

Received 1 January 2018 Accepted 9 February 2018

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; 1,2-dihydronaphthalene derivative; hydrogen bonding.

CCDC reference: 1823056

Supporting information: this article has supporting information at journals.iucr.org/e

In the title compound (Fig. 1), the 1,2-dihydronaphthalene C1–C10 ring system is not strictly planar and the cyclohexa-

^aDepartment of Physics, Jeppiaar Engineering College, Jeppiaar Nagar, OMR, Chennai 600 119, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India. *Correspondence e-mail: g.jagan85@gmail.com

Crystal structure of dimethyl 1-oxo-2,4-diphenyl-

1,2-dihydronaphthalene-2,3-dicarboxylate

In the title compound, $C_{26}H_{20}O_5$, a 1,2-dihydronaphthalene derivative, the cyclohexa-1,3-diene ring of the 1,2-dihydronaphthalene ring system adopts a half-chair conformation. The mean plane of the 1,2-dihydronapthalene ring system makes dihedral angles of 86.23 (6) and 64.80 (7)° with two phenyl rings. The carbonyl O atom attached to the dihydronaphthalene ring system deviates from the mean plane of the 1,2-dihydronaphthalene ring system deviates from the mean plane of the 1,2-dihydronaphthalene ring system by 0.618 (1) Å. In the crystal, the molecules are linked into layers parallel to the *bc* plane *via* two kinds of C–H···O interactions, one of which forms a C(10) chain motif running along the *c*-axis direction and the other forms an $R_2^2(6)$ ring motif. Adjacent layers are further connected by C–H··· π and offset π – π interactions [centroid–centroid distance = 3.6318 (9) Å].

1. Chemical context

Naphthalene derivatives have manifested applications in many fields, for example, as colorants, explosives, disinfectants, insecticides and the plant hormone auxin. Naphthalene is believed to play a role in the chemical defence against biological enemies (Wiltz et al., 1998; Wright et al., 2000). Naphthalene derivatives have been identified as a new range of potent anti-microbials that are effective against a wide range of human pathogens and have diverse and interesting antibiotic properties with minimum toxicity (Rokade & Sayyed, 2009; Upadhayaya et al., 2010). Compounds with noncoplanarly accumulated aromatic rings have received attention from organic chemists and materials chemists as unique structural building blocks, because they provide characteristic optical and electronic properties originating from their structural features. For example, biphenyl and binaphthyl are applied to optically active molecular catalysts and polymer materials on the basis of their axial chiralities (Deria et al., 2013). The structures of similar 1-oxo-1,2-dihydronaphtalene derivatives, namely, dimethyl 4-(4-methoxyphenyl)-2-(4methylphenyl)-1-oxo-1,2-dihydronaphthalene-2,3-dicarboxylate, dimethyl 1-oxo-2-(pyren-4-yl)-4-(thiophen-2-yl)-1,2-dihydronaphthalene-2,3-dicarboxylate and ethyl 1-oxo-2phenyl-2,4-bis(thiophen-2-yl)-1,2-dihydronaphthalene-3carboxylate, have been reported by Gopinath et al. (2017).

2. Structural commentary

research communications

1,3-diene C5–C10 ring adopts a half-chair conformation with puckering and smallest displacement parameters $q_2 =$ 0.3091 (14) Å, $q_3 = 0.1461$ (14) Å, $\varphi_2 = 155.9$ (3)° and $\theta =$ 64.7 (2)° and $\Delta C_s = 4.41$ (19). The dihedral angle between the C1–C6 and C5–C10 rings is 10.15 (6)°. The C11–C16 phenyl ring is almost perpendicular to the 1,2-dihydronaphthalene C1–C10 ring system with a dihedral angle of 83.83 (7)° between them. The other phenyl ring (C21–C26) makes dihedral angles of 64.80 (7) and 29.06 (8)° with the mean plane of C1–C10 ring system and the C11–C16 phenyl ring, respectively. Atom O1 of the carbonyl group deviates from the mean plane of the 1,2-dihydronaphthalene ring system by 0.647 (1) Å.

3. Supramolecular features

In the crystal, the molecules are linked via $C-H\cdots O$ hydrogen bonds (C24-H24 $\cdots O2^{i}$; symmetry code as in

Figure 1

The molecular structure of the title compound with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radii.

Table 1	
Hydrogen-bond geor	netry (Å, °).

Cg3 is the centroid of the phenyl C11–C16 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C24 - H24 \cdots O2^{i}$	0.93	2.59	3.449 (3)	155
$C20 - H20B \cdots O5^{ii}$	0.96	2.59	3.430 (2)	146
$C3 - H3 \cdots Cg3^{iii}$	0.93	2.77	3.6338 (16)	154

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z; (iii) -x, -y + 1, -z.

Table 1), which generates C(10) zigzag chains running along the *c*-axis direction (Fig. 2). In addition, the chains are linked *via* pairs of C-H···O interactions (C20-H20B···O5ⁱⁱ; Table 2) with an $R_2^2(6)$ ring motif (Fig. 3), forming layers

Figure 2

A packing diagram of the title compound, showing a C(10) zigzag chain along to the *c* axis formed *via* $C-H \cdots O$ hydrogen bonds (dashed lines). The H atoms not involved in the hydrogen bonding have been excluded for clarity. [Symmetry code: (i) $x, \frac{3}{2} - y, -\frac{1}{2} + z$.]

A part of the crystal packing of the title compound, showing an $R^2_2(6)$ inversion dimer formed *via* a pair of C-H···O hydrogen bonds (dashed lines). The H atoms not involved in the hydrogen bonding have been excluded for clarity. [Symmetry code: (ii) 1 - x, 1 - y, -z.]

parallel to the *bc* plane. Between the layers there are also C– H··· π (C3–H3···*Cg*3ⁱⁱⁱ; Table 1) and π – π stacking interactions (Fig. 4) [*Cg*1···*Cg*1ⁱⁱⁱ = 3.6318 (9) Å, interplanar distance = 3.343 (1) Å and offset distance = 1.419 (1) Å; symmetry code: (iii) –*x*, 1 – *y*, –*z*; *Cg*1 and *Cg*3 are the centroids of the C1–C6 and C11–C16 rings, respectively].

4. Synthesis and crystallization

To a solution of 1,3-diphenvlisobenzofuran (1 g, 3.70 mmol) in drv dichloromethane, dimethyl acetylenedicarboxylate (0.58 g, 4.07 mmol) was added and the reaction mixture was stirred at room temperature for 1 h. Removal of solvent followed by column chromatographic purification (silica gel; 15% ethyl acetate in hexane) afforded isobenzofurandimethyl acetylenedicarboxylate adduct as a colourless solid (1.10 g, 72%). To a solution of the adduct (0.50 g, 1.21 mmol) in dry dichloromethane, BF₃·OEt₂ (0.075 g, 0.52 mmol) was added and the reaction mixture was stirred at room temperature for 5 min. Removal of solvent followed by column chromatographic purification (silica gel; 15% ethyl acetate in hexane) gave the title compound as a colourless solid (0.45 g, 94%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of an ethyl acetate solution of the title compound at room temperature (m.p. = 454-456 K).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were localized in a difference-Fourier map and then were treated as riding atoms, with C-H = 0.93 and 0.96 Å for aryl and methyl groups, respectively, and with $U_{\rm iso}(\rm H) = 1.2U_{eq}(aryl C)$ and $1.5U_{eq}(\rm methyl C)$, allowing for free rotation of the methyl groups.

Figure 4

A packing diagram of the title compound, showing C-H·· π and π - π interactions (dashed lines), where Cg1 and Cg3 are the centroids of the phenyl C1-C6 and C11-C16 rings, respectively. [Symmetry code: (iii) -x, 1 - y, -z.]

Table 2
Experimental details

Crystal data	
Chemical formula	$C_{26}H_{20}O_5$
M _r	412.42
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	15.8021 (8), 7.4706 (4), 17.8599 (9)
β (°)	96.581 (2)
$V(Å^3)$	2094.49 (19)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.35 \times 0.30 \times 0.25$
Data collection	
Diffractometer	Bruker Kappa APEXII
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2008)
T_{\min}, T_{\max}	0.969, 0.978
No. of measured, independent and	21819, 4614, 3375
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.028
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.641
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.108, 1.03
No. of reflections	4614
No. of parameters	283
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.22, -0.15

Computer programs: *APEX2* and *SAINT* (Bruker, 2008), *SHELXS97* and *SHELXL97* (Sheldrick, 2008), *ORTEP-3 for Windows* (Farrugia, 2012), *Mercury* (Macrae *et al.*, 2008) and *PLATON* (Spek, 2009).

Acknowledgements

The authors thank Dr P. K. Sudhadevi Antharjanam, Technical Officer, SAIF, IIT Madras, Chennai, India, for the data collection. GJ thanks Jeppiaar Engineering College, Rajiv Gandhi Salai, Chennai, India for their support.

References

- Bruker (2008). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deria, P., Von Bargen, C. D., Olivier, J. H., Kumbhar, A. S., Saven, J. G. & Therien, M. J. (2013). J. Am. Chem. Soc. 135, 16220–16234.
- Farrugia, L. J. (2012). J. Appl. Cryst. **45**, 849–854.
- Gopinath, S., Narayanan, P., Sethusankar, K., Karunakaran, J., Nandakumar, M. & Mohanakrishnan, A. K. (2017). *Acta Cryst.* E73, 177–182.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). *J. Appl. Cryst.* **41**, 466–470.
- Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972-980.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Upadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). *Eur. J. Med. Chem.* **45**, 1854–1867.
- Wiltz, B. A., Henderson, G. & Chen, J. (1998). *Environ. Entomol.* 27, 936–940.
- Wright, M. S., Lax, A. R., Henderson, G. & Chen, J. A. (2000). *Mycologia*, 92, 42–45.

supporting information

Acta Cryst. (2018). E74, 349-351 [https://doi.org/10.1107/S2056989018002360]

Crystal structure of dimethyl 1-oxo-2,4-diphenyl-1,2-dihydronaphthalene-2,3dicarboxylate

Gajendran Jagadeesan, Immanuel Monica Chandramalar, Jayachandran Karunakaran, Solaiappan Gopinath and Arasambattu K. Mohanakrishnan

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Dimethyl 1-oxo-2,4-diphenyl-1,2-dihydronaphthalene-2,3-dicarboxylate

Crystal data $C_{26}H_{20}O_5$ $M_r = 412.42$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 15.8021 (8) Å b = 7.4706 (4) Å c = 17.8599 (9) Å $\beta = 96.581$ (2)° V = 2094.49 (19) Å³ Z = 4

Data collection

Bruker Kappa APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega \& \varphi$ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.969, T_{\max} = 0.978$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.108$ S = 1.034614 reflections 283 parameters 0 restraints F(000) = 864 $D_x = 1.308 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3375 reflections $\theta = 2.3-27.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.35 \times 0.30 \times 0.25 \text{ mm}$

21819 measured reflections 4614 independent reflections 3375 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 27.1^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -20 \rightarrow 13$ $k = -9 \rightarrow 8$ $l = -22 \rightarrow 21$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0478P)^{2} + 0.4036P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.017$ $\Delta\rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -0.14 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0033 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.05662 (10)	0.2111 (2)	0.01264 (8)	0.0463 (4)	
H1	0.0388	0.1135	0.0391	0.056*	
C2	0.00596 (10)	0.2750 (2)	-0.04963 (8)	0.0512 (4)	
H2	-0.0464	0.2217	-0.0648	0.061*	
C3	0.03304 (10)	0.4172 (2)	-0.08905 (8)	0.0488 (4)	
Н3	-0.0011	0.4600	-0.1311	0.059*	
C4	0.11058 (9)	0.4978 (2)	-0.06695 (7)	0.0433 (3)	
H4	0.1284	0.5932	-0.0947	0.052*	
C5	0.16244 (8)	0.43761 (18)	-0.00354 (7)	0.0354 (3)	
C6	0.13411 (8)	0.29249 (18)	0.03586 (7)	0.0368 (3)	
C7	0.18723 (9)	0.22355 (19)	0.10317 (7)	0.0384 (3)	
C8	0.24887 (8)	0.35947 (17)	0.14498 (6)	0.0338 (3)	
C9	0.28722 (8)	0.48058 (18)	0.08927 (7)	0.0336 (3)	
C10	0.24565 (8)	0.52183 (18)	0.02146 (7)	0.0338 (3)	
C11	0.19360 (8)	0.46192 (18)	0.19635 (6)	0.0344 (3)	
C12	0.18236 (8)	0.64551 (18)	0.19151 (7)	0.0368 (3)	
H12	0.2110	0.7110	0.1580	0.044*	
C13	0.12938 (9)	0.7325 (2)	0.23568 (8)	0.0447 (3)	
H13	0.1228	0.8560	0.2319	0.054*	
C14	0.08630 (10)	0.6384 (2)	0.28520 (8)	0.0530 (4)	
H14	0.0499	0.6971	0.3145	0.064*	
C15	0.09745 (11)	0.4569 (3)	0.29111 (9)	0.0595 (5)	
H15	0.0691	0.3926	0.3252	0.071*	
C16	0.15022 (10)	0.3687 (2)	0.24720 (8)	0.0505 (4)	
H16	0.1568	0.2453	0.2517	0.061*	
C17	0.31896 (9)	0.24874 (19)	0.19065 (8)	0.0430 (3)	
C18	0.44438 (13)	0.0867 (3)	0.17834 (12)	0.0857 (7)	
H18A	0.4743	0.1552	0.2185	0.129*	
H18B	0.4820	0.0603	0.1412	0.129*	
H18C	0.4246	-0.0231	0.1982	0.129*	
C19	0.37168 (9)	0.55771 (19)	0.11799 (7)	0.0387 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C20	0.50781 (11)	0.6419 (3)	0.08805 (11)	0.0783 (6)	
H20A	0.5019	0.7671	0.0983	0.117*	
H20B	0.5429	0.6268	0.0480	0.117*	
H20C	0.5338	0.5825	0.1325	0.117*	
C21	0.27693 (8)	0.6601 (2)	-0.02840 (7)	0.0398 (3)	
C22	0.28407 (11)	0.8357 (2)	-0.00451 (10)	0.0593 (4)	
H22	0.2708	0.8659	0.0433	0.071*	
C23	0.31073 (13)	0.9673 (3)	-0.05105 (14)	0.0824 (6)	
H23	0.3156	1.0851	-0.0344	0.099*	
C24	0.33002 (12)	0.9242 (4)	-0.12164 (13)	0.0846 (7)	
H24	0.3474	1.0127	-0.1531	0.102*	
C25	0.32355 (11)	0.7507 (4)	-0.14553 (9)	0.0723 (6)	
H25	0.3375	0.7214	-0.1932	0.087*	
C26	0.29671 (9)	0.6184 (3)	-0.10003 (8)	0.0531 (4)	
H26	0.2918	0.5010	-0.1173	0.064*	
01	0.18036 (7)	0.07330 (14)	0.12689 (6)	0.0561 (3)	
O2	0.32467 (8)	0.21704 (16)	0.25637 (6)	0.0629 (3)	
03	0.37245 (7)	0.18860 (15)	0.14387 (6)	0.0548 (3)	
O4	0.38995 (7)	0.60087 (17)	0.18244 (5)	0.0600(3)	
05	0.42502 (6)	0.56566 (15)	0.06595 (5)	0.0508 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0517 (8)	0.0388 (8)	0.0475 (8)	-0.0064 (7)	0.0016 (6)	-0.0088 (6)
C2	0.0441 (8)	0.0553 (10)	0.0514 (8)	-0.0034 (7)	-0.0068 (7)	-0.0165 (7)
C3	0.0473 (8)	0.0566 (10)	0.0394 (7)	0.0071 (7)	-0.0084 (6)	-0.0076 (7)
C4	0.0447 (8)	0.0500 (9)	0.0340 (7)	0.0043 (7)	-0.0011 (6)	0.0003 (6)
C5	0.0384 (7)	0.0373 (8)	0.0300 (6)	0.0046 (6)	0.0016 (5)	-0.0049 (5)
C6	0.0422 (7)	0.0334 (7)	0.0338 (6)	0.0010 (6)	0.0006 (5)	-0.0076 (5)
C7	0.0466 (8)	0.0326 (8)	0.0359 (7)	0.0017 (6)	0.0044 (6)	-0.0022 (6)
C8	0.0398 (7)	0.0326 (7)	0.0281 (6)	0.0019 (5)	-0.0006(5)	0.0004 (5)
C9	0.0361 (6)	0.0361 (7)	0.0288 (6)	0.0026 (5)	0.0041 (5)	-0.0029 (5)
C10	0.0362 (6)	0.0370 (7)	0.0285 (6)	0.0045 (6)	0.0052 (5)	-0.0026 (5)
C11	0.0385 (7)	0.0366 (8)	0.0275 (6)	-0.0022 (6)	0.0013 (5)	-0.0001(5)
C12	0.0380 (7)	0.0380 (8)	0.0342 (6)	-0.0032 (6)	0.0041 (5)	0.0007 (5)
C13	0.0464 (8)	0.0421 (9)	0.0454 (8)	0.0010 (6)	0.0047 (6)	-0.0078 (6)
C14	0.0490 (9)	0.0658 (12)	0.0463 (8)	-0.0050 (8)	0.0146 (7)	-0.0155 (8)
C15	0.0701 (11)	0.0657 (12)	0.0475 (9)	-0.0119 (9)	0.0272 (8)	0.0014 (8)
C16	0.0668 (10)	0.0416 (9)	0.0452 (8)	-0.0066 (7)	0.0155 (7)	0.0035 (7)
C17	0.0506 (8)	0.0381 (8)	0.0383 (7)	0.0050 (6)	-0.0036 (6)	0.0008 (6)
C18	0.0694 (13)	0.0904 (16)	0.0951 (15)	0.0431 (11)	0.0000 (11)	0.0129 (12)
C19	0.0384 (7)	0.0431 (8)	0.0344 (7)	0.0035 (6)	0.0030 (5)	-0.0026 (6)
C20	0.0424 (9)	0.1093 (17)	0.0855 (13)	-0.0188 (10)	0.0176 (9)	-0.0311 (12)
C21	0.0363 (7)	0.0489 (9)	0.0343 (7)	0.0033 (6)	0.0039 (5)	0.0079 (6)
C22	0.0679 (11)	0.0505 (11)	0.0622 (10)	0.0009 (8)	0.0191 (8)	0.0096 (8)
C23	0.0831 (14)	0.0603 (13)	0.1064 (17)	-0.0032 (10)	0.0224 (12)	0.0306 (12)
C24	0.0596 (12)	0.1074 (19)	0.0883 (15)	-0.0008 (12)	0.0150 (10)	0.0621 (14)

supporting information

C25	0.0470 (9)	0.128(2)	0 0429 (9)	0.0034(11)	0 0090 (7)	0.0312(11)
C26	0.0470(9) 0.0438(8)	0.120(2) 0.0809(12)	0.0429(9) 0.0347(7)	0.0034 (11)	0.0090(7) 0.0045(6)	0.0512(11) 0.0059(7)
01	0.0767 (8)	0.0338 (6)	0.0554 (6)	-0.0059(5)	-0.0029(5)	0.0052(5)
02	0.0806 (8)	0.0670 (8)	0.0383 (6)	0.0193 (6)	-0.0058(5)	0.0116 (5)
O3	0.0531 (6)	0.0581 (7)	0.0521 (6)	0.0213 (5)	0.0011 (5)	-0.0005 (5)
O4	0.0472 (6)	0.0932 (9)	0.0387 (5)	-0.0121 (6)	0.0013 (4)	-0.0186 (6)
O5	0.0362 (5)	0.0741 (8)	0.0430 (5)	-0.0041 (5)	0.0081 (4)	-0.0076 (5)

Geometric parameters (Å, °)

C1—C2	1.379 (2)	C14—H14	0.9300
C1—C6	1.3873 (19)	C15—C16	1.376 (2)
C1—H1	0.9300	С15—Н15	0.9300
C2—C3	1.370 (2)	C16—H16	0.9300
C2—H2	0.9300	C17—O2	1.1905 (16)
C3—C4	1.381 (2)	C17—O3	1.3328 (18)
С3—Н3	0.9300	C18—O3	1.4456 (19)
C4—C5	1.3942 (17)	C18—H18A	0.9600
C4—H4	0.9300	C18—H18B	0.9600
C5—C6	1.3940 (19)	C18—H18C	0.9600
C5—C10	1.4796 (18)	C19—O4	1.1985 (15)
C6—C7	1.4777 (18)	C19—O5	1.3256 (17)
C7—O1	1.2090 (17)	C20—O5	1.4399 (19)
C7—C8	1.5397 (18)	C20—H20A	0.9600
C8—C9	1.5212 (18)	C20—H20B	0.9600
C8—C17	1.5392 (17)	C20—H20C	0.9600
C8—C11	1.5408 (18)	C21—C22	1.380 (2)
C9—C10	1.3457 (16)	C21—C26	1.3867 (19)
C9—C19	1.4897 (18)	C22—C23	1.384 (2)
C10-C21	1.4852 (18)	С22—Н22	0.9300
C11—C12	1.3844 (19)	C23—C24	1.369 (3)
C11—C16	1.3866 (19)	С23—Н23	0.9300
C12—C13	1.3774 (19)	C24—C25	1.365 (3)
C12—H12	0.9300	C24—H24	0.9300
C13—C14	1.371 (2)	C25—C26	1.377 (3)
С13—Н13	0.9300	С25—Н25	0.9300
C14—C15	1.369 (2)	С26—Н26	0.9300
C2—C1—C6	120.04 (15)	C14—C15—C16	120.74 (15)
C2	120.0	C14—C15—H15	119.6
C6—C1—H1	120.0	С16—С15—Н15	119.6
C3—C2—C1	119.74 (14)	C15—C16—C11	120.65 (15)
С3—С2—Н2	120.1	С15—С16—Н16	119.7
C1—C2—H2	120.1	C11—C16—H16	119.7
C2—C3—C4	120.68 (13)	O2—C17—O3	124.69 (13)
С2—С3—Н3	119.7	O2—C17—C8	126.72 (14)
С4—С3—Н3	119.7	O3—C17—C8	108.57 (11)
C3—C4—C5	120.74 (14)	O3—C18—H18A	109.5

C3—C4—H4	119.6	O3—C18—H18B	109.5
C5—C4—H4	119.6	H18A—C18—H18B	109.5
C6—C5—C4	117.90 (12)	O3—C18—H18C	109.5
C6—C5—C10	120.27 (11)	H18A—C18—H18C	109.5
C4—C5—C10	121.82 (12)	H18B—C18—H18C	109.5
C1—C6—C5	120.89 (12)	O4—C19—O5	123.97 (13)
C1—C6—C7	119.35 (13)	O4—C19—C9	122.85 (13)
C5—C6—C7	119.76 (12)	O5—C19—C9	113.11 (11)
O1—C7—C6	122.90 (12)	O5—C20—H20A	109.5
01	121.30 (11)	O5—C20—H20B	109.5
C6-C7-C8	115.69 (11)	H20A—C20—H20B	109.5
C9—C8—C17	110.48 (11)	O5—C20—H20C	109.5
C9-C8-C7	110.63 (10)	$H_{20}A - C_{20} - H_{20}C$	109.5
C17 - C8 - C7	106 22 (10)	H_{20B} C_{20} H_{20C}	109.5
C9-C8-C11	112.92(10)	$C_{22} = C_{21} = C_{26}$	118 68 (14)
C17 - C8 - C11	111.96 (10)	$C_{22} = C_{21} = C_{10}$	110.00(11) 119.79(12)
C7-C8-C11	104 24 (10)	$C_{26} = C_{21} = C_{10}$	121 49 (14)
C_{10} C_{9} C_{19}	123 16 (12)	$C_{20} = C_{21} = C_{10}$	121.49(14) 120.60(17)
C10-C9-C8	123.10(12) 122.34(11)	$C_{21} = C_{22} = C_{23}$	119 7
C19 - C9 - C8	1122.34(11) 114.40(10)	C_{23} C_{22} H_{22}	119.7
$C_{1}^{0} - C_{1}^{0} - C_{5}^{0}$	119.96(12)	$C_{23} = C_{22} = H_{22}$	119.7 120.1(2)
$C_{2}^{0} - C_{10}^{0} - C_{21}^{0}$	117.90(12) 122.49(12)	$C_{24} = C_{23} = C_{22}$	110.0
$C_{2} = C_{10} = C_{21}$	122.49(12) 117.40(10)	$C_{22} = C_{23} = H_{23}$	119.9
$C_{12} = C_{10} = C_{21}$	117.40(10) 117.97(13)	$C_{22} = C_{23} = \Pi_{23}$	119.5
$C_{12} = C_{11} = C_{10}$	117.97(13) 122.16(11)	$C_{25} = C_{24} = C_{25}$	119.04 (10)
$C_{12} - C_{11} - C_{8}$	122.10(11) 110.81(12)	$C_{23} = C_{24} = H_{24}$	120.2
$C_{10} = C_{11} = C_{8}$	119.01(12) 120.02(13)	$C_{23} = C_{24} = 1124$	120.2 120.04(18)
$C_{13} = C_{12} = C_{11}$	120.92 (13)	$C_{24} = C_{25} = C_{20}$	120.94 (18)
$C_{13} - C_{12} - H_{12}$	119.5	$C_{24} = C_{23} = H_{23}$	119.5
C14 C12 - H12	119.3 120.45 (14)	$C_{20} = C_{23} = H_{23}$	119.5
C14 - C13 - C12	120.45 (14)	$C_{25} = C_{20} = C_{21}$	120.02 (18)
$C_{12} = C_{12} = H_{12}$	119.0	$C_{23} = C_{20} = H_{20}$	120.0
C12 - C13 - H13	119.8	$C_{21} = C_{20} = H_{20}$	120.0 115.77(12)
C15 - C14 - C13	119.23 (14)	$C_{10} = 05 = C_{10}$	113.77(13)
C13 - C14 - H14	120.4	C19—03—C20	117.10(12)
С13—С14—Н14	120.4		
C6 C1 C2 C3	10(2)	C9 C8 C11 C16	176 27 (12)
$C_{1} = C_{2} = C_{3}$	-0.1(2)	$C_{17} = C_{10} = C_{11} = C_{10}$	-58.27(12)
$C_1 - C_2 - C_3 - C_4$	-0.8(2)	C7 C8 C11 C16	56.13 (14)
$C_2 - C_3 - C_4 - C_5$	1.0(2)	$C_{16} = C_{11} = C_{10}$	-0.28(18)
$C_{3} = C_{4} = C_{5} = C_{0}$	-170.82(13)	$C_{10} = C_{11} = C_{12} = C_{13}$	0.28(18)
$C_{3} = C_{4} = C_{5} = C_{10}$	-1/9.82(13) -0.8(2)	$C_{0} = C_{11} = C_{12} = C_{13}$	-0.3(2)
$C_2 = C_1 = C_0 = C_3$	0.0(2)	C12 - C12 - C13 - C14	0.3(2)
$C_2 = C_1 = C_0 = C_7$	-0.2(2)	C_{12} C_{13} C_{14} C_{15} C_{16}	1.0(2)
$C_{1} = C_{2} = C_{1} = C_{1}$	-170.37(12)	C_{13} C_{14} C_{15} C_{16} C_{11}	1.0(2)
$C_{10} = C_{10} = C_{10} = C_{10}$	1/9.37(12) 170.65(12)	$C_{14} = C_{13} = C_{10} = C_{11}$	0.4(2)
$C_{+} - C_{-} - C_{-$	1/3.03(12)	C_{12} C_{11} C_{16} C_{15}	0.2(2)
$C_{10} = C_{3} = C_{0} = C_{1}$	0.44(18)	$C_{0} = C_{11} = C_{10} = C_{12}$	-1/7.00(13)
$U_1 - U_0 - U_1 - U_1$	21.7 (2)	$U_{2} = U_{3} = U_{1} = U_{2}$	138.37 (16)

C5-C6-C7-O1	-158.09 (14)	C7—C8—C17—O2	-101.40 (17)
C1—C6—C7—C8	-154.54 (12)	C11—C8—C17—O2	11.8 (2)
C5—C6—C7—C8	25.65 (18)	C9—C8—C17—O3	-42.97 (14)
O1—C7—C8—C9	145.22 (13)	C7—C8—C17—O3	77.06 (14)
C6—C7—C8—C9	-38.46 (15)	C11—C8—C17—O3	-169.76 (11)
O1—C7—C8—C17	25.29 (17)	C10—C9—C19—O4	140.82 (15)
C6—C7—C8—C17	-158.39 (11)	C8—C9—C19—O4	-35.58 (19)
O1—C7—C8—C11	-93.12 (15)	C10—C9—C19—O5	-42.04 (18)
C6—C7—C8—C11	83.21 (13)	C8—C9—C19—O5	141.56 (12)
C17—C8—C9—C10	146.53 (12)	C9—C10—C21—C22	-62.17 (19)
C7—C8—C9—C10	29.18 (17)	C5-C10-C21-C22	113.49 (15)
C11—C8—C9—C10	-87.22 (15)	C9—C10—C21—C26	120.02 (15)
C17—C8—C9—C19	-37.04 (15)	C5-C10-C21-C26	-64.33 (17)
C7—C8—C9—C19	-154.38 (11)	C26—C21—C22—C23	-0.2 (2)
C11—C8—C9—C19	89.22 (13)	C10—C21—C22—C23	-178.11 (15)
C19—C9—C10—C5	179.15 (12)	C21—C22—C23—C24	0.3 (3)
C8—C9—C10—C5	-4.73 (19)	C22—C23—C24—C25	-0.6 (3)
C19—C9—C10—C21	-5.3 (2)	C23—C24—C25—C26	0.9 (3)
C8—C9—C10—C21	170.82 (12)	C24—C25—C26—C21	-0.9 (2)
C6—C5—C10—C9	-11.87 (19)	C22—C21—C26—C25	0.6 (2)
C4—C5—C10—C9	168.95 (13)	C10-C21-C26-C25	178.39 (13)
C6-C5-C10-C21	172.36 (12)	O2—C17—O3—C18	-3.7 (2)
C4—C5—C10—C21	-6.82 (18)	C8—C17—O3—C18	177.83 (14)
C9—C8—C11—C12	-0.86 (16)	O4—C19—O5—C20	-4.2 (2)
C17—C8—C11—C12	124.60 (13)	C9—C19—O5—C20	178.73 (14)
C7—C8—C11—C12	-121.00 (12)		

Hydrogen-bond geometry (Å, °)

*Cg*3 is the centroid of the phenyl C11–C16 ring.

D—H···A	D—H	Н…А	D··· A	D—H···A	
C24— $H24$ ···O2 ⁱ	0.93	2.59	3.449 (3)	155	
C20—H20 <i>B</i> ···O5 ⁱⁱ	0.96	2.59	3.430 (2)	146	
С3—Н3…Сд3ііі	0.93	2.77	3.6338 (16)	154	

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z.