

Received 18 January 2018 Accepted 1 February 2018

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; H-atom transfer; tautomerism; hydrogen bonding; radical; dye; heterocycle.

CCDC references: 1821241; 1821240; 1821239

Supporting information: this article has supporting information at journals.iucr.org/e

Syntheses, spectroscopy, and crystal structures of 3-(4-bromophenyl)-1,5-diphenylformazan and the 3-(4-bromophenyl)-1,5-diphenylverdazyl radical and the crystal structure of the by-product 5-anilino-3-(4-bromophenyl)-1-phenyl-1*H*-1,2,4-triazole

Gregor Schnakenburg^a and Andreas Meyer^{b*}

^aUniversity of Bonn, Institute of Inorganic Chemistry, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany, and ^bUniversity of Bonn, Institute of Physical and Theoretical Chemistry, Wegelerstrasse 12, 53115 Bonn, Germany. *Correspondence e-mail: meyer@pc.uni-bonn.de

The title compounds, $C_{19}H_{15}BrN_4$, $C_{20}H_{16}BrN_4$ and $C_{20}H_{15}BrN_4$, are nitrogenrich organic compounds that are related by their synthesis. The verdazyl radical, in which stacking leads to antiferromagnetic interactions, was reported previously [Iwase *et al.* (2013). *Phys. Rev. B*, **88**, 184431]. For this compound, improved structural data and spectroscopic data are presented. The other two compounds have been crystallized for the first time and form stacks of dimers, roughly along the *a*-axis direction of the crystal. The formazan molecule shows signs of rapid intramolecular H-atom exchange typical for this class of compounds and spectroscopic data are provided in addition to the crystal structure. The triazole compound appears to be a side-product of the verdazyl synthesis.

1. Chemical context

Verdazyl radicals are a family of organic radicals first reported by Kuhn & Trischmann (1963) who emphasized their intense green color and their stability. These Kuhn-verdazyls require formazan precursors, which are intensely red in color and interesting in their own respect (Nineham, 1955; Scudiero et al. 1988). A few years after Kuhn's discovery, syntheses leading to the orange 6-oxo- and 6-thioxoverdazyls were developed (Neugebauer & Fischer, 1980; Neugebauer et al., 1988). As of late, verdazyls experience renewed interest, partially as a result of the improvements concerning their syntheses, enabling the introduction of a large variety of substitution patterns (Paré et al., 2005; Bancerz et al., 2012; Matuschek et al., 2015; Le et al., 2017). Such tailor-made radicals have possible applications as fundamental building blocks in molecular magnets or in spintronic materials (Koivisto & Hicks, 2005; Train et al., 2009; Ratera & Veciana, 2012). Verdazyls often avoid stacking, preventing the occurrence of strong magnetic interactions. However, some exceptions to this rule have been reported, where strong antiferromagnetic coupling occurs as a consequence (Koivisto et al., 2006; Eusterwiemann et al., 2017). With respect to applications in spintronics, tetrathiafulvalene-substituted verdazyl compounds represent interesting examples (Chahma et al., 2006; Venneri et al., 2015). Herein, the preparation and crystal structures of three molecules involved in verdazyl synthesis are reported. 3-(4-Bromophenyl)-1,5-diphenylformazan, $C_{19}H_{15}N_4Br$ (1), was used as the educt to obtain the 3-(4-bromophenyl)-1,5diphenylverdazyl radical $C_{20}H_{16}N_4Br$ (2). Additionally, 5-anilino-3-(4-bromophenyl)-1-phenyl-1*H*-1,2,4-triazole, $C_{20}H_{15}N_4Br$ (3), could be crystallized, representing a possible side-product in verdazyl synthesis. The identification of such by-products might aid future efforts to further elucidate the so-far poorly understood mechanism of verdazyl formation. The crystal structures of all three molecules could be obtained and are discussed in detail for 1 and 3. The structure of 2 has already been discussed by Iwase *et al.* (2013) and a dataset with improved residuals is provided herein. In addition to the crystal structures, spectroscopic data for 1 and 2 are presented.

 Table 1

 Hydrogen-bond geometry (Å, °) for 1.

, , ,	, ,			
$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H2···N4	0.80 (10)	1.93 (10)	2.566 (5)	137 (9)
$N4-H4\cdots N1$	0.81 (12)	2.40 (11)	2.803 (5)	112 (9)
$N4-H4\cdots N2$	0.81 (12)	1.86 (12)	2.566 (5)	145 (10)
$C19-H19\cdots Br1^{i}$	0.95	3.05	3.921 (4)	153
$C9-H9\cdots Br1^{i}$	0.95	3.14	4.014 (5)	153

Symmetry code: (i) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$.

2. Structural commentary

The molecular structures of **1** and **3** are shown in Fig. 1*a* and *b*, respectively. Compound 2 has a structure typical for verdazyls, for details see Iwase et al. (2013). For 1, interesting structural features are the bond lengths in the central NNCNN atomic chain. Taking into account the 3σ criterion, the bond lengths N1-N2 and N3-N4 are identical [1.309 (5) and 1.300 (5) Å, respectively] and the same is true for N1-C7 and N3-C7 [1.350 (5) and 1.364 (5) Å, respectively]. These bond lengths lie between values typical for single and double bonds. The pairwisely identical bond lengths are in agreement with rapid intramolecular H-atom exchange (Nineham, 1955; Otting & Neugebauer, 1969; Buemi et al., 1998). Correspondingly, the H atom was considered to be split between the two possible positions at N2 and N4. In both positions, an intramolecular hydrogen bond is formed with $H \cdots A$ distances amounting to 1.93 (10) Å for N2-H2···N4 and 1.86 (12) Å for N4-H4···N2 (Table 1). Finally, it is noted that the molecule is essentially planar with angles between the normal vectors of the NNCNN mean plane A and the three rings B, C, and Damounting to 9.71 (16) (A/B), 5.28 (3) (A/C), and 12.18 $(13)^{\circ}$ (A/D).

Compound **3** was isolated in later fractions of the column that was used to purify **2**. Such triazole compounds have been identified as products of thermal verdazyl decomposition at 473 K or after four days of refluxing at 353 K in benzene (Neugebauer *et al.*, 1972). Here, the formation of **3** was observed under much less harsh conditions. The bond lengths within ring A suggest bond orders between single and double bonds, in accordance with the aromatic character of 1,2,4-

research communications

Table 2 Hydrogen-bond g	eometry (Å, °)	for 3 .		
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	Ι

$D = \Pi \cdots A$	$D-\Pi$	$\Pi \cdots A$	$D \cdots A$	$D - \Pi \cdots A$
$C14 - H14 \cdots Br1^{i}$	0.95	2.99	3,814 (4)	146 (1)
$C10-H10\cdots C20^{ii}$	0.95	2.75	3.575 (5)	146(1)
$C17-H17\cdots C19^{iii}$	0.95	2.84	3.694 (6)	150 (1)

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) $x - \frac{1}{2}, y, -z + \frac{3}{2}$.

triazoles. Closer inspection reveals that three of the five bonds are considerably longer than the other two [N1-N2 =1.375 (4), N2-C2 = 1.358 (5), and N3-C1: 1.370 (5) Å compared to N1-C1 = 1.321 (5) and N3-C2 = 1.326 (5) Å], indicating that the resonance structure given in Fig. 5 is the most important one. The amino-nitrogen N4 is connected to ring A by a bond of similar character to the bonds within the ring [N4-C2 = 1.371 (5) Å] whereas its bond to phenyl ring D has essentially single-bond character [N4-C15 = 1.426 (6) Å]. The bonds connecting ring A with rings B and C also have mostly single-bond character [C1-C3 = 1.479 (5) and N2-C9= 1.441 (5) Å). The mean planes of rings B, C, and D are tilted with respect to the mean plane of A and are arranged in a

Figure 2

(a) Unit cell of **1** viewed parallel to the (100) plane. (b) Stacks of dimers formed along the *a*-axis direction. Two nitrogen atoms of two molecules are labelled.

(a) Unit cell of **3** viewed parallel to the (100) plane. (b) Stacks of dimers formed along the a-axis direction. The nitrogen atoms of one molecule are labelled.

propeller-like manner [angles between normal vectors: A/B = 14.47 (14), A/C = 40.42 (14), and A/D = 20.67 (16)°].

3. Supramolecular features

Compound 1 crystallizes with orthorhombic symmetry in space group *Pbca*, in which head-to-tail dimers between two molecules are stacked along the *a*-axis direction (Fig. 2). Within a dimer, the shortest contacts are 3.213 (5) and 3.372 (6) Å for N4···C7 and C19···C5, respectively. The short C5···C7 contact [3.277 (6) Å] connects pairs of dimers. The Br atom is not involved in halogen bonding, which is a structural motive attracting increasing attention (Metrangolo *et al.*, 2008; Gilday *et al.*, 2015). Relatively short contacts between H19 as well as H9 and the Br1 atom of another molecule connect different stacks (Table 1). However, the observed distances of 3.05 Å (C19–H19···Br1) and 3.14 Å (C9–H9···Br1) are still longer than the sum of the van der Waals radii of H and Br, meaning that these are at best very weak hydrogen bonds.

The packing of **2** leading to antiferromagnetic coupling has already been described (Iwase *et al.*, 2013).

Figure 4

(a) UV–Vis spectra of **1** (black line, $2.3 \mu M$, DCM) and **2** (red line, $11 \mu M$, DCM). (b) EPR spectrum of **2** in degassed deuterated DCM (black line) along with its simulation (red line) obtained using the program *EasySpin* (Stoll & Schweiger, 2006).

Compound **3** has a similar structure to **1** in space group *Pbca* and with pairs of molecules stacked along the *a*-axis direction (Fig. 3). Here, the centroid-to-centroid distances of the *A* rings are 3.564 (3) and 4.661 (3) Å within and between the dimers, respectively. However, the shortest intra-dimer contact is a C-H··· π interaction (Table 2) between rings *C* and *D* (C10-H10···C20, 2.75 Å). A similar contact is found between H17 and C19 (C17-H17···C19, 2.84 Å), forming a contact between different stacks. π -Stacking is observed between rings *A* and *B*, connecting pairs of dimers, with the shortest contacts being 3.229 (6) (C8···C3), 3.318 (6) (C8···C2), and 3.378 (6) Å (C7···C2). As with **1** and **2**, no halogen bonding is observed, but the Br atom is involved in a very weak hydrogen bond (C14-H14···Br1, 2.99 Å; Table 2).

4. Spectroscopy

Fig. 4*a* shows the UV–Vis spectra of **1** and **2**, while Fig. 4*b* represents the EPR spectrum of **2** and its simulation (black and red lines, respectively). The UV–Vis spectra of **1** and **2** are typical for formazans and verdazyls, respectively, with the peaks in the visible range at 490 nm (**1**) as well as at 425 and 720 nm (**2**) being responsible for their intense red (**1**) or green colors (**2**). The EPR spectrum of **2** was simulated by assuming a *g* value of 2.00354 and hyperfine coupling constants (HFCC) of 16.77 and 16.48 MHz for the two pairs of nitrogen nuclei. In addition, the approximate values for the HFCC of the phenyl ring protons could be obtained, amounting to 0.01 (CH₂), 3.04 (H, rings *B* and *D*, *ortho*), 1.14 (H, rings *B* and *D*, *meta*), 3.34

(H, rings *B* and *D*, *para*), 1.14, (H, ring *C*, *ortho*), and 0.52 MHz (H, ring *C*, *meta*). The assignment of the protons is in accordance with that of Kopf *et al.* (1971).

5. Database survey

The Cambridge Structural Database (CSD, Version 5.36; Groom et al., 2016) was queried for other formazans, verdazyls, and 1,2,4-triazoles. The search revealed 21 examples of formazans if the only restriction was to have carbon substituents in the 1,3,5-positions. This number reduced to nine if all of these substituents were required to be phenyl-based, one of these nine examples being a metal complex of a formazan. The remaining eight structures include examples in which the bond lengths in the NNCNN unit alternate, as well as examples in which they are pairwisely equal in a similar manner to that described herein. Interestingly, 3,5-diphenyl-1-(4-bromophenyl)formazan (regioisomer of 1, CCDC code EMEVUO; Tunç & Yıldırım, 2010) shows alternating bond lengths, which reflects the fact that the two nitrogen atoms are chemically inequivalent in this molecule. An example with split hydrogen positions is 1,5-diphenyl-3-(p-nitrophenyl)formazan (GUHCIW; Iqbal et al., 2009), which shows a similar stacking to that observed in **1** and can be formally derived from **1** by replacing the bromine with a nitro group. 33 examples for 1,3,5-aryl-substituted verdazyls were found in the CSD, only 14 of them Kuhn-verdazyls. The largest hitlist was obtained for 1.3.5-substituted 1.2.4-triazoles (1001 entries). This number reduced drastically if purely organic compounds were considered exclusively (42 hits) and even further if the substitutent at C5 was required to be a nitrogen atom (four hits, no further restriction).

6. Synthesis and crystallization

The syntheses were performed following Berry *et al.*, 2009 (Fig. 5). The hydrazone **4** required for the synthesis of **1** was synthesized by refluxing a solution of *p*-bromobenzaldehyde with phenylhydrazine in ethanol and collecting the slightly yellow precipitate that formed after cooling the solution down to room temperature (rt).

To synthesize 1, 450 mg (1.72 mmol) of 4 and 80 mg (0.25 mmol) of tetrabutylammonium bromide were dissolved in 11 mL of dichloromethane (DCM) and combined with 1.4 g

research communications

Table 3

 Experimental details.

	1	2	3
Crystal data			
Chemical formula	$C_{10}H_{15}BrN_4$	$C_{20}H_{16}BrN_4$	$C_{20}H_{15}BrN_4$
M_r	379.26	392.28	391.27
Crystal system, space group	Orthorhombic, Pbca	Orthorhombic, Pbca	Orthorhombic, Pbca
Temperature (K)	100	123	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.7930 (5), 19.0947 (16), 22.1843 (17)	7.0881 (3), 21.2183 (11), 22.2028 (9)	7.7989 (9), 18.971 (3), 22.455 (4)
$V(Å^3)$	3301.1 (4)	3339.2 (3)	3322.4 (8)
Z	8	8	8
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	2.50	2.47	2.48
Crystal size (mm)	$0.33 \times 0.06 \times 0.04$	$0.15 \times 0.12 \times 0.06$	$0.32\times0.16\times0.1$
Data collection			
Diffractometer	Bruker D8 Venture	Stoe IPDS 2T	Bruker X8 Kappa APEXII
Absorption correction	Multi-scan (SADABS; Bruker, 2015)	Integration (<i>X-RED32</i> ; Stoe & Cie, 2009)	Multi-scan (SADABS; Bruker, 2015)
T_{\min}, T_{\max}	0.550, 0.746	0.254, 0.620	0.583, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	60778, 3975, 2652	70879, 3640, 3397	19450, 3999, 2708
R _{int}	0.147	0.128	0.098
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.661	0.639	0.660
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.153, 1.03	0.029, 0.076, 1.10	0.056, 0.126, 1.05
No. of reflections	3975	3640	3999
No. of parameters	224	226	229
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.76, -1.08	0.72, -0.65	1.46, -0.84

Computer programs: APEX2 and SAINT (Bruker, 2015), X-AREA (Stoe & Cie, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

of sodium carbonate in 11 mL of water to form a biphasic system, which was stirred at 273 K for 30 min. During this time, 1.8 mL (186 mg, 2 mmol) of aniline were dissolved in 4.5 mL of dilute hydrochloric acid (ca 12%) and stirred at 273 K. To this solution, 55 mg (3.3 mmol) of sodium nitrite in 3 mL of water were added dropwise over the course of ten minutes, leading to the occurrence of a slight yellow color. This yellow solution was added carefully to the biphasic solution of 4 and an intense red color evolved within minutes. After one h, 20 mL of water were added and the temperature was allowed to increase to rt. After stirring for another 30 minutes at rt, the phases were separated. The organic phase was washed with water and dried over Na2SO4 before removing the solvent under reduced pressure. The raw product was subjected to column chromatography using aluminum oxide (AlOx, water content 5%) as stationary phase and DCM/cyclohexane (1:4). The red fractions were collected, yielding 1 as red solid in 66% yield (307 mg). Crystals of 1 were obtained by dissolving the solid in a mixture of DCM and hexane which was left to evaporate.

To obtain 2, 119 mg (0.31 mmol) of 1 were dissolved in 10 mL of dimethylformamide and mixed with 0.7 mL 2 M aqueous sodium hydroxide solution and 0.65 mL of 37% formaldehyde solution. The mixture was stirred at rt in an open vessel with contact to air, leading to a change of color from red to green over the course of an hour. 20 mL of water and diethyl ether were then added to the solution and the

phases were separated from each other. After drying the organic phase over Na_2SO_4 , the raw product was subjected to column chromatography using AlOx (water content 5%) and diethylether/cyclohexane (1:5) as eluent. The green fractions were collected and the solvent was removed under reduced pressure (yield: 37 mg, 30%). Crystals of **2** were obtained by dissolving the product in a mixture of DCM and hexane and leaving the green solution to evaporate.

Compound **3** was obtained by collecting the slightly yellow fractions that eluted from the column after **2** and removing the solvent. Dissolving the resulting brownish solid in a mixture of DCM and hexane and leaving the solution to evaporate afforded crystals suitable for X-ray crystallography.

Additional analytical data for 1 and 2. 1: ¹H NMR (400 MHz, DCM- d_2): δ 15.45 (*s*, 1H); 8.08 (*dt*, *J* = 8.8 MHz, 2.2 MHz, 2H); 7.75 (*dm*, *J* = 8.4 MHz, 4H); 7.61 (*dt*, *J* = 8.8 MHz, 2.2 MHz, 2H); 7.52 (*ddt*, *J* = 8.4 MHz, 7.2 MHz, 1.6 MHz, 4H); 7.36 (*tt*, *J* = 7.2 MHz, 1.2 MHz, 2H). ESI–MS (positive, *m*/*z*): calculated 377.04 ([*M* – H]⁺), found 377.04. UV–Vis: see above.

2: ESI–MS (positive, m/z): calculated 391.06 ([M] ⁺), found 391.06. UV–Vis and EPR: see above.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were refined

using a riding model with C-H = 0.95-0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. N-bound H atoms were located in a difference-Fourier map and refined with $U_{iso}(H) = 1.2U_{eq}(N)$.

Acknowledgements

Professor Dr O. Schiemann and Professor Dr. A. C. Filippou are gratefully acknowledged for providing access to the laboratory and spectrometers and for financial support (AM) as well as access to the X-ray diffractometers (GS).

Funding information

Funding for this research was provided by: Rheinische Friedrich-Wilhelms-Universität Bonn (contract to Gregor Schnakenburg; scholarship to Andreas Meyer).

References

- Bancerz, M., Youn, B., DaCosta, M. V. & Georges, M. K. (2012). J. Org. Chem. 77, 2415–2421.
- Berry, D. E., Hicks, R. G. & Gilroy, J. B. (2009). J. Chem. Educ. 86, 76– 79.
- Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Buemi, G., Zuccarello, F., Venuvanalingam, P., Ramalingam, M. & Ammal, S. S. C. (1998). *Faraday Trans.* 94, 3313–3319.
- Chahma, M., Wang, X. S., Est, A. van der & Pilkington, M. (2006). J. Org. Chem. **71**, 2750–2755.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Eusterwiemann, S., Dresselhaus, T., Doerenkamp, C., Janka, O., Niehaus, O., Massolle, A., Daniliuc, C. G., Eckert, H., Pöttgen, R., Neugebauer, J. & Studer, A. (2017). *Chem. Eur. J.* 23, 6069–6082.
- Gilday, L., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). *Chem. Rev.* 115, 7118–7195.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Iqbal, A., Moloney, M. G., Siddiqui, H. L. & Thompson, A. L. (2009). *Tetrahedron Lett.* 50, 4523–4525.

- Iwase, K., Yamaguchi, H., Ono, T., Hosokoshi, Y., Shimokawa, T., Kono, Y., Kittaka, S., Sakakibara, T., Matsuo, A. & Kindo, K. (2013). *Phys. Rev. B*, **88**, 184431.
- Koivisto, B. D. & Hicks, R. G. (2005). Coord. Chem. Rev. 249, 2612– 2630.
- Koivisto, B. D., Ichimura, A. S., McDonald, R., Lemaire, M. T., Thompson, L. K. & Hicks, R. G. (2006). J. Am. Chem. Soc. 128, 690–691.
- Kopf, P., Morokuma, K. & Kreilick, R. (1971). J. Chem. Phys. 54, 105– 110.
- Kuhn, R. & Trischmann, H. (1963). Angew. Chem. Int. Ed. Engl. 2, 155.
- Le, T.-N., Trevisan, T., Lieu, E. & Brook, D. J. R. (2017). Eur. J. Org. Chem. 2017, 1125–1131.
- Matuschek, D., Eusterwiemann, S., Stegemann, L., Doerenkamp, C., Wibbeling, B., Daniliuc, C. G., Doltsinis, N. L., Strassert, C. A., Eckert, H. & Studer, A. (2015). *Chem. Sci.* 6, 4712–4716.
- Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). *Angew. Chem. Int. Ed.* **47**, 6114–6127.
- Neugebauer, F. A. & Fischer, H. (1980). Angew. Chem. Int. Ed. Engl. 19, 724–725.
- Neugebauer, F. A., Fischer, H. & Siegel, R. (1988). Eur. J. Inorg. Chem. 121, 815–822.
- Neugebauer, F. A., Otting, W., Smith, H. O. & Trischmann, H. (1972). *Eur. J. Inorg. Chem.* **105**, 549–553.
- Nineham, A. W. (1955). Chem. Rev. 55, 355-483.
- Otting, W. & Neugebauer, F. A. (1969). Eur. J. Inorg. Chem. 102, 2520–2529.
- Paré, E. C., Brook, D. J. R., Brieger, A., Badik, M. & Schinke, M. (2005). Org. Biomol. Chem. 3, 4258–4261.
- Ratera, I. & Veciana, J. (2012). Chem. Soc. Rev. 41, 303-349.
- Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D. & Boyd, M. R. (1988). *Cancer Res.* 48, 4827–4833.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Stoll, S. & Schweiger, A. (2006). J. Magn. Reson. 178, 42-55.
- Train, C., Norel, L. & Baumgarten, M. (2009). Coord. Chem. Rev. 253, 2342–2351.
- Tunç, T. & Yıldırım, L. T. (2010). *The Open Crystallogr. J.* **3**, 54–58.
- Venneri, S., Wilson, J., Rawson, J. M. & Pilkington, M. (2015). *ChemPlusChem* 80, 1624-1633.

Acta Cryst. (2018). E74, 292-297 [https://doi.org/10.1107/S2056989018001913]

Syntheses, spectroscopy, and crystal structures of 3-(4-bromophenyl)-1,5-diphenylformazan and the 3-(4-bromophenyl)-1,5-diphenylverdazyl radical and the crystal structure of the by-product 5-anilino-3-(4-bromophenyl)-1phenyl-1*H*-1,2,4-triazole

Gregor Schnakenburg and Andreas Meyer

Computing details

Data collection: *APEX2* (Bruker, 2015) for (1), (3); *X-AREA* (Stoe & Cie, 2009) for (2). Cell refinement: *SAINT* (Bruker, 2015) for (1), (3); *X-AREA* (Stoe & Cie, 2009) for (2). Data reduction: *SAINT* (Bruker, 2015) for (1), (3); *X-AREA* (Stoe & Cie, 2009) for (2). Program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008) for (2), (3). For all structures, program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

N'-Anilino-4-bromo-N-(phenylimino)benzene-1-carboximidamide (1)

Crystal data

C₁₉H₁₅BrN₄ $M_r = 379.26$ Orthorhombic, *Pbca* a = 7.7930 (5) Å b = 19.0947 (16) Å c = 22.1843 (17) Å V = 3301.1 (4) Å³ Z = 8F(000) = 1536

Data collection

Bruker D8 Venture diffractometer Radiation source: microfocus sealed X-ray tube, Incoatec I μ s Mirror optics monochromator Detector resolution: 7.9 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.153$ $D_x = 1.526 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9908 reflections $\theta = 3.0-27.7^{\circ}$ $\mu = 2.50 \text{ mm}^{-1}$ T = 100 KNeedle, clear red $0.33 \times 0.06 \times 0.04 \text{ mm}$

 $T_{\min} = 0.550, T_{\max} = 0.746$ 60778 measured reflections 3975 independent reflections 2652 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.147$ $\theta_{\text{max}} = 28.0^{\circ}, \theta_{\text{min}} = 2.3^{\circ}$ $h = -10 \rightarrow 10$ $k = -25 \rightarrow 25$ $l = -28 \rightarrow 29$

S = 1.033975 reflections 224 parameters 0 restraints

Hydrogen site location: mixed	$w = 1/[\sigma^2(F_o^2) + (0.0596P)^2 + 12.5159P]$
H atoms treated by a mixture of independent	where $P = (F_o^2 + 2F_c^2)/3$
and constrained refinement	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta ho_{ m max} = 1.76 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.08 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	-0.16420 (6)	0.55022 (3)	0.27999 (2)	0.03107 (17)	
N1	0.2728 (4)	0.55820 (18)	0.54659 (16)	0.0192 (7)	
N2	0.3581 (4)	0.5531 (2)	0.59722 (16)	0.0203 (8)	
H2	0.400 (12)	0.516 (6)	0.605 (4)	0.024*	0.54 (7)
N3	0.3438 (4)	0.43883 (18)	0.51495 (15)	0.0192 (7)	
N4	0.4238 (4)	0.4268 (2)	0.56531 (16)	0.0193 (8)	
H4	0.431 (14)	0.461 (6)	0.587 (5)	0.023*	0.46 (7)
C1	-0.0210 (5)	0.5366 (2)	0.34853 (19)	0.0240 (10)	
C2	0.0685 (6)	0.4745 (3)	0.3551 (2)	0.0278 (10)	
H2A	0.0650	0.4396	0.3247	0.033*	
C3	0.1633 (5)	0.4645 (2)	0.4072 (2)	0.0246 (9)	
H3	0.2257	0.4221	0.4120	0.029*	
C4	0.1701 (5)	0.5148 (2)	0.45276 (18)	0.0186 (8)	
C5	0.0796 (5)	0.5773 (2)	0.44382 (19)	0.0223 (9)	
Н5	0.0836	0.6127	0.4738	0.027*	
C6	-0.0146 (5)	0.5881 (2)	0.39252 (19)	0.0228 (9)	
H6	-0.0753	0.6308	0.3871	0.027*	
C7	0.2672 (5)	0.5027 (2)	0.50893 (18)	0.0183 (8)	
C8	0.3693 (5)	0.6134 (2)	0.63337 (18)	0.0191 (9)	
C9	0.4789 (5)	0.6102 (2)	0.68286 (19)	0.0247 (9)	
H9	0.5375	0.5679	0.6920	0.030*	
C10	0.5026 (6)	0.6688 (3)	0.7187 (2)	0.0294 (10)	
H10	0.5793	0.6668	0.7520	0.035*	
C11	0.4152 (6)	0.7304 (3)	0.7065 (2)	0.0304 (11)	
H11	0.4326	0.7706	0.7308	0.036*	
C12	0.3018 (6)	0.7325 (2)	0.6580 (2)	0.0298 (11)	
H12	0.2400	0.7744	0.6499	0.036*	
C13	0.2776 (5)	0.6748 (2)	0.62164 (19)	0.0250 (10)	
H13	0.1993	0.6768	0.5889	0.030*	
C14	0.5102 (5)	0.3628 (2)	0.57135 (18)	0.0182 (8)	
C15	0.5307 (5)	0.3138 (2)	0.52541 (19)	0.0221 (9)	
H15	0.4798	0.3215	0.4871	0.027*	
C16	0.6253 (6)	0.2540 (2)	0.5358 (2)	0.0298 (10)	
H16	0.6399	0.2205	0.5045	0.036*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C17	0.6999 (6)	0.2424 (2)	0.5923 (2)	0.0293 (10)
H17	0.7645	0.2011	0.5993	0.035*
C18	0.6798 (6)	0.2907 (2)	0.6376 (2)	0.0280 (10)
H18	0.7328	0.2832	0.6756	0.034*
C19	0.5834 (5)	0.3500 (2)	0.62810 (19)	0.0219 (9)
H19	0.5663	0.3824	0.6600	0.026*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Br1	0.0285 (2)	0.0471 (3)	0.0176 (2)	0.0039 (2)	-0.00492 (18)	0.0059 (2)
N1	0.0146 (15)	0.0221 (19)	0.0208 (18)	-0.0026 (14)	0.0021 (14)	0.0024 (15)
N2	0.0178 (17)	0.025 (2)	0.0176 (18)	-0.0008 (15)	-0.0007 (13)	0.0045 (16)
N3	0.0152 (16)	0.0239 (19)	0.0184 (17)	-0.0030 (14)	0.0024 (13)	0.0039 (14)
N4	0.0148 (16)	0.025 (2)	0.0175 (18)	-0.0009 (14)	-0.0008 (14)	0.0029 (15)
C1	0.0139 (19)	0.039 (3)	0.019 (2)	-0.0017 (18)	0.0004 (16)	0.0078 (19)
C2	0.030 (2)	0.029 (2)	0.025 (2)	0.004 (2)	0.0002 (18)	-0.006 (2)
C3	0.022 (2)	0.026 (2)	0.025 (2)	0.0079 (19)	-0.0024 (18)	0.0022 (18)
C4	0.0147 (17)	0.022 (2)	0.019 (2)	-0.0035 (17)	0.0046 (16)	0.0046 (17)
C5	0.020 (2)	0.025 (2)	0.021 (2)	-0.0013 (17)	0.0008 (17)	0.0008 (18)
C6	0.021 (2)	0.020 (2)	0.027 (2)	0.0000 (17)	0.0031 (18)	0.0077 (18)
C7	0.0126 (17)	0.024 (2)	0.018 (2)	-0.0054 (16)	0.0023 (15)	0.0052 (17)
C8	0.0183 (19)	0.023 (2)	0.016 (2)	-0.0047 (16)	0.0054 (15)	0.0018 (17)
C9	0.022 (2)	0.033 (3)	0.019 (2)	-0.0018 (19)	0.0015 (17)	0.0047 (18)
C10	0.026 (2)	0.039 (3)	0.023 (2)	-0.010 (2)	0.0032 (19)	-0.001 (2)
C11	0.034 (2)	0.028 (3)	0.030 (3)	-0.011 (2)	0.014 (2)	-0.004 (2)
C12	0.031 (2)	0.025 (2)	0.034 (3)	0.0007 (19)	0.017 (2)	0.004 (2)
C13	0.021 (2)	0.035 (3)	0.019 (2)	-0.0011 (19)	0.0046 (17)	0.0080 (19)
C14	0.0113 (17)	0.021 (2)	0.022 (2)	-0.0040 (16)	0.0011 (16)	0.0049 (17)
C15	0.020 (2)	0.027 (2)	0.019 (2)	-0.0057 (17)	0.0001 (17)	-0.0017 (18)
C16	0.031 (2)	0.022 (2)	0.036 (3)	-0.0025 (19)	0.006 (2)	-0.007 (2)
C17	0.029 (2)	0.022 (2)	0.037 (3)	0.0026 (19)	0.006 (2)	0.010 (2)
C18	0.027 (2)	0.034 (3)	0.023 (2)	0.006 (2)	0.0010 (19)	0.011 (2)
C19	0.022 (2)	0.027 (2)	0.017 (2)	0.0022 (18)	0.0035 (16)	-0.0002 (18)

Geometric parameters (Å, °)

Br1—C1	1.904 (4)	C8—C13	1.398 (6)
N1—N2	1.309 (5)	С9—Н9	0.9500
N1—C7	1.350 (5)	C9—C10	1.385 (7)
N2—H2	0.80 (10)	C10—H10	0.9500
N2—C8	1.405 (6)	C10—C11	1.385 (7)
N3—N4	1.300 (5)	C11—H11	0.9500
N3—C7	1.364 (5)	C11—C12	1.392 (7)
N4—H4	0.81 (12)	C12—H12	0.9500
N4-C14	1.401 (5)	C12—C13	1.379 (7)
C1—C2	1.384 (6)	C13—H13	0.9500
C1—C6	1.386 (6)	C14—C15	1.393 (6)

С2—Н2А	0.9500	C14C19	1 404 (6)
C_2 C_3	1 384 (6)	C15H15	0.9500
$C_2 = C_3$	0.0500	C15 C16	1 370 (6)
$C_2 = C_4$	1 205 (6)	C_{15} C_{16} U_{16}	1.379(0)
$C_3 = C_4$	1.393 (0)		0.9300
C4—C3	1.400 (6)		1.398 (7)
C4 - C/	1.4/6 (6)		0.9500
C5—H5	0.9500		1.3/3(/)
C5—C6	1.370 (6)	C18—H18	0.9500
С6—Н6	0.9500	C18—C19	1.375 (6)
C8—C9	1.392 (6)	С19—Н19	0.9500
N2—N1—C7	119.3 (4)	C10—C9—C8	120.0 (4)
N1—N2—H2	117 (7)	С10—С9—Н9	120.0
N1—N2—C8	117 5 (4)	C9-C10-H10	119.8
C8—N2—H2	126 (7)	$C_{11} - C_{10} - C_{9}$	120.5(4)
N4_N3_C7	120(7) 1169(4)	C_{11} C_{10} H_{10}	110.8
N3 NA HA	113 (8)	C_{10} C_{11} H_{11}	120.4
$N_{2} = N_{4} = C_{14}$	113(6) 1178(4)	C_{10} C_{11} C_{12}	120.4
N_{3} N_{4} V_{14}	117.8 (4)	C10-C11-C12	119.5 (4)
C14 $N4$ $H4$	128 (8)		120.4
$C_2 = C_1 = Br_1$	119.8 (3)	CI1—CI2—HI2	119.5
$C_2 = C_1 = C_6$	121.0 (4)		121.0 (4)
C6—C1—Brl	119.1 (3)	C13—C12—H12	119.5
C1—C2—H2A	120.8	C8—C13—H13	120.3
C1—C2—C3	118.4 (4)	C12—C13—C8	119.5 (4)
C3—C2—H2A	120.8	C12—C13—H13	120.3
С2—С3—Н3	119.0	N4—C14—C19	115.6 (4)
C2—C3—C4	122.0 (4)	C15—C14—N4	124.8 (4)
С4—С3—Н3	119.0	C15—C14—C19	119.6 (4)
C3—C4—C5	117.7 (4)	C14—C15—H15	120.2
C3—C4—C7	121.6 (4)	C16—C15—C14	119.7 (4)
C5—C4—C7	120.7 (4)	C16—C15—H15	120.2
C4—C5—H5	119.5	C15—C16—H16	119.9
C6—C5—C4	121.1 (4)	C15—C16—C17	120.2 (4)
С6—С5—Н5	119.5	C17—C16—H16	119.9
С1—С6—Н6	120.1	С16—С17—Н17	119.9
C5—C6—C1	119.8 (4)	C18—C17—C16	120.2 (4)
C5-C6-H6	120.1	C18 - C17 - H17	119.9
N1-C7-N3	128.8 (4)	C17 - C18 - H18	119.9
N1 - C7 - C4	1126.6(4)	C17 - C18 - C19	119.9 120.2(4)
$N_3 C_7 C_4$	116.5 (4)	C_{10} C_{18} H_{18}	110.0
$N_3 = C_1 = C_4$	110.3(4)	$C_{14} = C_{10} = H_{10}$	119.9
$C_9 = C_0 = N_2$	110.9(4)	C18 - C19 - C14	119.9
$C_{2} = C_{3} = C_{13}$	119.7 (4)	C18 - C19 - C14	120.1 (4)
C13 - C8 - N2	123.3 (4)	C18—C19—H19	119.9
С8—С9—Н9	120.0		
Br1—C1—C2—C3	-176.2 (3)	C3—C4—C7—N3	-2.6 (6)
Br1-C1-C6-C5	176.0 (3)	C4—C5—C6—C1	0.0 (6)
N1—N2—C8—C9	-171.6 (3)	C5—C4—C7—N1	-5.7 (5)

N1—N2—C8—C13	8.0 (6)	C5—C4—C7—N3	176.7 (3)
N2—N1—C7—N3	-1.7 (6)	C6—C1—C2—C3	0.8 (6)
N2—N1—C7—C4	-179.0 (3)	C7—N1—N2—C8	176.3 (3)
N2-C8-C9-C10	176.9 (4)	C7—N3—N4—C14	-177.1 (3)
N2-C8-C13-C12	-177.3 (4)	C7—C4—C5—C6	-178.2 (4)
N3—N4—C14—C15	6.4 (6)	C8—C9—C10—C11	1.3 (6)
N3—N4—C14—C19	-175.3 (3)	C9—C8—C13—C12	2.4 (6)
N4—N3—C7—N1	5.4 (6)	C9—C10—C11—C12	0.7 (6)
N4—N3—C7—C4	-177.3 (3)	C10-C11-C12-C13	-1.1 (6)
N4—C14—C15—C16	176.9 (4)	C11—C12—C13—C8	-0.4 (6)
N4-C14-C19-C18	-176.0 (4)	C13—C8—C9—C10	-2.8 (6)
C1—C2—C3—C4	0.3 (7)	C14—C15—C16—C17	0.2 (6)
C2-C1-C6-C5	-1.0 (6)	C15-C14-C19-C18	2.3 (6)
C2—C3—C4—C5	-1.2 (6)	C15—C16—C17—C18	-0.3 (7)
C2—C3—C4—C7	178.1 (4)	C16—C17—C18—C19	1.4 (7)
C3—C4—C5—C6	1.1 (6)	C17—C18—C19—C14	-2.4 (7)
C3—C4—C7—N1	175.0 (4)	C19—C14—C15—C16	-1.2 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H··· A
N2—H2…N4	0.80 (10)	1.93 (10)	2.566 (5)	137 (9)
N4—H4…N1	0.81 (12)	2.40 (11)	2.803 (5)	112 (9)
N4—H4…N2	0.81 (12)	1.86 (12)	2.566 (5)	145 (10)
C19—H19····Br1 ⁱ	0.95	3.05	3.921 (4)	153
C9—H9····Br1 ⁱ	0.95	3.14	4.014 (5)	153

Symmetry code: (i) -x+1/2, -y+1, z+1/2.

6-(4-Bromophenyl)-2,4-diphenyl-1,2,3,4-tetrahydro-1,2,4,5-tetrazin-1-yl (2)

Crystal data

$D_{\rm x} = 1.561 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 8857 reflections
$\theta = 2.7 - 29.5^{\circ}$
$\mu = 2.47 \text{ mm}^{-1}$
T = 123 K
Plate, clear green
$0.15 \times 0.12 \times 0.06 \text{ mm}$
$T_{\min} = 0.254, \ T_{\max} = 0.620$
70879 measured reflections
3640 independent reflections
3397 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.128$
$\theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$
$h = -9 \rightarrow 9$
$k = -26 \rightarrow 26$
$l = -28 \rightarrow 28$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: inferred from
$wR(F^2) = 0.076$	neighbouring sites
S = 1.10	H-atom parameters constrained
3640 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0366P)^2 + 1.3621P]$
226 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta ho_{ m max} = 0.72 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\min} = -0.65 \text{ e} \text{ Å}^{-3}$
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.68387 (3)	0.06162 (2)	0.45203 (2)	0.02595 (8)
N1	0.66003 (19)	0.27769 (7)	0.22407 (6)	0.0176 (3)
N2	0.63370 (19)	0.31170 (6)	0.17288 (6)	0.0177 (3)
N3	0.5658 (2)	0.22196 (6)	0.11776 (6)	0.0184 (3)
N4	0.59259 (19)	0.18478 (6)	0.16660 (6)	0.0177 (3)
C1	0.6208 (2)	0.21623 (7)	0.21812 (7)	0.0168 (3)
C2	0.5041 (2)	0.28635 (7)	0.12838 (8)	0.0196 (3)
H2A	0.5096	0.3112	0.0907	0.024*
H2B	0.3731	0.2870	0.1438	0.024*
C3	0.6287 (2)	0.17818 (7)	0.27390 (7)	0.0169 (3)
C4	0.6697 (2)	0.11391 (8)	0.27170 (8)	0.0203 (3)
H4	0.6898	0.0942	0.2338	0.024*
C5	0.6815 (2)	0.07845 (8)	0.32404 (8)	0.0219 (3)
Н5	0.7076	0.0346	0.3221	0.026*
C6	0.6550 (2)	0.10777 (8)	0.37910 (7)	0.0188 (3)
C7	0.6106 (2)	0.17127 (8)	0.38283 (8)	0.0201 (3)
H7	0.5912	0.1908	0.4208	0.024*
C8	0.5950 (2)	0.20578 (7)	0.32989 (7)	0.0182 (3)
H8	0.5606	0.2490	0.3319	0.022*
C9	0.7103 (2)	0.37250 (7)	0.16939 (7)	0.0169 (3)
C10	0.8613 (2)	0.38881 (8)	0.20700 (8)	0.0203 (3)
H10	0.9078	0.3594	0.2356	0.024*
C11	0.9424 (3)	0.44801 (8)	0.20224 (8)	0.0230 (4)
H11	1.0434	0.4593	0.2282	0.028*
C12	0.8777 (3)	0.49117 (8)	0.15982 (8)	0.0230 (3)
H12	0.9363	0.5312	0.1560	0.028*
C13	0.7268 (3)	0.47506 (8)	0.12329 (8)	0.0236 (3)
H13	0.6818	0.5044	0.0944	0.028*
C14	0.6404 (2)	0.41659 (8)	0.12830 (8)	0.0204 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H14	0.5344	0.4066	0.1039	0.024*	
C15	0.5678 (2)	0.19397 (7)	0.06049 (7)	0.0173 (3)	
C16	0.4641 (2)	0.21964 (8)	0.01255 (7)	0.0195 (3)	
H16	0.3903	0.2565	0.0185	0.023*	
C17	0.4698 (2)	0.19094 (8)	-0.04350 (7)	0.0218 (3)	
H17	0.3998	0.2085	-0.0759	0.026*	
C18	0.5761 (3)	0.13688 (8)	-0.05301 (8)	0.0236 (4)	
H18	0.5797	0.1176	-0.0916	0.028*	
C19	0.6775 (2)	0.11138 (8)	-0.00510 (8)	0.0238 (4)	
H19	0.7506	0.0744	-0.0112	0.029*	
C20	0.6733 (2)	0.13926 (8)	0.05142 (8)	0.0202 (3)	
H20	0.7420	0.1212	0.0838	0.024*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02689 (12)	0.02657 (12)	0.02438 (12)	-0.00268 (6)	-0.00495 (6)	0.00843 (6)
N1	0.0164 (6)	0.0181 (6)	0.0184 (7)	0.0001 (5)	0.0007 (5)	0.0015 (5)
N2	0.0176 (6)	0.0169 (6)	0.0186 (6)	-0.0016 (5)	-0.0021 (5)	0.0006 (5)
N3	0.0206 (7)	0.0166 (6)	0.0180 (6)	0.0007 (5)	-0.0028 (5)	-0.0001 (5)
N4	0.0166 (6)	0.0183 (6)	0.0181 (6)	0.0002 (5)	-0.0011 (5)	0.0017 (5)
C1	0.0105 (7)	0.0190 (7)	0.0207 (8)	0.0002 (6)	0.0004 (6)	-0.0008 (6)
C2	0.0171 (7)	0.0178 (7)	0.0238 (8)	0.0009 (6)	-0.0038 (6)	-0.0009 (6)
C3	0.0106 (7)	0.0190 (7)	0.0211 (8)	-0.0020 (6)	-0.0005 (6)	0.0008 (6)
C4	0.0201 (8)	0.0200 (8)	0.0209 (8)	-0.0002 (6)	-0.0003 (6)	-0.0028 (6)
C5	0.0198 (8)	0.0176 (7)	0.0282 (9)	0.0005 (6)	-0.0013 (6)	0.0011 (7)
C6	0.0148 (7)	0.0219 (8)	0.0197 (8)	-0.0033 (6)	-0.0021 (6)	0.0053 (6)
C7	0.0180 (8)	0.0215 (8)	0.0209 (8)	-0.0017 (6)	0.0008 (6)	-0.0009 (6)
C8	0.0156 (7)	0.0176 (7)	0.0213 (8)	-0.0010 (6)	0.0008 (6)	-0.0002 (6)
C9	0.0156 (7)	0.0150 (7)	0.0202 (8)	0.0003 (5)	0.0031 (6)	-0.0009 (6)
C10	0.0200 (8)	0.0199 (8)	0.0210 (8)	-0.0003 (6)	-0.0020 (6)	0.0014 (6)
C11	0.0211 (8)	0.0223 (8)	0.0256 (9)	-0.0024 (6)	-0.0032 (7)	-0.0015 (6)
C12	0.0240 (8)	0.0166 (7)	0.0284 (9)	-0.0026 (6)	0.0022 (7)	-0.0005 (6)
C13	0.0246 (8)	0.0193 (8)	0.0268 (9)	0.0030 (7)	-0.0019 (7)	0.0019 (7)
C14	0.0189 (8)	0.0191 (8)	0.0231 (8)	0.0002 (6)	-0.0033 (6)	-0.0005 (6)
C15	0.0153 (7)	0.0186 (7)	0.0180 (7)	-0.0044 (6)	-0.0001 (6)	0.0004 (6)
C16	0.0169 (7)	0.0190 (7)	0.0227 (8)	-0.0025 (6)	-0.0022 (6)	0.0011 (6)
C17	0.0197 (8)	0.0255 (8)	0.0203 (8)	-0.0049 (7)	-0.0043 (6)	0.0031 (6)
C18	0.0249 (9)	0.0266 (9)	0.0193 (8)	-0.0057 (7)	0.0017 (6)	-0.0052 (6)
C19	0.0234 (9)	0.0214 (8)	0.0266 (9)	-0.0015 (6)	0.0018 (7)	-0.0035 (7)
C20	0.0185 (8)	0.0195 (8)	0.0227 (8)	-0.0014 (6)	-0.0027 (6)	0.0008 (6)

Geometric parameters (Å, °)

Br1—C6	1.9034 (16)	C9—C10	1.401 (2)
N1—N2	1.3592 (19)	C9—C14	1.398 (2)
N1—C1	1.340 (2)	C10—H10	0.9500
N2—C2	1.452 (2)	C10—C11	1.385 (2)

N2—C9	1.402 (2)	C11—H11	0.9500
N3—N4	1.3544 (18)	C11—C12	1.392 (2)
N3—C2	1.454 (2)	C12—H12	0.9500
N3—C15	1.404 (2)	C12—C13	1.385 (3)
N4—C1	1.339 (2)	C13—H13	0.9500
C1—C3	1.479 (2)	C13—C14	1.388 (2)
C2—H2A	0.9900	C14—H14	0.9500
C2—H2B	0.9900	C15—C16	1.404 (2)
C3—C4	1.395 (2)	C15—C20	1.395 (2)
C3—C8	1.395 (2)	C16—H16	0.9500
C4—H4	0.9500	C16—C17	1.386 (2)
C4—C5	1.387 (2)	С17—Н17	0.9500
C5—H5	0.9500	C17—C18	1.389 (3)
C5—C6	1.385 (2)	C18—H18	0.9500
C6—C7	1.386 (2)	C18—C19	1.393 (3)
C7—H7	0.9500	C19—H19	0.9500
C7—C8	1 389 (2)	C19-C20	1 388 (2)
C8—H8	0.9500	C20—H20	0.9500
	0.9500	020 1120	0.9500
C1—N1—N2	113 94 (13)	C14—C9—N2	120.97 (15)
N1 - N2 - C2	117 33 (13)	C14 - C9 - C10	120.97(15) 119.65(15)
N1—N2—C9	118 79 (13)	C9-C10-H10	120.1
C9-N2-C2	123 25 (13)	C_{11} C_{10} C_{9}	119 71 (15)
N4—N3—C2	125.25(13) 117.38(13)	$C_{11} - C_{10} - H_{10}$	120.1
N4—N3—C15	118 51 (13)	C10-C11-H11	119.6
$C_{15} N_{3} C_{2}$	123 22 (13)	C10-C11-C12	120.76 (16)
C1N4N3	125.22(13) 114 49 (13)	C12 - C11 - H11	119.6
N1-C1-C3	116.15 (14)	C11 $C12$ $-C12$ $-H12$	120.4
N4_C1_N1	126.88 (15)	C13 - C12 - C11	119 24 (16)
N4-C1-C3	116 66 (14)	C13 - C12 - C11	120.4
N2N3	105.55(12)	C12 - C13 - H13	110 5
$N2 C2 H2 \Delta$	105.55 (12)	C12 - C13 - C14	120.96 (16)
N2 - C2 - H2R	110.6	C12 - C13 - C14 C14 - C13 - H13	110 5
$N_2 = C_2 = H_2 \Delta$	110.6	$C_{14} = C_{15} = 1115$	119.5
$N_3 = C_2 = H_2 R$	110.6	C_{3} C_{14} C_{9}	120.2
$H_{2} = C_{2} = H_{2}B$	108.8	C13 - C14 - H14	119.01 (13)
CA = C3 = C1	100.0	$N_{1}^{-1} C_{1}^{-1} C_{1} C_{1}^{-1} C_{1}^{-1} C_{1}^{-1} C_{1}^{-1} C_{1}^{-1} C_{$	120.2 121 15 (14)
$C_{4} = C_{3} = C_{1}$	120.79(13) 120.70(14)	$C_{20} C_{15} C_{10}$	121.13(14) 110.24(14)
C_{8} C_{3} C_{4}	120.70(14) 118 51 (15)	$C_{20} = C_{15} = C_{16}$	119.24(14) 110.60(15)
C_{8} C_{4} C_{4	110.51 (15)	$C_{20} = C_{15} = C_{16}$	119.00 (13)
$C_{5} = C_{4} = C_{1}^{2}$	119.0	C13 - C16 - C15	120.2
$C_{5} = C_{4} = C_{5}$	120.90 (10)	C17 - C16 - U16	119.08 (13)
$C_3 = C_4 = H_4$	119.0		120.2
C4 - C5 - C4	120.4	C_{10} C_{17} C_{18} C_{17} C_{19}	119.5
$C_{0} = C_{0} = C_{0}$	119.19 (13)	C10 - C17 - U13	121.01 (15)
C_{0} C_{0	120.4	$U_1 = U_1 - H_1 / H_1 / H_1 / H_1 = H_1 $	119.5
$C_{2} = C_{0} = B_{1}$	120.55(15)	$C_1/-C_1\delta$ -H18	120.5
C_{2}	121.36 (15)	C1/-C18-C19	119.00 (15)
C/-Cb-Brl	118.28 (13)	U19—U18—H18	120.5

С6—С7—Н7	120.7	C18—C19—H19	119.5
С6—С7—С8	118.69 (15)	C20—C19—C18	120.90 (16)
С8—С7—Н7	120.7	C20—C19—H19	119.5
С3—С8—Н8	119.4	C15—C20—H20	120.1
С7—С8—С3	121.26 (14)	C19—C20—C15	119.79 (16)
С7—С8—Н8	119.4	C19—C20—H20	120.1
C10—C9—N2	119.37 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
C10—H10…N1 ⁱ	0.95	2.65	3.519 (2)	153

 $D_{\rm x} = 1.564 {\rm Mg} {\rm m}^{-3}$

Plank, clear light yellow $0.32 \times 0.16 \times 0.1$ mm

 $\theta = 2.8 - 23.1^{\circ}$ $\mu = 2.48 \text{ mm}^{-1}$

T = 100 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1652 reflections

Symmetry code: (i) x+1/2, y, -z+1/2.

5-Anilino-3-(4-bromophenyl)-1-phenyl-1H-1,2,4-triazole (3)

Crystal data

 $C_{20}H_{15}BrN_4$ $M_r = 391.27$ Orthorhombic, *Pbca* a = 7.7989 (9) Å b = 18.971 (3) Å c = 22.455 (4) Å V = 3322.4 (8) Å³ Z = 8F(000) = 1584

Data collection

Bruker X8 Kappa APEXII	19450 measured reflections
diffractometer	3999 independent reflections
Radiation source: sealed tube	2708 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.098$
Detector resolution: 8 pixels mm ⁻¹	$\theta_{\rm max} = 28.0^\circ, \theta_{\rm min} = 3.0^\circ$
fine slicing ω and φ scans	$h = -6 \rightarrow 10$
Absorption correction: multi-scan	$k = -24 \rightarrow 25$
(SADABS; Bruker, 2015)	$l = -29 \rightarrow 29$
$T_{\min} = 0.583, \ T_{\max} = 0.746$	

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.056$	and constrained refinement
$wR(F^2) = 0.126$	$w = 1/[\sigma^2(F_o^2) + (0.0408P)^2 + 6.8615P]$
<i>S</i> = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
3999 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
229 parameters	$\Delta \rho_{\rm max} = 1.46 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.84 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	1.11136 (5)	0.36858 (2)	0.25928 (2)	0.02548 (14)	
N1	0.7607 (4)	0.57251 (19)	0.48352 (14)	0.0201 (7)	
N2	0.6739 (4)	0.58069 (18)	0.53638 (14)	0.0179 (7)	
N3	0.7073 (4)	0.46533 (19)	0.52531 (15)	0.0193 (7)	
N4	0.5536 (4)	0.5068 (2)	0.61156 (16)	0.0249 (8)	
H4	0.487 (6)	0.549 (3)	0.626 (2)	0.030*	
C1	0.7806 (5)	0.5035 (2)	0.48020 (17)	0.0178 (8)	
C2	0.6420 (5)	0.5157 (2)	0.55932 (17)	0.0191 (9)	
C3	0.8667 (4)	0.4696 (2)	0.42895 (17)	0.0183 (8)	
C4	0.8470 (5)	0.3977 (2)	0.41832 (18)	0.0195 (9)	
H4A	0.7837	0.3694	0.4454	0.023*	
C5	0.9206 (5)	0.3673 (2)	0.36779 (18)	0.0216 (8)	
H5	0.9072	0.3184	0.3601	0.026*	
C6	1.0134 (4)	0.4094 (2)	0.32914 (17)	0.0174 (8)	
C7	1.0376 (5)	0.4806 (2)	0.33950 (18)	0.0220 (9)	
H7	1.1034	0.5085	0.3128	0.026*	
C8	0.9637 (5)	0.5105 (2)	0.38984 (18)	0.0203 (9)	
H8	0.9795	0.5593	0.3977	0.024*	
C9	0.6007 (5)	0.6479 (2)	0.55219 (17)	0.0176 (8)	
C10	0.5417 (5)	0.6904 (2)	0.50640 (18)	0.0216 (9)	
H10	0.5527	0.6759	0.4661	0.026*	
C11	0.4660 (5)	0.7548 (2)	0.5203 (2)	0.0266 (10)	
H11	0.4264	0.7849	0.4893	0.032*	
C12	0.4485 (5)	0.7750 (2)	0.5792 (2)	0.0274 (10)	
H12	0.3939	0.8184	0.5886	0.033*	
C13	0.5099 (5)	0.7328 (2)	0.6240 (2)	0.0269 (10)	
H13	0.4985	0.7471	0.6643	0.032*	
C14	0.5883 (5)	0.6694 (2)	0.61057 (18)	0.0219 (9)	
H14	0.6334	0.6407	0.6415	0.026*	
C15	0.5186 (5)	0.4420 (2)	0.64132 (19)	0.0237 (9)	
C16	0.3863 (5)	0.4433 (3)	0.68331 (19)	0.0276 (10)	
H16	0.3253	0.4858	0.6904	0.033*	
C17	0.3441 (6)	0.3832 (3)	0.7144 (2)	0.0313 (11)	
H17	0.2541	0.3846	0.7429	0.038*	
C18	0.4312 (6)	0.3214 (3)	0.7045 (2)	0.0302 (11)	
H18	0.3998	0.2798	0.7253	0.036*	
C19	0.5661 (6)	0.3199 (2)	0.66360 (19)	0.0268 (10)	
H19	0.6285	0.2775	0.6576	0.032*	
C20	0.6096 (5)	0.3798 (2)	0.63171 (18)	0.0249 (9)	
H20	0.7006	0.3785	0.6036	0.030*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Br1	0.0214 (2)	0.0350 (3)	0.0200 (2)	0.00676 (19)	0.00321 (17)	-0.00357 (19)

N1	0.0195 (16)	0.023 (2)	0.0179 (17)	0.0000 (14)	0.0018 (14)	-0.0011 (14)
N2	0.0199 (16)	0.0151 (19)	0.0186 (17)	0.0001 (13)	0.0037 (13)	-0.0002 (14)
N3	0.0164 (16)	0.019 (2)	0.0223 (18)	-0.0010 (14)	0.0001 (13)	-0.0017 (15)
N4	0.0240 (18)	0.023 (2)	0.0283 (19)	0.0022 (15)	0.0046 (15)	0.0009 (16)
C1	0.0120 (18)	0.024 (2)	0.0180 (19)	-0.0008 (16)	-0.0004 (15)	0.0017 (17)
C2	0.0179 (19)	0.020 (2)	0.019 (2)	0.0022 (16)	-0.0001 (15)	0.0007 (16)
C3	0.0143 (18)	0.022 (2)	0.0182 (19)	0.0018 (16)	-0.0024 (15)	-0.0003 (16)
C4	0.0168 (18)	0.018 (2)	0.023 (2)	0.0009 (16)	0.0009 (15)	0.0015 (17)
C5	0.0208 (19)	0.015 (2)	0.029 (2)	-0.0001 (17)	0.0007 (16)	-0.0008 (18)
C6	0.0104 (17)	0.024 (2)	0.0179 (19)	0.0058 (16)	0.0000 (15)	-0.0016 (16)
C7	0.0167 (18)	0.025 (3)	0.025 (2)	0.0012 (17)	0.0040 (16)	0.0028 (18)
C8	0.0205 (19)	0.015 (2)	0.025 (2)	-0.0013 (17)	-0.0007 (17)	-0.0007 (17)
C9	0.0143 (17)	0.013 (2)	0.026 (2)	-0.0047 (15)	-0.0005 (16)	0.0029 (15)
C10	0.0191 (19)	0.025 (3)	0.021 (2)	-0.0003 (17)	-0.0007 (16)	-0.0001 (17)
C11	0.022 (2)	0.023 (3)	0.035 (3)	-0.0014 (18)	-0.0046 (18)	0.012 (2)
C12	0.024 (2)	0.013 (2)	0.046 (3)	0.0018 (17)	0.0001 (19)	-0.002 (2)
C13	0.027 (2)	0.026 (3)	0.027 (2)	-0.0007 (19)	-0.0026 (18)	-0.0048 (19)
C14	0.021 (2)	0.021 (2)	0.024 (2)	-0.0017 (17)	-0.0023 (17)	0.0037 (17)
C15	0.025 (2)	0.023 (3)	0.023 (2)	-0.0075 (18)	-0.0061 (18)	0.0047 (18)
C16	0.027 (2)	0.029 (3)	0.027 (2)	0.000 (2)	0.0024 (19)	-0.0022 (19)
C17	0.032 (2)	0.037 (3)	0.025 (2)	-0.005 (2)	0.0035 (19)	0.001 (2)
C18	0.038 (3)	0.026 (3)	0.026 (2)	-0.009 (2)	-0.0014 (19)	0.0046 (19)
C19	0.033 (2)	0.017 (2)	0.030 (2)	-0.0013 (18)	-0.0049 (18)	-0.0012 (18)
C20	0.023 (2)	0.029 (3)	0.022 (2)	-0.0040 (19)	-0.0010 (17)	-0.0018 (17)

Geometric parameters (Å, °)

Br1—C6	1.909 (4)	C9—C14	1.376 (6)
N1—N2	1.375 (4)	C10—H10	0.9500
N1-C1	1.321 (5)	C10—C11	1.392 (6)
N2-C2	1.358 (5)	C11—H11	0.9500
N2-C9	1.441 (5)	C11—C12	1.384 (6)
N3—C1	1.370 (5)	C12—H12	0.9500
N3—C2	1.326 (5)	C12—C13	1.373 (6)
N4—H4	1.00 (5)	C13—H13	0.9500
N4—C2	1.371 (5)	C13—C14	1.382 (6)
N4—C15	1.426 (6)	C14—H14	0.9500
C1—C3	1.479 (5)	C15—C16	1.398 (6)
C3—C4	1.393 (6)	C15—C20	1.394 (6)
C3—C8	1.395 (6)	C16—H16	0.9500
C4—H4A	0.9500	C16—C17	1.376 (6)
C4—C5	1.397 (6)	C17—H17	0.9500
С5—Н5	0.9500	C17—C18	1.374 (7)
C5—C6	1.384 (6)	C18—H18	0.9500
C6—C7	1.384 (6)	C18—C19	1.396 (6)
С7—Н7	0.9500	C19—H19	0.9500
С7—С8	1.390 (6)	C19—C20	1.385 (6)
С8—Н8	0.9500	C20—H20	0.9500

C9—C10	1.386 (5)		
C1—N1—N2	102.6 (3)	C14—C9—C10	120.7 (4)
N1—N2—C9	120.5 (3)	C9—C10—H10	120.5
C2—N2—N1	108.4 (3)	C9—C10—C11	119.1 (4)
C2—N2—C9	129.5 (3)	C11—C10—H10	120.5
C2—N3—C1	101.8 (3)	C10-C11-H11	120.0
C2—N4—H4	116 (3)	C12—C11—C10	119.9 (4)
C2—N4—C15	127.1 (4)	C12—C11—H11	120.0
C15—N4—H4	116 (3)	C11—C12—H12	119.9
N1—C1—N3	115.7 (4)	C13—C12—C11	120.3 (4)
N1—C1—C3	121.9 (4)	C13—C12—H12	119.9
N3—C1—C3	122.3 (4)	С12—С13—Н13	119.9
N2-C2-N4	121.9 (4)	C12-C13-C14	120.2 (4)
N3—C2—N2	111.4 (3)	C14—C13—H13	119.9
N3—C2—N4	126.7 (4)	C9—C14—C13	119.8 (4)
C4—C3—C1	120.6 (4)	C9—C14—H14	120.1
C4—C3—C8	119.7 (4)	C13—C14—H14	120.1
C8—C3—C1	119.6 (4)	C16—C15—N4	116.2 (4)
C3—C4—H4A	120.0	C20-C15-N4	124.1 (4)
C3—C4—C5	119.9 (4)	C20-C15-C16	119.7 (4)
C5—C4—H4A	120.0	C15—C16—H16	119.9
C4—C5—H5	120.5	C17—C16—C15	120.3 (4)
C6—C5—C4	119.0 (4)	C17—C16—H16	119.9
С6—С5—Н5	120.5	C16—C17—H17	119.8
C5—C6—Br1	119.4 (3)	C18—C17—C16	120.4 (4)
C5—C6—C7	122.0 (4)	C18—C17—H17	119.8
C7—C6—Br1	118.7 (3)	C17—C18—H18	120.1
С6—С7—Н7	120.7	C17—C18—C19	119.7 (4)
C6—C7—C8	118.6 (4)	C19—C18—H18	120.1
С8—С7—Н7	120.7	C18—C19—H19	119.7
C3—C8—H8	119.7	C20—C19—C18	120.5 (4)
C7—C8—C3	120.7 (4)	C20—C19—H19	119.7
С7—С8—Н8	119.7	C15—C20—H20	120.4
C10—C9—N2	117.7 (4)	C19—C20—C15	119.3 (4)
C14—C9—N2	121.7 (4)	С19—С20—Н20	120.4

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
$C14$ — $H14$ ····Br 1^{i}	0.95	2.99	3.814 (4)	146 (1)
C10—H10…C20 ⁱⁱ	0.95	2.75	3.575 (5)	146 (1)
С17—Н17…С19 ^{ііі}	0.95	2.84	3.694 (6)	150 (1)

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*-1/2, *y*, -*z*+3/2.