CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 18 January 2018
Accepted 28 January 2018

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal; cobalt; quinoline; dimethyl sulfoxide.

CCDC reference: 1820336
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \prec ACCESS

Crystal structure of hexakis(dimethyl sulfoxideκO)cobalt(II) bis[trichlorido(quinoline- κN)cobaltate(II)]

Tyler K. Brescia, ${ }^{\text {a }}$ Kaltrina Mulosmani, ${ }^{\text {a }}$ Shivani Gulati, ${ }^{\text {b }}$ Demosthenes Athanasopoulos ${ }^{\text {a }}$ and Rita K. Upmacis ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Chemistry and Physical Sciences, Pace, University, New York, NY 10038, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, Columbia University, New York, NY 10027, USA. *Correspondence e-mail: rupmacis@pace.edu

There are few reports that describe crystal structures of compounds containing cobalt complexed to either dimethyl sulfoxide $\left(\mathrm{Me}_{2} \mathrm{SO}\right)$ or quinoline $\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)$. The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\right]\left[\mathrm{CoCl}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]_{2}$, is a cobalt salt in which the metal ion is complexed to both $\mathrm{Me}_{2} \mathrm{SO}$ and quinoline. In particular, we observed that anhydrous cobalt(II) chloride reacts with quinoline in $\mathrm{Me}_{2} \mathrm{SO}$ to form a salt that is to be formulated as $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]^{2+}\left\{\left[\mathrm{Co}^{\mathrm{II}} \mathrm{Cl}_{3} \text { quinoline }\right]_{2}{ }^{-}\right\}$. The $\mathrm{Co}^{\mathrm{II}}$ atom in the cation portion of this molecule lies on a inversion center and is bound to the O atoms of six $\mathrm{Me}_{2} \mathrm{SO}$ moieties in an octahedral configuration, while the $\mathrm{Co}^{\text {II }}$ atom in the anion is attached to three chloride ligands and one quinoline moiety in a tetrahedral arrangement.

1. Chemical context

Quinoline-based molecules have shown significant promise in the development of clinically viable anti-cancer drugs (Afzal et al., 2015). Metal complexes containing quinoline include: (i) square-planar palladium- and platinum-quinoline compounds, such as trans $\left.-\left[\mathrm{Pd}(\mathrm{II}) \mathrm{Cl}_{2} \text { (quinoline) }\right)_{2}\right]$, cis- $\left[\mathrm{Pt}(\mathrm{II}) \mathrm{Cl}_{2}\right.$ (quinoline $\left.)_{2}\right]$ and trans- $\left.\left[\mathrm{Pd}(\mathrm{II})\left(\mathrm{N}_{3}\right)_{2} \text { (quinoline) }\right)_{2}\right] \quad(\mathrm{Ha}, ~ 2012$; Klapötke et al., 2000; Raven et al., 2012; Davies et al., 2001), as well as (ii) tetrahedral cobalt-, nickel- and zinc-quinoline compounds, of the form $\left[M^{\mathrm{II}} \mathrm{Cl}_{2}\right.$ (quinoline) ${ }_{2}$] (Golic \& Mirceva, 1988). Interestingly, despite the fact that the interaction of dimethyl sulfoxide $\left(\mathrm{Me}_{2} \mathrm{SO}\right)$ with metal ions has been studied for many years (Cotton \& Francis, 1960), metal compounds that incorporate both coordinated quinoline and $\mathrm{Me}_{2} \mathrm{SO}$ are rare, as illustrated by the fact that only one structurally characterized example is listed in the Cambridge Structural Database (Groom et al., 2016), $\mathrm{Zn}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}\right.$ $\left.\mathrm{C}_{2} \mathrm{HN}_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}$.(quinoline). $\mathrm{Me}_{2} \mathrm{SO}$ (Ma et al., 2012). Herein, we describe the structure of the complex salt [Co ${ }^{\text {II }}-$ $\left.\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]\left[\mathrm{Co}^{\mathrm{II}} \mathrm{Cl}_{3} \text { quinoline }\right]_{2}$, which can be obtained by the reaction of anhydrous cobalt(II) chloride with quinoline in $\mathrm{Me}_{2} \mathrm{SO}$.

2. Structural commentary

The molecular structures of the cation and anion portions of the title complex are shown in Fig. $1 a$ and $1 b$, respectively. In the cation portion of this compound, the cobalt atom lies on a crystallographic inversion center and is coordinated to oxygen atoms of six $\mathrm{Me}_{2} \mathrm{SO}$ groups in an octahedral configuration. The cation is not rigorously octahedral, as the $\mathrm{Co}-\mathrm{O}$ bond distances are slightly elongated in the axial positions [2.1258 (17) \AA] compared to the equatorial positions [2.0606 (17)-2.0819 (18) Å], giving an average $\mathrm{Co}-\mathrm{O}$ distance of $2.089 \AA$. A closely related complex, $\left[\mathrm{Co}\left(\mathrm{Me}_{2}\right.\right.$ $\left.\mathrm{SO})_{6}\right]\left[\mathrm{CoCl}_{4}\right]$, contains a cobalt cation that is similarly surrounded by six oxygen atoms in a slightly distorted octahedral configuration with $\mathrm{Co}-\mathrm{O}$ distances between 2.06 (1) and 2.10 (1) \AA, with a mean $\mathrm{Co}-\mathrm{O}$ distance of $2.08 \AA$ (Ciccarese et al., 1993). The $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ (cis) bond angles in the title complex are close to 90°, ranging from 86.29 (7) to 93.71 (7) ${ }^{\circ}$, compared to 87.9 (5) to $90.8(4)^{\circ}$ in $\left[\mathrm{Co}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]$ [$\left.\mathrm{CoCl}_{4}\right]$ (Ciccarese et al., 1993).

The cobalt atom in the anion portion of the title complex is attached to three chloro ligands and one quinoline moiety in a tetrahedral arrangement. The $\mathrm{Co}-\mathrm{Cl}$ bond distances range from 2.2517 (10) to 2.2534 (10) \AA, with an average $\mathrm{Co}-\mathrm{Cl}$ distance of $2.252 \AA$, while the $\mathrm{Co}-\mathrm{N}$ distance is 2.054 (3) \AA. The $\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}$ angles range from 108.21 (5) to 114.26 (4) ${ }^{\circ}$, giving an average of 110.98°, and the average $\mathrm{N}-\mathrm{Co}-\mathrm{Cl}$ angle is 107.88° [range 107.09 (9) to $108.80(8)^{\circ}$], indicating that while the anion is close to tetrahedral, there is some distortion. Interestingly, the $\left[\mathrm{CoCl}_{4}\right]^{2-}$ anion in $\left[\mathrm{Co}\left(\mathrm{Me}_{2}\right.\right.$ $\left.\mathrm{SO})_{6}\right]\left[\mathrm{CoCl}_{4}\right]$ also showed some distortion with $\mathrm{Co}-\mathrm{Cl}$ distances ranging from 2.265 (6) to 2.305 (7) \AA, giving an average $\mathrm{Co}-\mathrm{Cl}$ distance of 2.284 (6) \AA, and the $\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}$ angles ranging from 107.1 (2) to 112.4 (2) ${ }^{\circ}$ (Ciccarese et al., 1993). The deviations from 109.5° in $\left[\mathrm{Co}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]\left[\mathrm{CoCl}_{4}\right]$ were ascribed to disorder, as indicated by the high anisotropic motion (Ciccarese et al., 1993).

The degree of distortion from a tetrahedral arrangement can be readily quantified by the τ_{4} index that is reported and discussed elsewhere (Yang et al., 2007, Palmer et al., 2015).

(b)

Figure 1
The molecular structure of the complex salt $\left[\mathrm{Co}^{\mathrm{HI}}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]\left[\mathrm{Co}^{\mathrm{II}} \mathrm{Cl}_{3}\right.$ quinoline $]_{2}$, showing (a) the $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]^{2+}$ cation (primed labels are related by the symmetry code: $-x,-y,-z+2$), and (b) the symmetryunique [$\mathrm{Co}^{\mathrm{II}} \mathrm{Cl}_{3}$ quinoline] ${ }^{-}$anion.

Briefly, τ_{4} is obtained from the expression, $\tau_{4}=[360-(\alpha+\beta)] /$ 141 , where α and β represent the two largest angles; a τ_{4} value of 1.00 indicates an idealized tetrahedral geometry, whereas a value of 0.00 indicates an idealized square-planar geometry. In the title complex, $\alpha=114.26(4)^{\circ}$ and $\beta=110.46(4)^{\circ}$, such that τ_{4} is 0.96 , which indicates very little deviation from a tetrahedral geometry. For comparison, τ_{4} for the $\left[\mathrm{CoCl}_{4}\right]^{2-}$ anion in $\left[\mathrm{Co}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]\left[\mathrm{CoCl}_{4}\right]$ is 0.98 (where $\alpha=112.38^{\circ}$ and $\beta=$ 108.81°; Ciccarese et al., 1993).

3. Supramolecular features

Fig. 2 shows the packing in the unit cell. There are no significant intermolecular interactions between the $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{Cl}_{3} \text { quinoline }\right]^{-}$ions, with the exception of very weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions. The distances between the Cl and the carbon atoms of the methyl groups of the $\mathrm{Me}_{2} \mathrm{SO}$ ligands are, for example, $\mathrm{Cl} 1 \cdots \mathrm{C} 32-\mathrm{S} 3$ (symmetry code: x, y, z) $[3.525(3) \AA], \quad \mathrm{Cl} 1 \cdots \mathrm{C} 31-\mathrm{S} 3$ (symmetry code: x, y, z) [3.736(4) A], C12 $\cdots \mathrm{C} 22-\mathrm{S} 2$ (symmetry code: $1+x, 1+y, z$) [3.633 (4) \AA A $], \mathrm{Cl} 2 \cdots \mathrm{C} 21-\mathrm{S} 2$ (symmetry code: $1+x, 1+y, z$) 3.770 (4) $\AA], \mathrm{Cl} 3 \cdots \mathrm{C} 12-\mathrm{S} 1$ (symmetry code: $1+x, y, z$) [3.638 (4) \AA) and $\mathrm{Cl} 3 \cdots \mathrm{C} 32-\mathrm{S} 3$ (symmetry code: $x, 1+y, z$) $[3.819$ (4) $\AA]$ and are comparable to the sum of the van der Waals radii of Cl and CH_{3} of $3.80 \AA$ (Pauling, 1986).

4. Database survey

The structure reported herein is closely related to the previously reported $\left[\mathrm{Co}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]\left[\mathrm{CoCl}_{4}\right]$ complex as discussed above (Ciccarese et al., 1993). Interestingly, as long ago as 1960, and based on spectral and magnetic evidence only, Cotton \& Francis reported that a complex having the empirical formula $\mathrm{CoCl}_{2} \cdot 3 \mathrm{Me}_{2} \mathrm{SO}$ is more correctly formulated as $\left[\mathrm{Co}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]\left[\mathrm{CoCl}_{4}\right]$ (Cotton \& Francis, 1960).

Figure 2
The packing of $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]\left[\mathrm{Co}^{\mathrm{II}} \mathrm{Cl}_{3} \text { quinoline }\right]_{2}$. H atoms have been omitted for clarity.

Table 1
Experimental details.

Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\min }, T_{\text {max }}$
No. of measured, independent and
\quad observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H-atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

```
[Co(C2}\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{H}}{6}{}\textrm{OS}\mp@subsup{)}{6}{}][\mp@subsup{\textrm{CoCl}}{3}{}(\mp@subsup{\textrm{C}}{9}{}\mp@subsup{\textrm{H}}{7}{}\textrm{N})\mp@subsup{]}{2}{
1116.57
Triclinic, P\overline{1}
230
8.3182 (13), 9.6130 (15), 15.595 (2)
81.767 (2), 82.776 (2), 87.183 (2)
1223.7 (3)
1
Mo K\alpha
1.63
0.39\times0.12\times0.05
Bruker APEXII CCD
Multi-scan (SADABS; Bruker,
    2008)
0.626, 0.746
19375, 7447, 4839
0.035
0.715
0.045, 0.116, 1.02
7447
247
H-atom parameters constrained
0.77, -0.47
```

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXTL (Sheldrick 2008) and SHELXL2014 (Sheldrick, 2015).

In addition to $\left[\mathrm{Co}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]\left[\mathrm{CoCl}_{4}\right]$, there are a few other examples of cobalt complexes solvated by $\mathrm{Me}_{2} \mathrm{SO}$ that are listed in the Cambridge Database (CSD Version 5.38; Groom et al., 2016). For example, there are two reports for $\left[\mathrm{Co}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]\left[\mathrm{ClO}_{4}\right]_{2}$, one of which possesses $\mathrm{Co}-\mathrm{O}$ distances in the range 2.0833 (17)-2.0934 (15) \AA, giving a mean $\mathrm{Co}-\mathrm{O}$ distance of 2.088 (5) \AA, with $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ (cis) angles between 90.11 (6) and 92.31 (6) (Comuzzi et al., 2002), while a subsequent report lists $\mathrm{Co}-\mathrm{O}$ distances in the range 2.088 (2)-2.110 (2) \AA, with $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ (cis) angles between 85.26 (7) and $93.67(8)^{\circ}$ (Chan et al., 2004). In [Co(Me_{2} $\left.\mathrm{SO})_{6}\right]\left[\mathrm{SnCl}_{6}\right]$, both the cobalt and tin metal ions display an octahedral environments, with the $\mathrm{Co}-\mathrm{O}$ bond lengths reported between 2.093 (4) and 2.113 (5) A (White et al., 2007). The $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ (cis) angles vary between 89.0 (2) and $90.0(2)^{\circ}$ (White et al., 2007).

In addition to the above $\mathrm{Co}^{\mathrm{II}}$ compounds, the octahedral Co ${ }^{\text {III }}$ complex $\left[\mathrm{Co}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]\left[\mathrm{NO}_{3}\right]_{3}$ is also known and possesses six equivalent $\mathrm{Co}-\mathrm{O}$ bond lengths of 2.005 (2) \AA, which are shorter than the values in the $\mathrm{Co}^{\mathrm{II}}$ complexes ($\mathrm{Li} \&$ $\mathrm{Ng}, 2010)$.

Although $\mathrm{Me}_{2} \mathrm{SO}$ is typically coordinated to a metal via the oxygen atom (Sipos et al., 2015; Calligaris, 2004; Calligaris \& Carugo, 1996), there are examples in which $\mathrm{Me}_{2} \mathrm{SO}$ serves as an S-donor, as illustrated by the ruthenium complex [mer$\left.\mathrm{RuCl}_{3}(\mathrm{acv})\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{S}\right)\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)\right] \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{acv}=$ acyclovir) (Turel et al., 2004). With regard to cobalt, it has been noted that $\mathrm{Co}^{\mathrm{II}}$ is a hard acceptor preferring hard-donor atoms like oxygen in $\mathrm{Me}_{2} \mathrm{SO}$, the bonds being mainly electrostatic in
nature (Comuzzi et al., 2002). Nevertheless, while $\mathrm{Me}_{2} \mathrm{SO}$ coordination to cobalt through the soft-donor sulfur atom (rather than the oxygen atom) is rare, there are some notable examples. For example, the compound bis(dimethyl sulfoxide)hydridobis(triphenylphosphane)cobalt(I),
$\left[\mathrm{CoH}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2}\right]$, contains Co^{I} coordinating a hydride anion, two phosphine ligands and two $\mathrm{Me}_{2} \mathrm{SO}$ moieties that are bound through the sulfur atom in a distorted trigonal-bipyramidal structure (Hapke et al., 2010). Interestingly, there is an example of a cobalt(III) porphyrin complex that contains both oxygen- and sulfur-bound $\mathrm{Me}_{2} \mathrm{SO}$ moieties, i.e. bis(dimethyl sulfoxide- $\kappa O)-(5,10,15,20-$ tetra-kis(4-methoxyphenyl)porphyrinato)-cobalt(III) bis(dimethyl sulfoxide- κS)-(5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinato)cobalt(III) bis(hexafluoroantimonate) dimethyl sulfoxide solvate (Venkatasubbaiah et al., 2011). The existence of both forms of $\mathrm{Me}_{2} \mathrm{SO}$ bonding to $\mathrm{Co}^{\mathrm{III}}$ in this latter complex cannot be predicted readily by the application of traditional hard/soft-acid/base theory.

The $\mathrm{Co}-\mathrm{N}$ bond length in the anion $\left.\left[\mathrm{Co}^{\mathrm{II}} \mathrm{Cl}_{3} \text { (quinoline) }\right)_{2}\right]^{-}$ of the title compound is 2.037 (5) \AA while the $\mathrm{Co}-\mathrm{Cl}$ bond lengths are 2.2517 (10)-2.2534 (10) \AA, and the $\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}$ and $\mathrm{Cl}-\mathrm{Co}-\mathrm{N}$ angles range between 108.21 (5) and $114.26(4)^{\circ}$, and $107.09(9)$ and $108.80(8)^{\circ}$, respectively. For comparison, the $\mathrm{Co}-\mathrm{N}$ bond lengths in the $\mathrm{Co}^{\mathrm{II}} \mathrm{Cl}_{2}$ (quinoline) ${ }_{2}$ complex are 2.061 (3) and 2.037 (5) \AA and the $\mathrm{Co}-\mathrm{Cl}$ bond lengths are 2.246 (2) and 2.241 (1) \AA (Golic \& Mirceva, 1988), while the $\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}$ angle is $114.5(1)^{\circ}$ and the $\mathrm{Cl}-$ $\mathrm{Co}-\mathrm{N}$ angles range between 106.2 (1) and 108.9 (1) ${ }^{\circ}$.

5. Synthesis and crystallization

Anhydrous cobalt(II) chloride (97%; $0.1301 \mathrm{~g}, 0.0010 \mathrm{~mol}$) was mixed with quinoline, $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N},(99 \% ; 0.2595 \mathrm{~g}, 0.0020 \mathrm{~mol})$ in $\mathrm{Me}_{2} \mathrm{SO}(20 \mathrm{~mL})$ and refluxed for one h . After cooling down, the mixture was transferred to a beaker and placed in a desiccator containing anhydrous calcium chloride pellets (420 mesh) to crystallize over a period of four months. Deepblue crystals of $\left[\mathrm{Co}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{6}\right]^{2+}\left\{\left[\mathrm{CoCl}_{3} \text { quinoline }\right]_{2}\right\}^{-}$suitable for X-ray diffraction were obtained from this process of slow evaporation. Notably, when the reaction between anhydrous cobalt(II) chloride and quinoline is conducted in EtOH , rather than $\mathrm{Me}_{2} \mathrm{SO}$, the previously reported $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{Cl}_{2} \text { (quinoline) }\right)_{2}$] complex is obtained (Golic \& Mirceva, 1988).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Hydrogen atoms on carbon were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95-1.00 \AA)$ and included as riding contributions with isotropic displacement parameters $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}\left(\mathrm{Csp}^{2}\right)$ or $1.5 U_{\mathrm{eq}}\left(\mathrm{Csp} p^{3}\right)$.

Acknowledgements

Gerard Parkin (Columbia University) is thanked for helpful discussions.

Funding information

RKU and KM would like to thank Pace University for research support (Pace Undergraduate Student \& Faculty Research Award). SG thanks the University Grants Commission, New Delhi, India, for a Raman Fellowship for postdoctoral research.

References

Afzal, O., Kumar, S., Haider, M. R., Ali, M. R., Kumar, R., Jaggi, M. \& Bawa, S. (2015). Eur. J. Med. Chem. 97, 871-910.
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Calligaris, M. \& Carugo, O. (1996). Coord. Chem. Rev. 153, 83-154.
Calligaris, M. (2004). Coord. Chem. Rev. 248, 351-375.
Chan, E. J., Cox, B. G., Harrowfield, J. M., Ogden, M. I., Skelton, B. W. \& White, A. H. (2004). Inorg. Chim. Acta, 357, 2365-2373.
Ciccarese, A., Clemente, D. A., Marzotto, A. \& Valle, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 223-229.
Comuzzi, C., Melchior, A., Polese, P., Portanova, R. \& Tolazzi, M. (2002). Eur. J. Inorg. Chem. pp. 2194-2201.

Cotton, F. A. \& Francis, R. (1960). J. Am. Chem. Soc. 82, 2986-2991.
Davies, M. S., Diakos, C. I., Messerle, B. A. \& Hambley, T. W. (2001). Inorg. Chem. 40, 3048-3054.
Golic, L. \& Mirceva, A. (1988). Acta Cryst. C44, 820-822.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Ha, K. (2012). Acta Cryst. E68, m143.
Hapke, M., Weding, N. \& Spannenberg, A. (2010). Acta Cryst. E66, m1031.
Klapötke, T. M., Polborn, K. \& Schütt, T. (2000). Z. Anorg. Allg. Chem. 626, 1444-1447.
Li, Q. \& Ng, S. W. (2010). Acta Cryst. E66, m21.
Ma, Z. B., Han, S. B., Hopson, R., Wei, Y. H. \& Moulton, B. (2012). Inorg. Chim. Acta, 388, 135-139.
Palmer, J. H., Wu, J. S. \& Upmacis, R. K. (2015). J. Mol. Struct. 1091, 177-182.
Pauling, L. (1986). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.
Raven, W., Kalf, I. \& Englert, U. (2012). Acta Cryst. C68, m223-m225. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Sipos, G., Drinkel, E. E. \& Dorta, R. (2015). Chem. Soc. Rev. 44, 3834-3860.
Turel, I., Pečanac, M., Golobič, A., Alessio, E., Serli, B., Bergamo, A. \& Sava, G. (2004). J. Inorg. Biochem. 98, 393-401.
Venkatasubbaiah, K., Zhu, X. J., Kays, E., Hardcastle, K. I. \& Jones, C. W. (2011). ACS Catal. 1, 489-492.

White, A. P., Robertson, K. N., Cameron, T. S., Liengme, B. V., Leznoff, D. B., Trudel, S. \& Aquino, M. A. S. (2007). Can. J. Chem. 85, 372-378.
Yang, L., Powell, D. R. \& Houser, R. P. (2007). Dalton Trans. pp. 955964.

supporting information

Crystal structure of hexakis(dimethyl sulfoxide- κ O) cobalt(II) bis-[trichlorido(quinoline- $\kappa \mathrm{N}$)cobaltate(II)]

Tyler K. Brescia, Kaltrina Mulosmani, Shivani Gulati, Demosthenes Athanasopoulos and Rita K. Upmacis

Computing details

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Hexakis(dimethyl sulfoxide- κO)cobalt(II) bis[trichlorido(quinoline- κN)cobaltate(II)]

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\right]\left[\mathrm{CoCl}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]_{2}$
$M_{r}=1116.57$
Triclinic, $P \overline{1}$
$a=8.3182(13) \AA$
$b=9.6130(15) \AA$
$c=15.595$ (2) \AA
$\alpha=81.767(2)^{\circ}$
$\beta=82.776(2)^{\circ}$
$\gamma=87.183(2)^{\circ}$
$V=1223.7(3) \AA^{3}$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min }=0.626, T_{\text {max }}=0.746$
19375 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.116$
$S=1.02$
7447 reflections
247 parameters
0 restraints

$$
\begin{aligned}
& Z=1 \\
& F(000)=571 \\
& D_{\mathrm{x}}=1.515 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 7471 \text { reflections } \\
& \theta=2.4-30.1^{\circ} \\
& \mu=1.63 \mathrm{~mm}^{-1} \\
& T=230 \mathrm{~K} \\
& \text { Block, blue } \\
& 0.39 \times 0.12 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

7447 independent reflections
4839 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=30.5^{\circ}, \theta_{\text {min }}=1.3^{\circ}$
$h=-11 \rightarrow 11$
$k=-13 \rightarrow 13$
$l=-22 \rightarrow 22$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Col	0.56334 (6)	0.57989 (4)	0.70199 (3)	0.04816 (13)
Co2	0.0000	0.0000	1.0000	0.02575 (11)
Cl1	0.56412 (18)	0.34385 (10)	0.71205 (7)	0.0874 (4)
C12	0.81055 (11)	0.65246 (10)	0.64138 (7)	0.0647 (2)
Cl 3	0.48261 (13)	0.64884 (10)	0.83322 (6)	0.0659 (3)
N	0.3997 (3)	0.6584 (3)	0.61758 (17)	0.0502 (6)
S1	-0.13554 (8)	0.28530 (7)	0.90892 (5)	0.04024 (17)
S2	-0.09070 (8)	-0.10708 (7)	0.82809 (5)	0.03584 (16)
S3	0.31946 (7)	0.11911 (7)	0.89997 (4)	0.03205 (15)
O1	-0.0198 (2)	0.22294 (17)	0.97373 (12)	0.0334 (4)
O2	-0.0073 (2)	0.00114 (19)	0.86695 (12)	0.0366 (4)
O3	0.2483 (2)	0.01632 (18)	0.97778 (12)	0.0340 (4)
C1	0.3345 (5)	0.5732 (4)	0.5722 (3)	0.0657 (10)
H1A	0.3652	0.4773	0.5809	0.079*
C2	0.2274 (6)	0.6144 (7)	0.5145 (3)	0.0948 (17)
H2A	0.1791	0.5472	0.4885	0.114*
C3	0.1909 (5)	0.7490 (7)	0.4948 (3)	0.0865 (15)
H3A	0.1210	0.7776	0.4522	0.104*
C4	0.2547 (4)	0.8511 (5)	0.5364 (2)	0.0667 (11)
C5	0.2245 (6)	1.0016 (6)	0.5210 (3)	0.0875 (15)
H5A	0.1511	1.0396	0.4821	0.105*
C6	0.2971 (4)	1.0822 (5)	0.5601 (2)	0.0621 (10)
H6A	0.2807	1.1796	0.5447	0.074*
C7	0.3967 (5)	1.0394 (4)	0.6224 (3)	0.0706 (11)
H7A	0.4403	1.1045	0.6519	0.085*
C8	0.4309 (4)	0.8990 (4)	0.6405 (2)	0.0610 (9)
H8A	0.5021	0.8674	0.6820	0.073*
C9	0.3626 (4)	0.8004 (4)	0.5987 (2)	0.0534 (8)
C11	-0.0084 (5)	0.3546 (4)	0.8131 (2)	0.0638 (10)
H11A	-0.0742	0.4082	0.7720	0.096*
H11B	0.0482	0.2779	0.7866	0.096*
H11C	0.0699	0.4154	0.8286	0.096*
C12	-0.2066 (4)	0.4461 (3)	0.9459 (3)	0.0588 (9)
H12A	-0.2738	0.4975	0.9047	0.088*
H12B	-0.1149	0.5020	0.9504	0.088*
H12C	-0.2699	0.4266	1.0026	0.088*
C21	0.0638 (5)	-0.2325 (4)	0.8012 (2)	0.0618 (9)
H21A	0.0252	-0.2929	0.7638	0.093*
H21B	0.0920	-0.2890	0.8542	0.093*

H21C	0.1587	-0.1844	0.7708	0.093^{*}
C22	$-0.1126(5)$	$-0.0229(4)$	$0.7210(2)$	$0.0601(9)$
H22A	-0.1599	-0.0871	0.6892	0.090^{*}
H22B	-0.0071	0.0041	0.6910	0.090^{*}
H22C	-0.1828	0.0602	0.7242	0.090^{*}
C31	$0.3992(4)$	$0.2550(3)$	$0.9467(2)$	$0.0536(8)$
H31A	0.4504	0.3230	0.9006	0.080^{*}
H31B	0.4788	0.2149	0.9844	0.080^{*}
H31C	0.3121	0.3012	0.9805	0.080^{*}
C32	$0.5044(3)$	$0.0349(3)$	$0.8624(2)$	$0.0442(7)$
H32A	0.5610	0.0958	0.8142	0.066^{*}
H32B	0.4817	-0.0527	0.8429	0.066^{*}
H32C	0.5715	0.0156	0.9095	0.066^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.0638(3)$	$0.0365(2)$	$0.0456(3)$	$-0.00097(19)$	$-0.0139(2)$	$-0.00423(18)$
Co2	$0.0226(2)$	$0.0228(2)$	$0.0314(3)$	$-0.00025(17)$	$-0.00292(18)$	$-0.00259(18)$
C11	$0.1588(12)$	$0.0370(5)$	$0.0626(6)$	$-0.0162(6)$	$-0.0005(6)$	$-0.0004(4)$
C12	$0.0591(5)$	$0.0601(5)$	$0.0769(6)$	$-0.0037(4)$	$-0.0140(4)$	$-0.0104(4)$
C13	$0.0886(7)$	$0.0612(5)$	$0.0506(5)$	$0.0280(5)$	$-0.0216(4)$	$-0.0151(4)$
N	$0.0579(16)$	$0.0548(17)$	$0.0405(14)$	$-0.0099(13)$	$-0.0111(12)$	$-0.0073(12)$
S1	$0.0376(4)$	$0.0294(3)$	$0.0545(4)$	$0.0028(3)$	$-0.0158(3)$	$-0.0006(3)$
S2	$0.0322(3)$	$0.0401(4)$	$0.0366(4)$	$-0.0029(3)$	$-0.0049(3)$	$-0.0090(3)$
S3	$0.0250(3)$	$0.0296(3)$	$0.0396(4)$	$-0.0002(2)$	$-0.0032(3)$	$0.0012(3)$
O1	$0.0318(9)$	$0.0231(8)$	$0.0447(11)$	$0.0014(7)$	$-0.0088(8)$	$0.0001(7)$
O2	$0.0448(11)$	$0.0338(10)$	$0.0317(10)$	$-0.0067(8)$	$-0.0041(8)$	$-0.0049(8)$
O3	$0.0232(8)$	$0.0339(10)$	$0.0420(10)$	$-0.0012(7)$	$-0.0027(7)$	$0.0039(8)$
C1	$0.061(2)$	$0.066(2)$	$0.079(3)$	$-0.0140(18)$	$-0.024(2)$	$-0.022(2)$
C2	$0.082(3)$	$0.143(5)$	$0.074(3)$	$-0.030(3)$	$-0.008(2)$	$-0.056(3)$
C3	$0.069(3)$	$0.147(5)$	$0.050(2)$	$-0.008(3)$	$-0.023(2)$	$-0.023(3)$
C4	$0.051(2)$	$0.112(3)$	$0.0344(18)$	$-0.003(2)$	$-0.0007(15)$	$-0.0031(19)$
C5	$0.078(3)$	$0.110(4)$	$0.059(3)$	$0.031(3)$	$-0.009(2)$	$0.030(3)$
C6	$0.056(2)$	$0.083(3)$	$0.0409(19)$	$-0.0063(19)$	$-0.0049(16)$	$0.0146(18)$
C7	$0.074(3)$	$0.057(2)$	$0.077(3)$	$-0.0079(19)$	$-0.005(2)$	$0.000(2)$
C8	$0.062(2)$	$0.061(2)$	$0.059(2)$	$-0.0091(17)$	$-0.0185(17)$	$0.0077(17)$
C9	$0.0495(18)$	$0.073(2)$	$0.0360(17)$	$-0.0071(16)$	$-0.0040(14)$	$-0.0008(16)$
C11	$0.078(2)$	$0.053(2)$	$0.054(2)$	$0.0094(18)$	$-0.0079(18)$	$0.0151(16)$
C12	$0.0554(19)$	$0.0396(17)$	$0.083(3)$	$0.0199(15)$	$-0.0223(18)$	$-0.0105(17)$
C21	$0.074(2)$	$0.0475(19)$	$0.068(2)$	$0.0225(17)$	$-0.0182(19)$	$-0.0216(17)$
C22	$0.082(3)$	$0.060(2)$	$0.0423(18)$	$0.0125(18)$	$-0.0244(17)$	$-0.0116(16)$
C31	$0.065(2)$	$0.0356(16)$	$0.060(2)$	$-0.0148(15)$	$0.0069(16)$	$-0.0121(15)$
C32	$0.0398(15)$	$0.0405(16)$	$0.0468(17)$	$0.0067(12)$	$0.0089(13)$	$-0.0023(13)$

Geometric parameters ($\AA,{ }^{\circ}$)

Col-N	2.054 (3)	C4-C5	1.446 (6)
Co1-Cl1	2.2517 (10)	C5-C6	1.269 (6)
Co1-Cl2	2.2521 (11)	C5-H5A	0.9400
Co1-Cl3	2.2534 (10)	C6-C7	1.362 (5)
C02-O3	2.0606 (17)	C6-H6A	0.9400
$\mathrm{Co2-O} 3^{\text {i }}$	2.0607 (17)	C7- C 8	1.362 (5)
$\mathrm{Co2-O2}{ }^{\text {i }}$	2.0818 (18)	C7-H7A	0.9400
C02-O2	2.0819 (18)	C8-C9	1.404 (5)
Co2-O1 ${ }^{\text {i }}$	2.1258 (17)	C8-H8A	0.9400
Co2-O1	2.1258 (17)	C11-H11A	0.9700
$\mathrm{N}-\mathrm{C} 1$	1.331 (4)	C11-H11B	0.9700
$\mathrm{N}-\mathrm{C} 9$	1.383 (4)	C11-H11C	0.9700
S1-O1	1.5236 (18)	C12-H12A	0.9700
S1-C12	1.775 (3)	C12-H12B	0.9700
S1-C11	1.784 (4)	C12-H12C	0.9700
S2-02	1.5127 (19)	C21-H21A	0.9700
S2-C21	1.772 (3)	C21-H21B	0.9700
S2-C22	1.776 (3)	C21-H21C	0.9700
S3-03	1.5273 (19)	C22-H22A	0.9700
S3-C32	1.775 (3)	C22-H22B	0.9700
S3-C31	1.776 (3)	C22-H22C	0.9700
C1-C2	1.351 (6)	C31-H31A	0.9700
C1-H1A	0.9400	C31-H31B	0.9700
C2-C3	1.316 (7)	C31-H31C	0.9700
C2-H2A	0.9400	C32-H32A	0.9700
C3-C4	1.410 (6)	C32-H32B	0.9700
C3-H3A	0.9400	C32-H32C	0.9700
C4-C9	1.424 (5)		
$\mathrm{N}-\mathrm{Col-Cl1}$	107.09 (9)	C4-C5-H5A	120.0
$\mathrm{N}-\mathrm{Col}-\mathrm{Cl} 2$	107.76 (8)	C5-C6-C7	125.4 (4)
$\mathrm{Cl1}-\mathrm{Col}-\mathrm{Cl} 2$	108.21 (5)	C5-C6-H6A	117.3
$\mathrm{N}-\mathrm{Co} 1-\mathrm{Cl} 3$	108.80 (8)	C7-C6-H6A	117.3
$\mathrm{Cl1}-\mathrm{Col}-\mathrm{Cl} 3$	110.46 (4)	C6-C7-C8	117.8 (4)
C12-Co1-Cl3	114.26 (4)	C6-C7-H7A	121.1
$\mathrm{O} 3-\mathrm{Co} 2-\mathrm{O} 3^{\text {i }}$	180.0	C8-C7- H 7 A	121.1
$\mathrm{O} 3-\mathrm{Co} 2-\mathrm{O}^{\text {i }}$	90.17 (7)	C7- $\mathrm{C} 8-\mathrm{C} 9$	121.6 (4)
$\mathrm{O} 3-\mathrm{Co} 2-\mathrm{O}^{\text {i }}$	89.83 (7)	C7-C8-H8A	119.2
$\mathrm{O} 3-\mathrm{Co} 2-\mathrm{O} 2$	89.83 (7)	C9-C8-H8A	119.2
$\mathrm{O} 3-\mathrm{Co} 2-\mathrm{O} 2$	90.17 (7)	N-C9-C8	120.7 (3)
$\mathrm{O} 22^{\mathrm{i}} \mathrm{Co} 2-\mathrm{O} 2$	180.00 (10)	$\mathrm{N}-\mathrm{C} 9-\mathrm{C} 4$	121.2 (3)
$\mathrm{O} 3-\mathrm{Co} 2-\mathrm{Ol}^{\text {i }}$	91.82 (7)	C8-C9-C4	118.0 (4)
$\mathrm{O} 3-\mathrm{Co} 2-\mathrm{Ol}^{\text {i }}$	88.19 (7)	S1-C11-H11A	109.5
$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{Ol}^{\text {i }}$	86.29 (7)	S1-C11-H11B	109.5
$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{Ol}^{1}$	93.71 (7)	H11A-C11-H11B	109.5
O3-Co2-O1	88.18 (7)	S1-C11-H11C	109.5

$\mathrm{O} 3-\mathrm{Co} 2-\mathrm{O} 1$	91.81 (7)
$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{Co} 2-\mathrm{O} 1$	93.71 (7)
$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{O} 1$	86.29 (7)
$\mathrm{O} 1-\mathrm{Co} 2-\mathrm{O} 1$	180.000 (19)
$\mathrm{C} 1-\mathrm{N}-\mathrm{C} 9$	116.5 (3)
$\mathrm{C} 1-\mathrm{N}-\mathrm{Co} 1$	120.2 (3)
$\mathrm{C} 9-\mathrm{N}-\mathrm{Co} 1$	123.0 (2)
O1-S1-C12	103.99 (14)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 11$	105.22 (15)
C12-S1-C11	98.78 (18)
O2-S2-C21	105.12 (15)
$\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 22$	103.28 (15)
C21-S2-C22	98.54 (18)
O3-S3-C32	103.92 (12)
$\mathrm{O} 3-\mathrm{S} 3-\mathrm{C} 31$	104.93 (13)
C32-S3-C31	98.99 (16)
S1-O1-Co2	117.12 (10)
$\mathrm{S} 2-\mathrm{O} 2-\mathrm{Co} 2$	124.52 (11)
S3-O3-Co2	118.17 (10)
$\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$	124.9 (4)
$\mathrm{N}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	117.6
C2-C1-H1A	117.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	119.7 (4)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.2
C2-C3-C4	121.2 (4)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.4
C3-C4-C9	116.3 (4)
C3-C4-C5	126.7 (4)
C9-C4-C5	117.0 (4)
C6-C5-C4	120.0 (4)
C6-C5-H5A	120.0
$\mathrm{C} 12-\mathrm{S} 1-\mathrm{O} 1-\mathrm{Co} 2$	148.84 (16)
$\mathrm{C} 11-\mathrm{S} 1-\mathrm{O} 1-\mathrm{Co} 2$	-107.81 (16)
$\mathrm{C} 21-\mathrm{S} 2-\mathrm{O} 2-\mathrm{Co} 2$	-95.18 (18)
$\mathrm{C} 22-\mathrm{S} 2-\mathrm{O} 2-\mathrm{Co} 2$	162.00 (16)
$\mathrm{C} 32-\mathrm{S} 3-\mathrm{O} 3-\mathrm{Co} 2$	-145.35 (14)
$\mathrm{C} 31-\mathrm{S} 3-\mathrm{O} 3-\mathrm{Co} 2$	111.19 (15)
$\mathrm{C} 9-\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$	-4.9 (6)
$\mathrm{Col}-\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$	-179.3 (4)
$\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	5.5 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-3.5 (8)
C2-C3-C4-C9	1.4 (6)
C2-C3-C4-C5	-180.0 (4)

$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{H} 11 \mathrm{~B}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{~S} 1-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	109.5
$\mathrm{~S} 1-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
$\mathrm{~S} 1-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
$\mathrm{H} 12 \mathrm{~B}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
$\mathrm{~S} 2-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$	109.5
$\mathrm{~S} 2-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~B}$	109.5
$\mathrm{H} 21 \mathrm{~A}-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~B}$	109.5
$\mathrm{~S} 2-\mathrm{C} 21-\mathrm{H} 21 \mathrm{C}$	109.5
$\mathrm{H} 21 \mathrm{~A}-\mathrm{C} 21-\mathrm{H} 21 \mathrm{C}$	109.5
$\mathrm{H} 21 \mathrm{~B}-\mathrm{C} 21-\mathrm{H} 21 \mathrm{C}$	109.5
$\mathrm{~S} 2-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	109.5
$\mathrm{~S} 2-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$	109.5
$\mathrm{H} 22 \mathrm{~A}-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$	109.5
$\mathrm{~S} 2-\mathrm{C} 22-\mathrm{H} 22 \mathrm{C}$	109.5
$\mathrm{H} 22 \mathrm{~A}-\mathrm{C} 22-\mathrm{H} 22 \mathrm{C}$	109.5
$\mathrm{H} 22 \mathrm{~B}-\mathrm{C} 22-\mathrm{H} 22 \mathrm{C}$	109.5
$\mathrm{~S} 3-\mathrm{C} 31-\mathrm{H} 31 \mathrm{~A}$	109.5
$\mathrm{~S} 3-\mathrm{C} 31-\mathrm{H} 31 \mathrm{~B}$	109.5
$\mathrm{H} 31 \mathrm{~A}-\mathrm{C} 31-\mathrm{H} 31 \mathrm{~B}$	109.5
S3-C31-H31C	109.5
H31A-C31-H31C	109.5
H31B-C31-H31C	109.5
S3-C32-H32A	109.5
S3-C32-H32B	109.5
H32A-C32-H32B	109.5
S3-C32-H32C	109.5
H32A-C32-H32C	109.5
H32B-C32-H32C	109.5

$-5.0(7)$
4.8 (6)
-1.9 (6)
-177.3 (3)
-3.1(4)
2.5 (5)
176.7 (2)
179.6 (3)
-0.3 (5)
-0.9 (5)
-179.7 (3)
178.9 (3)

supporting information

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-176.3(4)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$2.3(6)$	$0.2(5)$

Symmetry code: (i) $-x,-y,-z+2$.

