

Received 30 January 2018 Accepted 31 January 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

‡ Additional correspondence author, e-mail: awang\_normah@yahoo.com

**Keywords:** crystal structure; organotin; dithiocarbamate; Hirshfeld surface analysis.

CCDC references: 1821129; 1821128

**Supporting information**: this article has supporting information at journals.iucr.org/e



# Rapidah Mohamad,<sup>a</sup> Normah Awang,<sup>b</sup>‡ Nurul Farahana Kamaludin,<sup>b</sup> Mukesh M. Jotani<sup>c</sup> and Edward R. T. Tiekink<sup>d</sup>\*

<sup>a</sup>Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, <sup>b</sup>Environmental Health and Industrial Safety Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, <sup>c</sup>Department of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and <sup>d</sup>Research Centre for Chemical Crystallography, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. \*Correspondence e-mail: edwardt@sunway.edu.my

The crystal and molecular structures of the two title organotin dithiocarbamate compounds,  $[Sn(C_4H_9)_2(C_7H_{14}NO_2S_2)_2]$ , (I), and  $[Sn(C_6H_5)_3(C_5H_{10}NOS_2)]$ , (II), are described. Both structures feature asymmetrically bound dithiocarbamate ligands leading to a skew-trapezoidal bipyramidal geometry for the metal atom in (I) and a distorted tetrahedral geometry in (II). The complete molecule of (I) is generated by a crystallographic twofold axis (Sn site symmetry 2). In the crystal of (I), molecules self-assemble into a supramolecular array parallel to  $(10\overline{1})$  via methylene-C-H···O(methoxy) interactions. In the crystal of (II), supramolecular dimers are formed via pairs of weak phenyl-C-H··· $\pi$ (phenyl) contacts. In each of (I) and (II), the specified assemblies connect into a threedimensional architecture without directional interactions between them. Hirshfeld surface analyses confirm the importance of H···H contacts in the molecular packing of each of (I) and (II), and in the case of (I), highlight the importance of short methoxy-H···H(butyl) contacts between layers.

### 1. Chemical context

While formerly the purview of all-alkyl substituents (Hogarth, 2005; Heard, 2005), recent work in the chemistry of dithiocarbamate ligands,  $^{-}S_2CN(R)R'$ , has increasingly seen the inclusion of oxygen atoms in these N-bound groups (Hogarth et al., 2009), leading to different chemistry/biochemistry. Oxygen can be present as a hydroxyl group, giving rise to supramolecular aggregation patterns based on hydrogen bonding for otherwise non-aggregating species (Tan et al., 2016; Jotani et al., 2017) or as an ether, giving rise to compounds with biological activity (Ferreira et al., 2012). Organotin dithiocarbamates have long been known to possess biological activity, in particular as anti-tumour and antibacterial agents (Tiekink, 2008). In keeping with the aforementioned, several recent studies have appeared investigating the biological activity of metal dithiocarbamates where the ligand contains at least one 2-methoxyethyl substituent (Khan et al., 2013, 2016), including anti-bacterial potential of organotins (Mohamad, Awang, Kamaludin & Abu Bakar, 2016; Mohamad, Awang & Kamaludin, 2016). The latter



studies have been augmented by several structural investigations in recent times (Mohamad, Awang, Jotani & Tiekink, 2016; Mohamad, Awang, Kamaludin, Jotani *et al.*, 2016; Mohamad *et al.*, 2017). In a continuation of these structural studies, herein, the crystal and molecular structures of  $(n-Bu)_2Sn[S_2CN(CH_2CH_2OCH_3)_2]_2$  (I) and  $(C_6H_5)_3Sn-[S_2CN(CH_3)CH_2CH_2OCH_3]$  (II) are reported along with a Hirshfeld surface analysis to provide more details on the molecular packing, which generally lacks directional intermolecular interactions.



#### 1.1. Structural commentary

The tin atom in (I), Fig. 1a, lies on a crystallographic twofold axis so that the asymmetric unit comprises half a molecule. The dithiocarbamate ligand coordinates to the tin atom with quite disparate Sn-S bond lengths with  $\Delta(Sn-S) = d(Sn-S)$  $S_{long}$ ) - (Sn-S)<sub>short</sub> = 0.38 Å, Table 1. The disparity in the Sn-S bond lengths is reflected in systematic differences in the C-S bonds lengths with the bond associated with the stronger Sn-S1 bond being significantly longer, *i.e.* by about 0.03 Å. than the C–S bond associated with the weaker Sn–S2 bond. The coordination environment is completed by two  $\alpha$ -carbon atoms of the *n*-butyl substituents. The resultant C<sub>2</sub>S<sub>4</sub> donor set defines a skew-trapezoidal bipyramidal geometry with the tinbound organic substituents lying over the weaker Sn-S2 bonds, which subtend an angle at the tin atom approximately  $50^{\circ}$  wider than that subtended by the S1 atoms, Table 1. The 2-methoxyethyl groups lie to either side of the S<sub>2</sub>CN residue and have very similar conformations, as seen in the values of the C1-N1-C2-C3, N1-C2-C3-O1 and C2-C3-O1-C4 torsion angles of -94.1(4), -67.4(4) and  $-177.1(3)^{\circ}$ , indicating that - anti-clinal, - syn-clinal and - anti-periplanar descriptors, respectively, are in effect. For the O2-

 Table 1

 Selected geometric parameters (Å, °) for (I).

| 2.5503 (9) | \$1-C1                                                                                      | 1.736 (3)                                                                                                                                                                                                                                         |
|------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.9300 (9) | \$2-C1                                                                                      | 1.702 (3)                                                                                                                                                                                                                                         |
| 2.131 (3)  |                                                                                             |                                                                                                                                                                                                                                                   |
| 65.13 (3)  | S2-Sn-C8                                                                                    | 83.95 (9)                                                                                                                                                                                                                                         |
| 87.95 (4)  | S1-Sn-C8 <sup>i</sup>                                                                       | 104.64 (9)                                                                                                                                                                                                                                        |
| 141.79 (3) | S2-Sn-C8 <sup>i</sup>                                                                       | 82.96 (9)                                                                                                                                                                                                                                         |
| 104.38 (9) | C8-Sn-C8 <sup>i</sup>                                                                       | 139.25 (17)                                                                                                                                                                                                                                       |
|            | 2.5503 (9)<br>2.9300 (9)<br>2.131 (3)<br>65.13 (3)<br>87.95 (4)<br>141.79 (3)<br>104.38 (9) | $\begin{array}{cccc} 2.5503 \ (9) & S1-C1 \\ 2.9300 \ (9) & S2-C1 \\ 2.131 \ (3) & & & \\ 65.13 \ (3) & & & \\ 65.13 \ (3) & & & \\ 87.95 \ (4) & S1-Sn-C8^i \\ 141.79 \ (3) & & & \\ S2-Sn-C8^i \\ 104.38 \ (9) & & & \\ C8-Sn-C8^i \end{array}$ |

Symmetry code: (i) -x, y,  $-z + \frac{1}{2}$ .

 Table 2

 Selected geometric parameters (Å, °) for (II).

| -         | -          |             |             |
|-----------|------------|-------------|-------------|
| Sn-S1     | 2.4711 (7) | Sn-C11      | 2.162 (3)   |
| Sn-S2     | 3.0180 (7) | Sn-C21      | 2.136 (3)   |
| S1-C1     | 1.755 (3)  | Sn-C31      | 2.133 (2)   |
| S2-C1     | 1.686 (3)  |             |             |
| S1-Sn-S2  | 64.37 (2)  | \$2-\$n-C21 | 87.38 (7)   |
| S1-Sn-C11 | 91.17 (8)  | S2-Sn-C31   | 87.83 (7)   |
| S1-Sn-C21 | 115.84 (7) | C11-Sn-C21  | 104.11 (10) |
| S1-Sn-C31 | 119.09 (7) | C11-Sn-C31  | 105.78 (10) |
| S2-Sn-C11 | 155.54 (8) | C21-Sn-C31  | 115.55 (10) |
|           |            |             |             |

methoxyethyl group, the equivalent torsion angles are -82.0(4), -70.3(4) and  $-169.1(3)^{\circ}$ . The independent *n*-butyl substituent has an all-*trans* (+ anti-periplanar) conformation, as seen in the values of the Sn-C8-C9-C10 and C8-C9-C10- C11 torsion angles of 172.9(2) and 176.3(3)°, respectively.

The molecule in (II), Fig. 1*b*, lies on a general position and has a quite distinct coordination geometry owing to the presence of three tin-bound phenyl groups. As for (I), the dithiocarbamate ligand coordinates in an asymmetric mode with  $\Delta$ (Sn-S) being 0.55 Å. Consistent with the greater



Figure 1

The molecular structures of (a) (I) and (b) (II), showing the atomlabelling schemes and displacement ellipsoids at the 50% probability level. Unlabelled atoms in (a) are related by the symmetry operation x, y,  $\frac{1}{2} - z$ .

# research communications

disparity in Sn-S bond lengths, the difference in the associated C-S bond lengths in (II) is greater cf. (I), *i.e.* nearly 0.07 Å, Table 2. The increased asymmetry in the mode of coordination of the dithiocarbamate ligand in (II), cf. (I), is correlated with the reduced Lewis acidity of the tin atom in the triorganotin compound, (II), compared with that in the diorganotin compound, (I). The angles subtended at the tin atom vary from a narrow  $64.37 (2)^{\circ}$  for the S1-Sn-S2chelate angle to  $155.54 (8)^{\circ}$  for S2-Sn-C11. The C<sub>3</sub>S<sub>2</sub> donor set approximates a trigonal-bipyramidal geometry with the value of  $\tau$ , an indicator of a five-coordinate coordination geometry, being 0.61, cf. 1.0 for an ideal trigonal bipyramid and 0.0 for an ideal square pyramid (Addison et al., 1984). If the coordination geometry is considered as being based on a  $C_3S$  donor set, the range of tetrahedral angles is 91.17 (8)°, for S1-Sn-C11, to 119.09 (7)°, for S1-Sn-C31. The C21-Sn-C31 angle, at 115.55 (10)°, is wider by 10° than the other C-Sn-C angles, a result correlated with the close approach of the S2 atom. The 2-methoxyethyl group has a very similar conformation to the O1-methoxyethyl group in (I), with the values of the C1-N1-C3-C4, N1-C3-C4-O1 and C5-





Molecular packing in the crystal of (I): (a) supramolecular layer parallel to (101) sustained by methylene-C-H···O(methoxy) interactions shown as orange dashed lines and (b) a view of the unit-cell contents in projection down the b axis, with one layer highlighted in space-filling mode.

Table 3

Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (I).

Cg1 is the centroid of the N4/C5-C9 ring.

| $D - \mathbf{H} \cdots A$                      | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------------------|----------------|-------------------------|--------------|--------------------------------------|
| $C4-H4A\cdots O2^{ii}$ $C6-H6B\cdots O1^{iii}$ | 0.98           | 2.55                    | 3.423 (5)    | 149                                  |
|                                                | 0.99           | 2.57                    | 3.553 (4)    | 175                                  |

Symmetry codes: (ii)  $-x + \frac{1}{2}, -y - \frac{1}{2}, -z + 1$ ; (iii)  $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$ .

Table 4

Hydrogen-bond geometry (Å, °) for (II).

Cg1 is the centroid of the C21–C26 ring.

| $D - H \cdots A$        | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-------------------------|----------------|-------------------------|--------------|------------------|
| $C35-H35\cdots Cg1^{i}$ | 0.95           | 2.99                    | 3.760 (3)    | 139              |

Symmetry code: (i) -x + 1, -y, -z + 1.

O1-C4-C3 torsion angles being 95.1 (3), 81.8 (3) and 178.7 (3) $^{\circ}$ , respectively.

## 2. Supramolecular features

Geometric parameters characterizing the intermolecular interactions operating in the crystal structures of (I) and (II) are collected in Tables 3 and 4, respectively. The molecular packing of (I) is dominated by methylene-C-H···O(meth-O(methoxy) interactions whereby each methoxy-oxygen atom accepts a single interaction. Supramolecular chains form about the twofold axis along b so that a supramolecular array is formed parallel to  $(10\overline{1})$ , Fig. 2a. Layers stack with no directional interactions between them, Fig. 2b.

The molecular packing in (II) is largely devoid of directional interactions with the only contact rated in PLATON (Spek, 2009) being a phenyl-C-H $\cdots$  $\pi$ (phenyl) contact. These occur between centrosymmetrically related molecules to form dimeric aggregates which assemble into columns parallel to the a axis, Fig. 3





Molecular packing in the crystal of (II): a view of the unit-cell contents in projection down the *a* axis. The phenyl-C-H··· $\pi$ (phenyl) interactions are shown as purple dashed lines.

### 3. Hirshfeld surface analysis

The Hirshfeld surface calculations for the organotin derivatives (I) and (II) were performed in accord with recent work on related organotin dithiocarbamate compounds (Mohamad *et al.*, 2017), and these exhibit different intermolecular environments as described below.

The bright-red spots near each of the methoxy-O1 and -O2, and methylene-H4A and H6B atoms lying on both the sides of twofold symmetry axis on the Hirshfeld surfaces mapped over  $d_{norm}$  for (I) in Fig. 4a and b represent the dominant intermolecular C-H···O contacts, Table 3. In addition, the brightred spots appearing near the methoxy-H8B and butyl-H8A atoms in Fig. 4c indicate the significant influence of intra-layer H···H contacts, Table 5. On the Hirshfeld surface mapped over the electrostatic potential for (I) shown in Fig. 5a and b, the donors and acceptors are represented with blue and red regions around the respective atoms corresponding to positive and negative potentials, respectively.

The Hirshfeld surfaces mapped over  $d_{norm}$  for (II) (not shown), indicate the absence of significant directional interactions operating in the crystal as no characteristic red spots appear on the surface. The blue and red regions on the Hirshfeld surface mapped over electrostatic potential for (II) in Fig. 5c are due to polarization of charges near the respective functional groups and do not represent any significant interaction in the crystal. The weak intermolecular C-H··· $\pi$ contact and intra-layer interatomic H···H contacts (Table 5) present in the crystal of (II) are illustrated in Fig. 6.

 Table 5

 Summary of short interatomic contacts (Å) in (I).

| Contact                       | Distance | Symmetry operation                        |
|-------------------------------|----------|-------------------------------------------|
| (I)                           |          |                                           |
| $H4B \cdot \cdot \cdot H8A$   | 2.00     | -x, -y, 1-z                               |
| $H5A \cdots H6B$              | 2.21     | $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$ |
| $H8B \cdot \cdot \cdot H10B$  | 2.37     | $\frac{2}{-x}$ , $1 - y$ , $1 - z$        |
| $H10B \cdot \cdot \cdot H10B$ | 2.37     | -x, 1-y, 1-z                              |
| (II)                          |          |                                           |
| H14···H33                     | 2.37     | 1 + x, 1 + y, z                           |
| H16···H33                     | 2.25     | x, 1 + y, z                               |
| H22···H34                     | 2.33     | x, 1 + y, z                               |
| C1···H3B                      | 2.86     | -x, -y, 2-z                               |
| $C14 \cdot \cdot \cdot H4A$   | 2.85     | 1 - x, 1 - y, 2 - z                       |
|                               |          |                                           |

The overall two-dimensional fingerprint plots for (I) and (II), Fig. 7*a* and *b*, reveal the distinct supramolecular associations in their crystals. The terminal methoxy-ethyl and coordinated *n*-butyl substituents in (I) form significant intralayer H···H contacts in comparison to (II), Table 5. This fact is also indicated in the fingerprint plots delineated into H···H contacts (McKinnon *et al.*, 2007), showing a short thick spike at  $d_e + d_i \sim 2.0$  Å and the distribution of points with greater density in ( $d_e$ ,  $d_i$ ) range ~1.0 to 1.2 Å for (I) in Fig. 7*a*, and a small peak at  $d_e + d_i \sim 2.2$  Å with relatively few points at  $d_e + d_i < 2.4$  Å for (II) in Fig. 7*b*. The fingerprint plot delineated into O···H/H···O contacts for (I), Fig. 7*a*, characterizes intermolecular C–H···O interactions as the pair of forceps-like tips at  $d_e + d_i \sim 2.5$  Å. A low percentage contribution due to O···H/H···O contacts is noted for (II), as



Figure 4

Views of Hirshfeld surface for (I) mapped over  $d_{norm}$  in the range -0.163 to +1.302, highlighting (a) and (b) intermolecular methylene-C-H···O(methoxy) interactions and (c) short intra-layer H···H contacts between methoxy- and butyl-hydrogen atoms H4B and H8A as sky-blue dashed lines.



Figure 5

Views of Hirshfeld surface mapped over the electrostatic potential (the red and blue regions represent negative and positive electrostatic potentials, respectively) for: (a) and (b) a molecule of (I) in the range -0.054 to +0.036 au and (c) a molecule of (II) in the range  $\pm 0.036$  au.

# research communications



Figure 6

Views of the Hirshfeld surface for (II) mapped with the shape-index property showing (a) intermolecular  $C-H\cdots \pi/\pi\cdots H-C$  contacts and (b) short interatomic  $H\cdots H$  contacts through black-dashed lines.

 Table 6

 Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) and (II).

| Contact                                             | % contribution in (I) | % contribution in (II) |
|-----------------------------------------------------|-----------------------|------------------------|
| $H\!\cdot\!\cdot\!\cdot\!H$                         | 77.9                  | 58.9                   |
| $S \cdots H/H \cdots S$                             | 12.2                  | 7.3                    |
| $C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$       | 1.6                   | 29.1                   |
| $O \cdots H/H \cdots O$                             | 7.9                   | 2.5                    |
| $N \cdots H/H \cdots N$                             | 0.4                   | 0.7                    |
| $C \cdot \cdot \cdot S/S \cdot \cdot \cdot C$       | 0.0                   | 1.3                    |
| $S \cdots O / O \cdots S$                           | 0.0                   | 0.1                    |
| $Sn{\cdot}{\cdot}{\cdot}H/N{\cdot}{\cdot}{\cdot}Sn$ | 0.0                   | 0.1                    |

summarized in Table 6. The relatively high, *i.e.* 29.1%, contribution from C···H/H···C contacts to the Hirshfeld surfaces of (II) is due to the presence of tin-bound phenyl substituents and the resulting short interatomic C···H/H···C contacts, Table 5, and intermolecular C-H··· $\pi$  contact, Table 4, viewed as the pair of peaks at  $d_e + d_i \sim 2.8$  Å and the distribution of points around  $d_e + d_i \sim 2.9$  Å in both the wings of its delineated fingerprint plot, Fig. 7b. Although S···H/H···S contacts have significant contributions to the Hirshfeld surfaces of (I) and (II), as summarized in Table 6, their interatomic distances are farther than sum of their van der Waals radii, *i.e.*  $d_e + d_i > 3.0$  Å, Fig. 7, and hence do not have a structure-directing influence on the molecular packing. The small contributions from other contacts in (I) and (II) also have negligible impact in the respective crystals.

### 4. Database survey

It is well documented that organotin dithiocarbamates,  $R''_x \text{Sn}(\text{S}_2\text{CN}RR')_{4-x}$ , can adopt a variety of coordination geometries, especially for x = 2 (Tiekink, 2008). The structural motifs for the x = 2 series were recently summarized (Zaldi *et al.*, 2017) and four structural motifs recognized. With a



Figure 7

Comparison of the full two-dimensional fingerprint plots for (I) and (II), and the plots delineated into (a)  $H \cdots H$ ,  $O \cdots H/H \cdots O$  and  $S \cdots H/H \cdots S$  contacts and (b)  $H \cdots H$ ,  $C \cdots H/H \cdots C$  and  $S \cdots H/H \cdots S$  contacts.

Table 7Experimental details.

|                                                                            | (I)                                                                       | (II)                                                                      |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Crystal data                                                               |                                                                           |                                                                           |
| Chemical formula                                                           | $[Sn(C_4H_9)_2(C_7H_{14}NO_2S_2)_2]$                                      | $[Sn(C_6H_5)_3(C_5H_{10}NOS_2)]$                                          |
| $M_r$                                                                      | 649.54                                                                    | 514.25                                                                    |
| Crystal system, space group                                                | Monoclinic, $C2/c$                                                        | Triclinic, $P\overline{1}$                                                |
| Temperature (K)                                                            | 173                                                                       | 148                                                                       |
| a, b, c (Å)                                                                | 25.8819 (17), 7.1272 (4), 16.4146 (11)                                    | 7.6258 (3), 10.2178 (3), 14.8621 (6)                                      |
| $\alpha, \beta, \gamma$ (°)                                                | 90, 97.282 (6), 90                                                        | 91.976 (3), 90.655 (3), 107.875 (3)                                       |
| $V(A^3)$                                                                   | 3003.5 (3)                                                                | 1101.19 (7)                                                               |
| Ζ                                                                          | 4                                                                         | 2                                                                         |
| Radiation type                                                             | Μο Κα                                                                     | Μο <i>Κα</i>                                                              |
| $\mu (\text{mm}^{-1})$                                                     | 1.16                                                                      | 1.36                                                                      |
| Crystal size (mm)                                                          | $0.30 \times 0.15 \times 0.05$                                            | $0.50 \times 0.30 \times 0.30$                                            |
| Data collection                                                            |                                                                           |                                                                           |
| Diffractometer                                                             | Agilent Technologies SuperNova Dual<br>diffractometer with Atlas detector | Agilent Technologies SuperNova Dual<br>diffractometer with Atlas detector |
| Absorption correction                                                      | Multi-scan (CrysAlis PRO; Agilent, 2015)                                  | Multi-scan (CrysAlis PRO; Agilent, 2015)                                  |
| $T_{\min}, T_{\max}$                                                       | 0.247, 1.000                                                              | 0.479, 1.000                                                              |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 18349, 4631, 3678                                                         | 11916, 6547, 6089                                                         |
| R <sub>int</sub>                                                           | 0.054                                                                     | 0.046                                                                     |
| $(\sin \theta / \lambda)_{\max} ( \text{\AA}^{-1} )$                       | 0.738                                                                     | 0.739                                                                     |
| Refinement                                                                 |                                                                           |                                                                           |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.048, 0.128, 1.05                                                        | 0.040, 0.114, 1.09                                                        |
| No. of reflections                                                         | 4631                                                                      | 6547                                                                      |
| No. of parameters                                                          | 153                                                                       | 255                                                                       |
| H-atom treatment                                                           | H-atom parameters constrained                                             | H-atom parameters constrained                                             |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$ | 2.18, -0.88                                                               | 2.21, -1.82                                                               |

Computer programs: CrysAlis PRO (Agilent, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publcIF (Westrip, 2010).

trapezoidal bipyramidal geometry being observed in (I), this structure conforms to the common motif for the x = 2 structures. There is one other diorganotin structure with the same dithiocarbamate ligand, *viz*. the  $R'' = C_6H_5$  compound (Mohamad, Awang, Jotani *et al.*, 2016). This, too, adopts the common trapezoidal bipyramidal geometry although a good number of other derivatives with R'' = Ph adopt octahedral geometries, such as in  $(C_6H_5)_2Sn[S_2CN(CH_3)CH_2CH_2OCH_3]_2$ (Muthalib *et al.*, 2014) featuring the same dithiocarbamate ligand as in (II). The observed anisobidentate mode of coordination for the dithiocarbamate ligand in (II) is as expected and in fact is the norm for x = 3 structures which may be described as having 4 + 1 coordination geometries (Tiekink, 2008).

# 5. Synthesis and crystallization

All chemicals and solvents were used as purchased without purification. The melting points were determined using an automated melting point apparatus (MPA 120 EZ-Melt). Carbon, hydrogen, nitrogen and sulfur analyses were performed on a Leco CHNS-932 Elemental Analyzer. The IR spectra were obtained on a Perkin Elmer Spectrum GX from 4000 to 400 cm<sup>-1</sup>. NMR spectra were recorded at room temperature on Bruker AVANCE 400 III HD in CDCl<sub>3</sub>.

**Synthesis of (I):** bis(2-methoxyethyl)amine (Aldrich; 1.48 ml, 10 mmol) dissolved in ethanol (30 ml) was stirred for 30 min. Then, carbon disulfide (0.6 ml, 10 mmol) in cold

ethanol was added and the resulting mixture was stirred for 2 h. A 25% ammonia solution (1-2 ml) was added to generate basic conditions. Then, di-n-butyltin(IV) dichloride (Aldrich; 1.52 g, 5 mmol) dissolved in ethanol (20–30 ml) was added dropwise into the solution and stirring was continued for 2 h. All reactions were carried out at 277 K. The precipitate that formed was dried and collected. Colourless prisms were harvested from the slow evaporation of its chloroform:ethanol (2:1 v/v) solution. Yield: 72%. M.p. 341-342 K. Elemental analysis: calculated (%): C 40.68, H 7.14, N 4.31, S 19.75. Found (%): C 41.76, H 6.07, N 4.91, S 19.25. IR (KBr cm<sup>-1</sup>): 1487  $\nu$ (C-N), 992  $\nu$ (C-S), 544  $\nu$ (Sn-C), 386  $\nu$ (Sn-S). <sup>1</sup>H NMR (CDCl<sub>3</sub>): § 4.13 (2H, O-CH<sub>2</sub>); 3.70 (2H, N-CH<sub>2</sub>); 3.35 (3H, O-CH<sub>3</sub>); 1.45-2.05 (6H, Sn-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-), 0.94 (3H, CH<sub>2</sub>-CH<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  201.52 (NCS<sub>2</sub>); 70.07 (O-CH<sub>2</sub>); 55.59 (N-CH<sub>2</sub>); 59.01 (O-CH<sub>3</sub>); 34.26 Sn-CH<sub>2</sub>; 28.55 Sn-CH<sub>2</sub>CH<sub>2</sub>; 26.41 Sn-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>; 13.87 CH<sub>2</sub>CH<sub>3</sub>. <sup>119</sup>Sn NMR (CDCl<sub>3</sub>):  $\delta$  –335.5.

**Synthesis of (II):** The synthesis of (II) was carried out in the same manner as for (I) using (2-methoxyethyl)methylamine (Santa Cruz Biotechnology; 1.1 ml, 10 mmol) and triphenyl-tin(IV) chloride (Merck; 3.85 g, 10 mmol). Crystallization in the form of colourless slabs was from its chloroform:ethanol (1:2  $\nu/\nu$ ) solution. Yield: 78%. M.p. 366-367 K. Elemental analysis: calculated (%): C 53.71, H 4.89, N 2.72, S 12.47. Found (%): C 54.28, H 5.26, N 2.73, S 12.5. IR (KBr cm<sup>-1</sup>): 1477  $\nu$ (C–N), 997  $\nu$ (C–S), 527  $\nu$ (Sn–C), 451  $\nu$ (Sn–S). <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.41–7.82 (15H, Sn–C<sub>6</sub>H<sub>5</sub>); 4.05 (2H, O–

CH<sub>2</sub>); 3.71 (2H, N–CH<sub>2</sub>); 3.51 (3H, O–CH<sub>3</sub>); 3.38 (3H, N–CH<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  196.97 (NCS<sub>2</sub>); 128.25–142.28 (C-aromatic); 70.09 (O–CH<sub>2</sub>); 59.06 (N–CH<sub>2</sub>); 58.10 (O–CH<sub>3</sub>); 45.81 (N–CH<sub>3</sub>);. <sup>119</sup>Sn NMR (CDCl<sub>3</sub>):  $\delta$  –183.8.

### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7. Carbon-bound H atoms were placed in calculated positions (C–H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with  $U_{iso}$ (H) set to 1.2–1.5 $U_{eq}$ (C). For (I), the maximum and minimum residual electron density peaks of 2.18 and 0.88 e Å<sup>-3</sup>, respectively, were located 0.88 and 1.03 Å from the S1 and Sn atoms, respectively. For (II), the maximum and minimum residual electron density peaks of 2.21 and 1.82 e Å<sup>-3</sup>, respectively, were located 0.96 and 0.76 Å from the Sn atom.

### Acknowledgements

We gratefully acknowledge the School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia, for providing the essential laboratory facilities. We would also like to thank the technical support received from the laboratory assistants of Faculty Science and Technology, Universiti Kebangsaan Malaysia. Intensity data were collected in the University of Malaya's crystallographic laboratory.

# **Funding information**

This work was supported by grant No. GGP-2017-081 awarded by Universiti Kebangsaan Malaysia.

### References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.

- Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ferreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2012). *Eur. J. Med. Chem.* 58, 493–503.
- Heard, P. J. (2005). Prog. Inorg. Chem. 53, 1-69.
- Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.
- Hogarth, G., Rainford-Brent, E. C.-R. C. R. & Richards, I. (2009). Inorg. Chim. Acta, **362**, 1361–1364.
- Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2017). Z. Kristallogr. 232, 287–298.
- Khan, H., Badshah, A., Said, M., Murtaza, G., Ahmad, J., Jean-Claude, B. J., Todorova, M. & Butler, I. S. (2013). *Appl. Organomet. Chem.* **27**, 387–395.
- Khan, H., Badshah, A., Said, M., Murtaza, G., Sirajuddin, M., Ahmad, J. & Butler, I. S. (2016). *Inorg. Chim. Acta*, **447**, 176–182.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Mohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). *Acta Cryst.* E72, 1130–1137.
- Mohamad, R., Awang, N. & Kamaludin, N. F. (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1920–1925.
- Mohamad, R., Awang, N., Kamaludin, N. F. & Abu Bakar, N. F. (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1269–1274.
- Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1480–1487.
- Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 260–265.
- Muthalib, A. F. A., Baba, I., Khaledi, H., Ali, H. M. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 39–46.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113–126.
- Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zaldi, N. B., Hussen, R. S. D., Lee, S. M., Halcovitch, N. R., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 842–848.

Acta Cryst. (2018). E74, 302-308 [https://doi.org/10.1107/S2056989018001901]

Crystal structures and Hirshfeld surface analyses of bis[N,N-bis(2-methoxyethyl)dithiocarbamato- $\kappa^2 S, S'$ ]di-n-butyltin(IV) and [N-(2-methoxyethyl)-Nmethyldithiocarbamato- $\kappa^2 S, S'$ ]triphenyltin(IV)

# Rapidah Mohamad, Normah Awang, Nurul Farahana Kamaludin, Mukesh M. Jotani and Edward R. T. Tiekink

# **Computing details**

For both structures, data collection: *CrysAlis PRO* (Agilent, 2015); cell refinement: *CrysAlis PRO* (Agilent, 2015); data reduction: *CrysAlis PRO* (Agilent, 2015); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015). Molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006) for (I); *ORTEP-3 for Windows* (Farrugia, 2012) for (II). For both structures, software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $Bis[N,N-bis(2-methoxyethyl)dithiocarbamato-\kappa^2 S, S']di-n-butyltin(IV) (I)$ 

Crystal data

 $[Sn(C_4H_9)_2(C_7H_{14}NO_2S_2)_2]$   $M_r = 649.54$ Monoclinic, C2/c a = 25.8819 (17) Å b = 7.1272 (4) Å c = 16.4146 (11) Å  $\beta = 97.282 (6)^{\circ}$   $V = 3003.5 (3) \text{ Å}^3$ Z = 4

# Data collection

Agilent Technologies SuperNova Dual diffractometer with Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm<sup>-1</sup> ω scan Absorption correction: multi-scan (CrysAlis Pro; Agilent, 2015)

# Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.048$  $wR(F^2) = 0.128$  F(000) = 1352  $D_x = 1.436 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5103 reflections  $\theta = 3.9-30.2^{\circ}$   $\mu = 1.16 \text{ mm}^{-1}$  T = 173 KPrism, colourless  $0.30 \times 0.15 \times 0.05 \text{ mm}$ 

 $T_{\min} = 0.247, T_{\max} = 1.000$ 18349 measured reflections 4631 independent reflections 3678 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.054$  $\theta_{\max} = 31.6^{\circ}, \theta_{\min} = 3.3^{\circ}$  $h = -36 \rightarrow 37$  $k = -9 \rightarrow 9$  $l = -18 \rightarrow 23$ 

S = 1.054631 reflections 153 parameters 0 restraints

| Hydrogen site location: inferred from | $w = 1/[\sigma^2(F_o^2) + (0.0581P)^2 + 4.9909P]$          |
|---------------------------------------|------------------------------------------------------------|
| neighbouring sites                    | where $P = (F_o^2 + 2F_c^2)/3$                             |
| H-atom parameters constrained         | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
|                                       | $\Delta \rho_{\rm max} = 2.18 \text{ e} \text{ Å}^{-3}$    |
|                                       | $\Delta \rho_{\rm min} = -0.88 \text{ e } \text{\AA}^{-3}$ |

# Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. The maximum and minimum residual electron density peaks of 2.18 and 0.88 eÅ<sup>-3</sup>, respectively, were located 0.88 Å and 1.03 Å from the S1 and Sn atoms, respectively.

| Fractional atomic coordinates and | isotropic or eq | uivalent isotropic | displacement | parameters (        | $(A^2)$ |
|-----------------------------------|-----------------|--------------------|--------------|---------------------|---------|
|                                   |                 |                    |              | - · · · · · · · · · |         |

|            | x             | У             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------------|---------------|---------------|--------------|-----------------------------|
| Sn         | 0.0000        | 0.22626 (4)   | 0.2500       | 0.03003 (11)                |
| <b>S</b> 1 | 0.06302 (3)   | -0.03124 (11) | 0.30644 (5)  | 0.03538 (19)                |
| S2         | 0.09910 (3)   | 0.36081 (12)  | 0.33633 (5)  | 0.03628 (19)                |
| O1         | 0.18723 (10)  | -0.1322 (4)   | 0.54586 (15) | 0.0420 (6)                  |
| O2         | 0.26265 (10)  | 0.1284 (4)    | 0.34048 (17) | 0.0468 (6)                  |
| N1         | 0.15552 (10)  | 0.0612 (4)    | 0.38750 (16) | 0.0307 (5)                  |
| C1         | 0.11053 (12)  | 0.1264 (4)    | 0.34726 (18) | 0.0300 (6)                  |
| C2         | 0.16660 (13)  | -0.1410 (5)   | 0.4000 (2)   | 0.0348 (7)                  |
| H2A        | 0.2041        | -0.1635       | 0.3970       | 0.042*                      |
| H2B        | 0.1465        | -0.2127       | 0.3550       | 0.042*                      |
| C3         | 0.15321 (15)  | -0.2133 (5)   | 0.4811 (2)   | 0.0378 (7)                  |
| H3A        | 0.1167        | -0.1807       | 0.4872       | 0.045*                      |
| H3B        | 0.1566        | -0.3516       | 0.4830       | 0.045*                      |
| C4         | 0.17861 (15)  | -0.2007 (6)   | 0.6240 (2)   | 0.0444 (9)                  |
| H4A        | 0.1816        | -0.3378       | 0.6247       | 0.067*                      |
| H4B        | 0.1437        | -0.1645       | 0.6351       | 0.067*                      |
| H4C        | 0.2046        | -0.1473       | 0.6662       | 0.067*                      |
| C5         | 0.19574 (13)  | 0.1927 (5)    | 0.42487 (19) | 0.0329 (7)                  |
| H5A        | 0.2181        | 0.1273        | 0.4695       | 0.039*                      |
| H5B        | 0.1785        | 0.2983        | 0.4498       | 0.039*                      |
| C6         | 0.22976 (13)  | 0.2705 (5)    | 0.3646 (2)   | 0.0342 (7)                  |
| H6A        | 0.2076        | 0.3201        | 0.3157       | 0.041*                      |
| H6B        | 0.2511        | 0.3751        | 0.3903       | 0.041*                      |
| C7         | 0.30157 (16)  | 0.2029 (6)    | 0.2963 (3)   | 0.0475 (9)                  |
| H7A        | 0.3247        | 0.2850        | 0.3323       | 0.071*                      |
| H7B        | 0.2851        | 0.2752        | 0.2492       | 0.071*                      |
| H7C        | 0.3219        | 0.1000        | 0.2767       | 0.071*                      |
| C8         | -0.03139 (13) | 0.3304 (5)    | 0.35511 (19) | 0.0311 (6)                  |
| H8A        | -0.0673       | 0.2822        | 0.3543       | 0.037*                      |
| H8B        | -0.0104       | 0.2810        | 0.4051       | 0.037*                      |
| C9         | -0.03254 (13) | 0.5440 (4)    | 0.36019 (19) | 0.0323 (6)                  |
| H9A        | 0.0036        | 0.5920        | 0.3684       | 0.039*                      |

| H9B  | -0.0498       | 0.5949     | 0.3075       | 0.039*     |  |
|------|---------------|------------|--------------|------------|--|
| C10  | -0.06123 (13) | 0.6138 (5) | 0.42990 (19) | 0.0341 (7) |  |
| H10A | -0.0980       | 0.5726     | 0.4197       | 0.041*     |  |
| H10B | -0.0454       | 0.5562     | 0.4821       | 0.041*     |  |
| C11  | -0.05949 (17) | 0.8260 (5) | 0.4386 (2)   | 0.0454 (9) |  |
| H11A | -0.0752       | 0.8838     | 0.3872       | 0.068*     |  |
| H11B | -0.0232       | 0.8671     | 0.4510       | 0.068*     |  |
| H11C | -0.0790       | 0.8639     | 0.4834       | 0.068*     |  |
|      |               |            |              |            |  |

| ) |
|---|
| ) |

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| Sn  | 0.03662 (18) | 0.02227 (17) | 0.03257 (17) | 0.000        | 0.00965 (12) | 0.000        |
| S1  | 0.0400 (4)   | 0.0212 (4)   | 0.0445 (4)   | -0.0060 (3)  | 0.0036 (3)   | -0.0035 (3)  |
| S2  | 0.0399 (4)   | 0.0252 (4)   | 0.0433 (4)   | -0.0045 (3)  | 0.0037 (3)   | 0.0006 (3)   |
| 01  | 0.0456 (14)  | 0.0362 (15)  | 0.0443 (13)  | -0.0097 (11) | 0.0063 (11)  | 0.0091 (11)  |
| O2  | 0.0485 (15)  | 0.0295 (14)  | 0.0657 (16)  | -0.0004 (11) | 0.0197 (12)  | 0.0066 (12)  |
| N1  | 0.0393 (14)  | 0.0201 (13)  | 0.0338 (13)  | -0.0038 (10) | 0.0094 (11)  | -0.0006 (10) |
| C1  | 0.0391 (16)  | 0.0268 (16)  | 0.0267 (13)  | -0.0013 (12) | 0.0148 (12)  | 0.0008 (11)  |
| C2  | 0.0406 (17)  | 0.0218 (16)  | 0.0433 (17)  | 0.0027 (12)  | 0.0102 (14)  | -0.0027 (13) |
| C3  | 0.0461 (19)  | 0.0186 (16)  | 0.0496 (19)  | -0.0032 (12) | 0.0101 (15)  | 0.0015 (13)  |
| C4  | 0.044 (2)    | 0.037 (2)    | 0.052 (2)    | -0.0035 (15) | 0.0053 (16)  | 0.0186 (16)  |
| C5  | 0.0356 (16)  | 0.0309 (18)  | 0.0314 (15)  | -0.0100 (12) | 0.0011 (12)  | 0.0012 (12)  |
| C6  | 0.0376 (17)  | 0.0263 (17)  | 0.0384 (17)  | -0.0085 (12) | 0.0038 (13)  | 0.0054 (12)  |
| C7  | 0.044 (2)    | 0.043 (2)    | 0.058 (2)    | -0.0004 (16) | 0.0157 (17)  | 0.0078 (18)  |
| C8  | 0.0376 (16)  | 0.0239 (15)  | 0.0337 (15)  | -0.0023 (12) | 0.0117 (12)  | 0.0002 (12)  |
| C9  | 0.0403 (17)  | 0.0241 (16)  | 0.0338 (15)  | -0.0014 (12) | 0.0093 (13)  | -0.0002 (12) |
| C10 | 0.0401 (17)  | 0.0281 (17)  | 0.0355 (15)  | 0.0019 (13)  | 0.0104 (13)  | -0.0005 (12) |
| C11 | 0.067 (2)    | 0.0281 (19)  | 0.0429 (19)  | 0.0084 (16)  | 0.0138 (17)  | -0.0051 (15) |

Geometric parameters (Å, °)

| Sn—S1              | 2.5503 (9) | C4—H4C  | 0.9800    |
|--------------------|------------|---------|-----------|
| $Sn - S1^i$        | 2.5504 (9) | C5—C6   | 1.511 (4) |
| Sn—S2              | 2.9300 (9) | C5—H5A  | 0.9900    |
| Sn—S2 <sup>i</sup> | 2.9300 (9) | С5—Н5В  | 0.9900    |
| Sn—C8              | 2.131 (3)  | C6—H6A  | 0.9900    |
| Sn—C8 <sup>i</sup> | 2.131 (3)  | C6—H6B  | 0.9900    |
| S1—C1              | 1.736 (3)  | С7—Н7А  | 0.9800    |
| S2—C1              | 1.702 (3)  | С7—Н7В  | 0.9800    |
| O1—C3              | 1.415 (4)  | С7—Н7С  | 0.9800    |
| O1—C4              | 1.416 (4)  | C8—C9   | 1.526 (4) |
| O2—C6              | 1.412 (4)  | C8—H8A  | 0.9900    |
| O2—C7              | 1.417 (4)  | C8—H8B  | 0.9900    |
| N1-C1              | 1.347 (4)  | C9—C10  | 1.524 (4) |
| N1—C5              | 1.475 (4)  | С9—Н9А  | 0.9900    |
| N1—C2              | 1.479 (4)  | С9—Н9В  | 0.9900    |
| С2—С3              | 1.508 (5)  | C10—C11 | 1.519 (5) |
|                    |            |         |           |

| C2—H2A                     | 0.9900      | C10—H10A      | 0.9900    |
|----------------------------|-------------|---------------|-----------|
| C2—H2B                     | 0.9900      | C10—H10B      | 0.9900    |
| С3—НЗА                     | 0.9900      | C11—H11A      | 0.9800    |
| С3—Н3В                     | 0.9900      | C11—H11B      | 0.9800    |
| C4—H4A                     | 0.9800      | C11—H11C      | 0.9800    |
| C4—H4B                     | 0.9800      |               |           |
|                            |             |               |           |
| S1—Sn—S2                   | 65.13 (3)   | С6—С5—Н5А     | 108.9     |
| $S1$ — $Sn$ — $S1^i$       | 87.95 (4)   | N1—C5—H5B     | 108.9     |
| $S2$ — $Sn$ — $S2^{i}$     | 141.79 (3)  | C6—C5—H5B     | 108.9     |
| S1—Sn—C8                   | 104.38 (9)  | H5A—C5—H5B    | 107.7     |
| S2—Sn—C8                   | 83.95 (9)   | O2—C6—C5      | 110.0 (3) |
| S1—Sn—C8 <sup>i</sup>      | 104.64 (9)  | O2—C6—H6A     | 109.7     |
| C8—Sn—S1 <sup>i</sup>      | 104.64 (9)  | С5—С6—Н6А     | 109.7     |
| $C8^{i}$ — $Sn$ — $S1^{i}$ | 104.38 (9)  | O2—C6—H6B     | 109.7     |
| $S2$ — $Sn$ — $C8^{i}$     | 82.96 (9)   | С5—С6—Н6В     | 109.7     |
| $S1$ — $Sn$ — $S2^{i}$     | 153.08 (3)  | H6A—C6—H6B    | 108.2     |
| $C8$ — $Sn$ — $C8^i$       | 139.25 (17) | O2—C7—H7A     | 109.5     |
| C1—S1—Sn                   | 93.64 (11)  | O2—C7—H7B     | 109.5     |
| C1—S2—Sn                   | 81.93 (11)  | H7A—C7—H7B    | 109.5     |
| C3—O1—C4                   | 112.6 (3)   | O2—C7—H7C     | 109.5     |
| C6—O2—C7                   | 111.6 (3)   | H7A—C7—H7C    | 109.5     |
| C1—N1—C5                   | 120.4 (3)   | H7B—C7—H7C    | 109.5     |
| C1—N1—C2                   | 123.0 (3)   | C9—C8—Sn      | 113.8 (2) |
| C5—N1—C2                   | 116.6 (3)   | С9—С8—Н8А     | 108.8     |
| N1—C1—S2                   | 121.2 (2)   | Sn—C8—H8A     | 108.8     |
| N1—C1—S1                   | 119.5 (2)   | С9—С8—Н8В     | 108.8     |
| S2—C1—S1                   | 119.31 (19) | Sn—C8—H8B     | 108.8     |
| N1—C2—C3                   | 113.2 (3)   | H8A—C8—H8B    | 107.7     |
| N1—C2—H2A                  | 108.9       | C10—C9—C8     | 112.4 (3) |
| C3—C2—H2A                  | 108.9       | С10—С9—Н9А    | 109.1     |
| N1—C2—H2B                  | 108.9       | С8—С9—Н9А     | 109.1     |
| С3—С2—Н2В                  | 108.9       | С10—С9—Н9В    | 109.1     |
| H2A—C2—H2B                 | 107.8       | С8—С9—Н9В     | 109.1     |
| O1—C3—C2                   | 109.4 (3)   | Н9А—С9—Н9В    | 107.9     |
| O1—C3—H3A                  | 109.8       | C11—C10—C9    | 112.6 (3) |
| С2—С3—НЗА                  | 109.8       | C11-C10-H10A  | 109.1     |
| O1—C3—H3B                  | 109.8       | C9—C10—H10A   | 109.1     |
| С2—С3—Н3В                  | 109.8       | C11-C10-H10B  | 109.1     |
| НЗА—СЗ—НЗВ                 | 108.2       | C9—C10—H10B   | 109.1     |
| O1—C4—H4A                  | 109.5       | H10A—C10—H10B | 107.8     |
| O1—C4—H4B                  | 109.5       | C10-C11-H11A  | 109.5     |
| H4A—C4—H4B                 | 109.5       | C10—C11—H11B  | 109.5     |
| O1—C4—H4C                  | 109.5       | H11A—C11—H11B | 109.5     |
| H4A—C4—H4C                 | 109.5       | C10-C11-H11C  | 109.5     |
| H4B—C4—H4C                 | 109.5       | H11A—C11—H11C | 109.5     |
| N1—C5—C6                   | 113.6 (3)   | H11B—C11—H11C | 109.5     |
| N1—C5—H5A                  | 108.9       |               |           |

| C5—N1—C1—S2 | 1.4 (4)    | C5—N1—C2—C3   | 83.2 (3)   |
|-------------|------------|---------------|------------|
| C2—N1—C1—S2 | 178 6 (2)  |               | -177 1 (3) |
| C5-N1-C1-S1 | -178.1(2)  | N1-C2-C3-O1   | -67.4 (4)  |
| C2—N1—C1—S1 | -0.8 (4)   | C1—N1—C5—C6   | -82.0 (4)  |
| Sn—S2—C1—N1 | -179.6 (2) | C2—N1—C5—C6   | 100.6 (3)  |
| Sn—S2—C1—S1 | -0.11(15)  | C7—O2—C6—C5   | -169.1(3)  |
| Sn—S1—C1—N1 | 179.6(2)   | N1—C5—C6—O2   | -70.3(4)   |
| Sn—S1—C1—S2 | 0.12 (17)  | Sn—C8—C9—C10  | 172.9 (2)  |
| C1—N1—C2—C3 | -94.1 (4)  | C8—C9—C10—C11 | 176.3 (3)  |

Symmetry code: (i) -x, y, -z+1/2.

# *Hydrogen-bond geometry (Å, °)*

Cg1 is the centroid of the N4/C5-C9 ring.

| D—H···A                     | <i>D</i> —Н | H···A | D····A    | D—H···A |
|-----------------------------|-------------|-------|-----------|---------|
| C4—H4A····O2 <sup>ii</sup>  | 0.98        | 2.55  | 3.423 (5) | 149     |
| C6—H6B····O1 <sup>iii</sup> | 0.99        | 2.57  | 3.553 (4) | 175     |

Symmetry codes: (ii) -x+1/2, -y-1/2, -z+1; (iii) -x+1/2, -y+1/2, -z+1.

[N-(2-Methoxyethyl)-N-methyldithiocarbamato- $\kappa^2 S_r S'$ ]triphenyltin(IV) (II)

### Crystal data

 $[Sn(C_6H_5)_3(C_5H_{10}NOS_2)]$   $M_r = 514.25$ Triclinic,  $P\overline{1}$  a = 7.6258 (3) Å b = 10.2178 (3) Å c = 14.8621 (6) Å a = 91.976 (3)°  $\beta = 90.655$  (3)°  $\gamma = 107.875$  (3)° V = 1101.19 (7) Å<sup>3</sup>

# Data collection

Agilent Technologies SuperNova Dual diffractometer with Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm<sup>-1</sup> ω scan Absorption correction: multi-scan (CrysAlis Pro; Agilent, 2015)

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.040$  $wR(F^2) = 0.114$ S = 1.096547 reflections Z = 2 F(000) = 520  $D_x = 1.551 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8110 reflections  $\theta = 4.1-31.4^{\circ}$   $\mu = 1.36 \text{ mm}^{-1}$ T = 148 K Slab, colourless  $0.50 \times 0.30 \times 0.30 \text{ mm}$ 

 $T_{\min} = 0.479, T_{\max} = 1.000$ 11916 measured reflections 6547 independent reflections 6089 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.046$   $\theta_{\text{max}} = 31.7^{\circ}, \theta_{\text{min}} = 3.5^{\circ}$   $h = -11 \rightarrow 11$   $k = -15 \rightarrow 14$  $l = -20 \rightarrow 20$ 

255 parameters0 restraintsHydrogen site location: inferred from neighbouring sitesH-atom parameters constrained  $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0671P)^{2} + 0.2783P] \qquad \Delta \rho_{\max} = 2.21 \text{ e} \text{ Å}^{-3}$ where  $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{\min} = -1.82 \text{ e} \text{ Å}^{-3}$  $(\Delta/\sigma)_{\max} = 0.001$ 

# Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. The maximum and minimum residual electron density peaks of 2.21 and 1.82 eÅ<sup>-3</sup>, respectively, were located 0.96 Å and 0.76 Å from the Sn atom.

|            | x             | y            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |  |
|------------|---------------|--------------|--------------|-------------------------------|--|
| Sn         | 0.33155 (2)   | 0.17167 (2)  | 0.71926 (2)  | 0.01646 (7)                   |  |
| <b>S</b> 1 | 0.22626 (10)  | 0.21030 (8)  | 0.87168 (5)  | 0.02514 (15)                  |  |
| S2         | -0.04590 (10) | -0.01260 (7) | 0.76544 (5)  | 0.02473 (15)                  |  |
| 01         | -0.3089 (3)   | 0.2686 (2)   | 1.02520 (19) | 0.0379 (6)                    |  |
| N1         | -0.1129 (3)   | 0.0832 (3)   | 0.92564 (17) | 0.0254 (5)                    |  |
| C1         | 0.0058 (4)    | 0.0900 (3)   | 0.85949 (19) | 0.0211 (5)                    |  |
| C2         | -0.3028 (4)   | -0.0073 (4)  | 0.9179 (3)   | 0.0358 (7)                    |  |
| H2A        | -0.3842       | 0.0464       | 0.9015       | 0.054*                        |  |
| H2B        | -0.3399       | -0.0496      | 0.9757       | 0.054*                        |  |
| H2C        | -0.3118       | -0.0794      | 0.8713       | 0.054*                        |  |
| C3         | -0.0635 (4)   | 0.1730 (4)   | 1.0074 (2)   | 0.0302 (6)                    |  |
| H3A        | 0.0717        | 0.2002       | 1.0174       | 0.036*                        |  |
| H3B        | -0.1218       | 0.1203       | 1.0596       | 0.036*                        |  |
| C4         | -0.1216 (4)   | 0.3017 (3)   | 1.0033 (2)   | 0.0293 (6)                    |  |
| H4A        | -0.0459       | 0.3734       | 1.0464       | 0.035*                        |  |
| H4B        | -0.1032       | 0.3380       | 0.9421       | 0.035*                        |  |
| C5         | -0.3705 (6)   | 0.3865 (4)   | 1.0244 (3)   | 0.0456 (9)                    |  |
| H5A        | -0.2985       | 0.4559       | 1.0689       | 0.068*                        |  |
| H5B        | -0.5011       | 0.3603       | 1.0395       | 0.068*                        |  |
| H5C        | -0.3542       | 0.4246       | 0.9644       | 0.068*                        |  |
| C11        | 0.5881 (4)    | 0.3348 (3)   | 0.74340 (19) | 0.0210 (5)                    |  |
| C12        | 0.7602 (4)    | 0.3153 (3)   | 0.7336 (2)   | 0.0249 (6)                    |  |
| H12        | 0.7669        | 0.2264       | 0.7169       | 0.030*                        |  |
| C13        | 0.9229 (4)    | 0.4240 (4)   | 0.7479 (2)   | 0.0321 (7)                    |  |
| H13        | 1.0389        | 0.4091       | 0.7404       | 0.039*                        |  |
| C14        | 0.9145 (4)    | 0.5536 (3)   | 0.7729 (2)   | 0.0308 (6)                    |  |
| H14        | 1.0250        | 0.6279       | 0.7821       | 0.037*                        |  |
| C15        | 0.7455 (4)    | 0.5753 (3)   | 0.7846 (2)   | 0.0299 (6)                    |  |
| H15        | 0.7397        | 0.6641       | 0.8021       | 0.036*                        |  |
| C16        | 0.5846 (4)    | 0.4662 (3)   | 0.7704 (2)   | 0.0262 (6)                    |  |
| H16        | 0.4691        | 0.4814       | 0.7793       | 0.031*                        |  |
| C21        | 0.2016 (4)    | 0.2414 (3)   | 0.61084 (18) | 0.0188 (5)                    |  |
| C22        | 0.2874 (4)    | 0.3708 (3)   | 0.5777 (2)   | 0.0262 (6)                    |  |
| H22        | 0.3998        | 0.4270       | 0.6050       | 0.031*                        |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C23 | 0.2114 (5)  | 0.4192 (4)  | 0.5050(2)    | 0.0345 (7) |  |
|-----|-------------|-------------|--------------|------------|--|
| H23 | 0.2704      | 0.5083      | 0.4838       | 0.041*     |  |
| C24 | 0.0504 (5)  | 0.3373 (4)  | 0.4643 (2)   | 0.0370 (7) |  |
| H24 | -0.0018     | 0.3700      | 0.4148       | 0.044*     |  |
| C25 | -0.0359 (5) | 0.2075 (4)  | 0.4951 (2)   | 0.0344 (7) |  |
| H25 | -0.1463     | 0.1509      | 0.4663       | 0.041*     |  |
| C26 | 0.0387 (4)  | 0.1600 (3)  | 0.5682 (2)   | 0.0263 (6) |  |
| H26 | -0.0219     | 0.0712      | 0.5894       | 0.032*     |  |
| C31 | 0.4062 (3)  | -0.0098 (3) | 0.69017 (18) | 0.0175 (5) |  |
| C32 | 0.3456 (4)  | -0.1288 (3) | 0.7390 (2)   | 0.0272 (6) |  |
| H32 | 0.2659      | -0.1323     | 0.7881       | 0.033*     |  |
| C33 | 0.4018 (5)  | -0.2424 (3) | 0.7156 (3)   | 0.0360 (8) |  |
| H33 | 0.3608      | -0.3231     | 0.7493       | 0.043*     |  |
| C34 | 0.5168 (4)  | -0.2389 (3) | 0.6439 (3)   | 0.0312 (7) |  |
| H34 | 0.5535      | -0.3173     | 0.6281       | 0.037*     |  |
| C35 | 0.5782 (4)  | -0.1216 (3) | 0.5952 (2)   | 0.0255 (6) |  |
| H35 | 0.6573      | -0.1190     | 0.5460       | 0.031*     |  |
| C36 | 0.5237 (4)  | -0.0067 (3) | 0.61873 (19) | 0.0212 (5) |  |
| H36 | 0.5673      | 0.0745      | 0.5857       | 0.025*     |  |
|     |             |             |              |            |  |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$     | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------------|--------------|-----------------|-----------------|--------------|--------------|--------------|
| Sn         | 0.01712 (11) | 0.01286 (10)    | 0.01959 (11)    | 0.00482 (7)  | 0.00283 (7)  | 0.00054 (7)  |
| <b>S</b> 1 | 0.0219 (3)   | 0.0277 (3)      | 0.0224 (3)      | 0.0028 (3)   | 0.0036 (2)   | -0.0031 (3)  |
| S2         | 0.0239 (3)   | 0.0231 (3)      | 0.0250 (3)      | 0.0041 (3)   | 0.0038 (3)   | 0.0000 (3)   |
| 01         | 0.0331 (12)  | 0.0285 (11)     | 0.0553 (16)     | 0.0134 (10)  | 0.0124 (11)  | 0.0057 (11)  |
| N1         | 0.0239 (12)  | 0.0295 (12)     | 0.0249 (12)     | 0.0108 (10)  | 0.0072 (9)   | 0.0043 (10)  |
| C1         | 0.0216 (12)  | 0.0201 (12)     | 0.0233 (13)     | 0.0085 (10)  | 0.0035 (10)  | 0.0037 (10)  |
| C2         | 0.0258 (15)  | 0.0372 (17)     | 0.0429 (19)     | 0.0065 (13)  | 0.0144 (13)  | 0.0060 (14)  |
| C3         | 0.0348 (16)  | 0.0395 (17)     | 0.0213 (13)     | 0.0183 (14)  | 0.0079 (11)  | 0.0027 (12)  |
| C4         | 0.0316 (15)  | 0.0277 (14)     | 0.0259 (14)     | 0.0051 (12)  | 0.0076 (12)  | 0.0003 (11)  |
| C5         | 0.047 (2)    | 0.0374 (19)     | 0.060 (3)       | 0.0249 (17)  | -0.0004 (18) | -0.0011 (18) |
| C11        | 0.0195 (12)  | 0.0174 (11)     | 0.0248 (13)     | 0.0038 (10)  | 0.0036 (10)  | 0.0029 (9)   |
| C12        | 0.0225 (13)  | 0.0212 (13)     | 0.0316 (15)     | 0.0079 (11)  | 0.0026 (11)  | -0.0024 (11) |
| C13        | 0.0185 (13)  | 0.0373 (17)     | 0.0381 (17)     | 0.0052 (12)  | 0.0043 (12)  | -0.0009 (13) |
| C14        | 0.0248 (14)  | 0.0289 (15)     | 0.0293 (15)     | -0.0053 (12) | 0.0018 (12)  | -0.0011 (12) |
| C15        | 0.0336 (16)  | 0.0176 (12)     | 0.0348 (16)     | 0.0025 (11)  | 0.0007 (12)  | -0.0020 (11) |
| C16        | 0.0243 (14)  | 0.0192 (13)     | 0.0344 (16)     | 0.0059 (11)  | 0.0022 (11)  | -0.0018 (11) |
| C21        | 0.0201 (12)  | 0.0178 (11)     | 0.0201 (12)     | 0.0077 (10)  | 0.0060 (9)   | 0.0021 (9)   |
| C22        | 0.0267 (14)  | 0.0212 (13)     | 0.0312 (15)     | 0.0075 (11)  | 0.0026 (11)  | 0.0054 (11)  |
| C23        | 0.0418 (18)  | 0.0308 (16)     | 0.0348 (17)     | 0.0155 (14)  | 0.0069 (14)  | 0.0137 (13)  |
| C24        | 0.0381 (18)  | 0.050(2)        | 0.0303 (16)     | 0.0225 (16)  | 0.0043 (13)  | 0.0139 (15)  |
| C25        | 0.0301 (16)  | 0.0466 (19)     | 0.0252 (15)     | 0.0096 (14)  | -0.0025 (12) | 0.0034 (13)  |
| C26        | 0.0234 (13)  | 0.0285 (14)     | 0.0242 (14)     | 0.0035 (11)  | 0.0018 (11)  | 0.0027 (11)  |
| C31        | 0.0161 (11)  | 0.0140 (10)     | 0.0219 (12)     | 0.0039 (9)   | 0.0019 (9)   | 0.0016 (9)   |
| C32        | 0.0269 (14)  | 0.0191 (13)     | 0.0389 (16)     | 0.0103 (11)  | 0.0141 (12)  | 0.0109 (11)  |
| C33        | 0.0344 (17)  | 0.0191 (13)     | 0.059 (2)       | 0.0131 (12)  | 0.0178 (15)  | 0.0148 (14)  |

| C34 | 0.0271 (14) | 0.0196 (13) | 0.0492 (19) | 0.0111 (11) | 0.0036 (13) | -0.0033 (13) |
|-----|-------------|-------------|-------------|-------------|-------------|--------------|
| C35 | 0.0233 (13) | 0.0269 (14) | 0.0271 (14) | 0.0094 (11) | 0.0042 (11) | -0.0049 (11) |
| C36 | 0.0212 (12) | 0.0199 (12) | 0.0220 (12) | 0.0054 (10) | 0.0036 (10) | 0.0006 (10)  |

Geometric parameters (Å, °)

| <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> | 2.4711 (7)  | С13—Н13     | 0.9500    |
|-------------------------------------------------|-------------|-------------|-----------|
| Sn—S2                                           | 3.0180 (7)  | C14—C15     | 1.385 (5) |
| S1—C1                                           | 1.755 (3)   | C14—H14     | 0.9500    |
| S2—C1                                           | 1.686 (3)   | C15—C16     | 1.390 (4) |
| Sn—C11                                          | 2.162 (3)   | C15—H15     | 0.9500    |
| Sn—C21                                          | 2.136 (3)   | C16—H16     | 0.9500    |
| Sn—C31                                          | 2.133 (2)   | C21—C22     | 1.393 (4) |
| O1—C4                                           | 1.408 (4)   | C21—C26     | 1.396 (4) |
| O1—C5                                           | 1.420 (4)   | C22—C23     | 1.395 (4) |
| N1—C1                                           | 1.333 (4)   | C22—H22     | 0.9500    |
| N1—C2                                           | 1.460 (4)   | C23—C24     | 1.375 (5) |
| N1—C3                                           | 1.470 (4)   | С23—Н23     | 0.9500    |
| C2—H2A                                          | 0.9800      | C24—C25     | 1.384 (5) |
| C2—H2B                                          | 0.9800      | C24—H24     | 0.9500    |
| C2—H2C                                          | 0.9800      | C25—C26     | 1.389 (4) |
| C3—C4                                           | 1.514 (4)   | C25—H25     | 0.9500    |
| С3—НЗА                                          | 0.9900      | C26—H26     | 0.9500    |
| С3—Н3В                                          | 0.9900      | C31—C36     | 1.392 (4) |
| C4—H4A                                          | 0.9900      | C31—C32     | 1.393 (4) |
| C4—H4B                                          | 0.9900      | C32—C33     | 1.389 (4) |
| C5—H5A                                          | 0.9800      | С32—Н32     | 0.9500    |
| С5—Н5В                                          | 0.9800      | C33—C34     | 1.383 (5) |
| C5—H5C                                          | 0.9800      | С33—Н33     | 0.9500    |
| C11—C12                                         | 1.395 (4)   | C34—C35     | 1.379 (5) |
| C11—C16                                         | 1.396 (4)   | С34—Н34     | 0.9500    |
| C12—C13                                         | 1.396 (4)   | C35—C36     | 1.395 (4) |
| C12—H12                                         | 0.9500      | С35—Н35     | 0.9500    |
| C13—C14                                         | 1.383 (5)   | С36—Н36     | 0.9500    |
| S1—Sn—S2                                        | 64.37 (2)   | C14—C13—C12 | 119.8 (3) |
| S1—Sn—C11                                       | 91.17 (8)   | C14—C13—H13 | 120.1     |
| S1—Sn—C21                                       | 115.84 (7)  | C12—C13—H13 | 120.1     |
| S1—Sn—C31                                       | 119.09 (7)  | C13—C14—C15 | 120.2 (3) |
| S2—Sn—C11                                       | 155.54 (8)  | C13—C14—H14 | 119.9     |
| S2—Sn—C21                                       | 87.38 (7)   | C15—C14—H14 | 119.9     |
| S2—Sn—C31                                       | 87.83 (7)   | C14—C15—C16 | 119.5 (3) |
| C11—Sn—C21                                      | 104.11 (10) | C14—C15—H15 | 120.2     |
| C11—Sn—C31                                      | 105.78 (10) | C16—C15—H15 | 120.2     |
| C21—Sn—C31                                      | 115.55 (10) | C15—C16—C11 | 121.8 (3) |
| C1—S1—Sn                                        | 96.57 (10)  | C15—C16—H16 | 119.1     |
| C1—S2—Sn                                        | 79.96 (10)  | C11—C16—H16 | 119.1     |
| C4—O1—C5                                        | 111.3 (3)   | C22—C21—C26 | 118.1 (3) |

| C1—N1—C2                                          | 121.6 (3)         | C22—C21—Sn                          | 118.9 (2)         |
|---------------------------------------------------|-------------------|-------------------------------------|-------------------|
| C1—N1—C3                                          | 121.8 (3)         | C26—C21—Sn                          | 122.9 (2)         |
| C2—N1—C3                                          | 116.4 (2)         | C21—C22—C23                         | 121.1 (3)         |
| N1—C1—S2                                          | 122.9 (2)         | C21—C22—H22                         | 119.4             |
| N1—C1—S1                                          | 118.3 (2)         | С23—С22—Н22                         | 119.4             |
| S2—C1—S1                                          | 118.72 (16)       | C24—C23—C22                         | 119.7 (3)         |
| N1—C2—H2A                                         | 109.5             | C24—C23—H23                         | 120.2             |
| N1—C2—H2B                                         | 109.5             | С22—С23—Н23                         | 120.2             |
| H2A—C2—H2B                                        | 109.5             | C23—C24—C25                         | 120.3 (3)         |
| N1—C2—H2C                                         | 109.5             | C23—C24—H24                         | 119.9             |
| H2A—C2—H2C                                        | 109.5             | C25—C24—H24                         | 119.9             |
| H2B-C2-H2C                                        | 109.5             | C24—C25—C26                         | 120.1 (3)         |
| N1-C3-C4                                          | 113.6 (3)         | $C_{24}$ $C_{25}$ $H_{25}$          | 120.0             |
| N1—C3—H3A                                         | 108.8             | $C_{26} = C_{25} = H_{25}$          | 120.0             |
| C4-C3-H3A                                         | 108.8             | $C_{25} = C_{26} = C_{21}$          | 120.0<br>120.7(3) |
| N1_C3_H3B                                         | 108.8             | $C_{25} = C_{26} = H_{26}$          | 119.6             |
| $CA = C^2 = H^2 B$                                | 108.8             | $C_{23} = C_{20} = H_{20}$          | 119.6             |
| $L_{1} = L_{2} = L_{2}$                           | 107.7             | $C_{21} = C_{20} = 1120$            | 119.0             |
| $H_{\text{DA}}$ $-C_{\text{DA}}$ $-H_{\text{DB}}$ | 107.7<br>108.7(2) | $C_{30} = C_{31} = C_{32}$          | 119.1(2)          |
| 01 - C4 - C3                                      | 108.7 (5)         | $C_{30} = C_{31} = S_{11}$          | 117.20 (19)       |
| OI - C4 - H4A                                     | 109.9             | $C_{32}$ $C_{31}$ $C_{31}$          | 123.70(19)        |
| $C_3 - C_4 - H_4 A$                               | 109.9             | $C_{33} = C_{32} = C_{31}$          | 119.9 (3)         |
| OI - C4 - H4B                                     | 109.9             | C33—C32—H32                         | 120.0             |
| C3—C4—H4B                                         | 109.9             | С31—С32—Н32                         | 120.0             |
| H4A—C4—H4B                                        | 108.3             | C34—C33—C32                         | 120.6 (3)         |
| 01—C5—H5A                                         | 109.5             | С34—С33—Н33                         | 119.7             |
| O1—C5—H5B                                         | 109.5             | С32—С33—Н33                         | 119.7             |
| H5A—C5—H5B                                        | 109.5             | C35—C34—C33                         | 120.0 (3)         |
| O1—C5—H5C                                         | 109.5             | С35—С34—Н34                         | 120.0             |
| H5A—C5—H5C                                        | 109.5             | С33—С34—Н34                         | 120.0             |
| H5B—C5—H5C                                        | 109.5             | C34—C35—C36                         | 119.7 (3)         |
| C12—C11—C16                                       | 117.5 (3)         | С34—С35—Н35                         | 120.1             |
| C12—C11—Sn                                        | 123.0 (2)         | С36—С35—Н35                         | 120.1             |
| C16—C11—Sn                                        | 119.5 (2)         | C31—C36—C35                         | 120.6 (3)         |
| C11—C12—C13                                       | 121.2 (3)         | С31—С36—Н36                         | 119.7             |
| C11—C12—H12                                       | 119.4             | С35—С36—Н36                         | 119.7             |
| C13—C12—H12                                       | 119.4             |                                     |                   |
|                                                   |                   |                                     |                   |
| $C_{2} = N_{1} = C_{1} = S_{2}$                   | -50(4)            | C12—C11—C16—C15                     | 19(5)             |
| $C_3 = N_1 = C_1 = S_2$                           | 179 3 (2)         | $n - C_{11} - C_{16} - C_{15}$      | -1783(2)          |
| $C_{2} N_{1} C_{1} S_{1}$                         | 175.7(2)          | $C_{26} = C_{21} = C_{22} = C_{23}$ | 13(4)             |
| $C_2$ N1 C1 S1                                    | 175.7(2)          | Sn C21 C22 C23                      | 1.3(4)<br>1779(2) |
| $s_n = s_1 = c_1 = s_1$                           | 175 2 (2)         | $C_{21} C_{22} C_{23} C_{24}$       | -11(5)            |
| $S_{1} = S_{2} = C_{1} = M_{1}$                   | -5.46(14)         | $C_{21} - C_{22} - C_{23} - C_{24}$ | 1.1(3)            |
| $S_{1} = S_{2} = C_{1} = S_{1}$                   | -174.0(2)         | $C_{22} = C_{23} = C_{24} = C_{23}$ | 0.0(3)            |
| SII = SI = CI = S2                                | -1/4.0(2)         | 123 - 124 - 123 - 120               | 0.0 (3)           |
| Sn = S1 = C1 = S2                                 | 0.02 (10)         | $C_{24} = C_{25} = C_{26} = C_{21}$ | -0.6(5)           |
| C1 - N1 - C3 - C4                                 | 95.1 (3)          | C22—C21—C26—C25                     | -0.4 (4)          |
| C2—N1—C3—C4                                       | -80.8 (3)         | Sn—C21—C26—C25                      | -176.9 (2)        |
| C5—O1—C4—C3                                       | 178.7 (3)         | C36—C31—C32—C33                     | -0.4(5)           |

| N1—C3—C4—O1<br>C16—C11—C12—C13 | 81.8 (3)<br>-1.7 (5) | Sn—C31—C32—C33<br>C31—C32—C33—C34 | -179.7 (3)<br>-0.4 (5) |
|--------------------------------|----------------------|-----------------------------------|------------------------|
| Sn—C11—C12—C13                 | 178.5 (2)            | C32—C33—C34—C35                   | 0.6 (6)                |
| C11—C12—C13—C14                | 0.5 (5)              | C33—C34—C35—C36                   | 0.0 (5)                |
| C12-C13-C14-C15                | 0.6 (5)              | C32—C31—C36—C35                   | 0.9 (4)                |
| C13-C14-C15-C16                | -0.4 (5)             | Sn-C31-C36-C35                    | -179.7 (2)             |
| C14—C15—C16—C11                | -0.9 (5)             | C34—C35—C36—C31                   | -0.8 (4)               |

# Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C21–C26 ring.

| D—H···A                  | <i>D</i> —Н | H···A | D····A    | D—H…A |
|--------------------------|-------------|-------|-----------|-------|
| C35—H35…Cg1 <sup>i</sup> | 0.95        | 2.99  | 3.760 (3) | 139   |

Symmetry code: (i) -x+1, -y, -z+1.