)	0.00484 (19)	-0.00694 (13)
N11	0.0310 (19)	0.0198 (15)	0.0213 (17)	-0.0029 (13)	0.0011 (14)	-0.0014 (13)
C17	0.065 (3)	0.028 (2)	0.027 (2)	-0.008(2)	-0.003(2)	-0.0025 (19)
C18	0.027 (2)	0.0172 (17)	0.0187 (19)	-0.0031 (14)	-0.0015 (16)	-0.0021 (14)
O11	0.048 (2)	0.0235 (12)	0.0245 (15)	0.0022 (14)	0.0087 (16)	0.0019 (10)
O12	0.0391 (17)	0.0219 (12)	0.0201 (13)	0.0055 (12)	0.0001 (13)	0.0016 (10)
C19	0.039 (3)	0.0269 (18)	0.026 (2)	0.0042 (19)	-0.003 (2)	0.0071 (15)

Geometric parameters (Å, °)

C11—N11	1.383 (5)	C15—H15A	0.9500	
C11—C12	1.396 (5)	C16—Br16	1.882 (3)	
C11—C16	1.407 (5)	N11—C17	1.162 (5)	
C12—C13	1.379 (5)	C18—O11	1.207 (5)	
C12—Br12	1.883 (3)	C18—O12	1.331 (4)	
C13—C14	1.387 (5)	O12—C19	1.454 (4)	
С13—Н13А	0.9500	C19—H19A	0.9800	
C14—C15	1.397 (5)	C19—H19B	0.9800	
C14—C18	1.501 (5)	C19—H19C	0.9800	
C15—C16	1.386 (5)			
N11—C11—C12	120.8 (3)	C15—C16—C11	120.9 (3)	
N11—C11—C16	120.3 (3)	C15—C16—Br16	120.2 (3)	
C12-C11-C16	118.9 (3)	C11—C16—Br16	118.9 (3)	
C13—C12—C11	120.5 (3)	C17—N11—C11	179.1 (4)	
C13-C12-Br12	119.8 (3)	O11—C18—O12	124.2 (4)	

C11—C12—Br12	119.7 (3)	O11—C18—C14	122.6 (3)
C12—C13—C14	120.0 (3)	O12—C18—C14	113.2 (3)
C12—C13—H13A	120.0	C18—O12—C19	114.8 (3)
C14—C13—H13A	120.0	O12—C19—H19A	109.5
C13—C14—C15	120.9 (3)	O12—C19—H19B	109.5
C13—C14—C18	116.6 (3)	H19A—C19—H19B	109.5
C15—C14—C18	122.5 (3)	O12—C19—H19C	109.5
C16—C15—C14	118.8 (3)	H19A—C19—H19C	109.5
C16—C15—H15A	120.6	H19B—C19—H19C	109.5
C14—C15—H15A	120.6		
N11—C11—C12—C13	179.1 (3)	C14-C15-C16-Br16	179.5 (3)
C16-C11-C12-C13	-0.6 (6)	N11-C11-C16-C15	-179.3 (4)
N11-C11-C12-Br12	-0.8 (5)	C12—C11—C16—C15	0.4 (5)
C16-C11-C12-Br12	179.5 (3)	N11-C11-C16-Br16	1.1 (5)
C11—C12—C13—C14	0.6 (6)	C12-C11-C16-Br16	-179.2 (3)
Br12-C12-C13-C14	-179.5 (3)	C13-C14-C18-O11	-8.6 (6)
C12—C13—C14—C15	-0.3 (6)	C15-C14-C18-O11	172.4 (4)
C12—C13—C14—C18	-179.3 (4)	C13—C14—C18—O12	170.5 (3)
C13—C14—C15—C16	0.0 (6)	C15-C14-C18-O12	-8.5 (6)
C18—C14—C15—C16	179.0 (3)	O11—C18—O12—C19	4.8 (6)
C14—C15—C16—C11	-0.1 (6)	C14—C18—O12—C19	-174.2 (4)