

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 14 December 2017
Accepted 19 December 2017

Edited by A. J. Lough, University of Toronto, Canada
\# Deceased July 7, 2015.
Keywords: crystal structure; nitrile; isocyanide; $\mathrm{N} \cdots$ I contacts; C \cdots I contacts.

CCDC references: 1580006; 1581218

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structures of 2,4,6-triiodobenzonitrile and 2,4,6-triiodophenyl isocyanide

Wayland E. Noland,* Doyle Britton, \ddagger Gregory K. Sutton, Andrew K. Schneerer and Kenneth J. Tritch

Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, USA. *Correspondence e-mail: nolan001@umn.edu

The title crystals, $\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{I}_{3} \mathrm{~N}$, are isomorphous. Both molecules lie across two crystallographic mirror planes and a twofold axis. The principal supramolecular interaction is centric $R_{2}^{2}(10) \mathrm{CN} / \mathrm{NC} \cdots \mathrm{I}$ short contacts involving both ortho I atoms, with two contacts bisecting each cyano and isocyano group. These form ribbons along [010] and give rise to a planar sheet structure parallel to (100). All pairs of adjacent sheets have centric stacking, a mode not previously reported for sheets of this type. This study completes the series of homo-2,4,6trihalobenzonitriles, in which I atoms give the strongest $\mathrm{CN} \cdots X$ and $\mathrm{NC} \cdots X$ interactions ($X=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$).

1. Chemical context

The strength of cyano-halo interactions tends to increase with increasing polarizability, or the elemental period, of the halogen. Structure-directing CN...F interactions are usually not observed (Bond et al., 2001). In crystals of the other 4-halobenzonitriles ($X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$), parallel or antiparallel $C_{1}^{1}(7) \mathrm{CN} \cdots X$ chains dominate the secondary structures (Fig. 1; Desiraju \& Harlow, 1989). When the halo atom is moved to the 2 -position, $R_{2}^{2}(10) \mathrm{CN} \cdots X$ rings can form, usually as inversion dimers. Halogenation at both ortho positions allows the formation of $\mathrm{CN} \cdots X$-derived ribbons or sheets. The aforementioned periodic trend is exhibited by the homo-2,4,6-trihalobenzonitriles. No $\mathrm{CN} \cdots \mathrm{F}$ contacts are observed in 2,4,6-trifluorobenzonitrile (F3CN). Instead, each CN group is bisected by two $\mathrm{CN} \cdots \mathrm{H}$ contacts (Fig. $2 a$; Britton, 2008). In 2,4,6-trichlorobenzonitrile (Cl 3 CN), half of these have been replaced by $\mathrm{CN} \cdots \mathrm{Cl}$ contacts (Fig. 2b; Pink et al., 2000). In 2,4,6-tribromobenzonitrile (Br 3 CN), no $\mathrm{CN} \cdots \mathrm{H}$ contacts are found, and each CN group is bisected by two $\mathrm{CN} \cdots \mathrm{Br}$ contacts (Fig. 2c; Britton et al., 2016).

Figure 1
Several molecules in the crystal of 4-iodobenzonitrile (4ICN), viewed along [001]. Dashed green lines represent CN \cdots I short contacts, which collectively form a $C(7)$ chain motif along [010]. All previously reported 4-iodobenzonitriles form similar chains.

I3CN

I3NC

Figure 3
The molecular structures of (a) I3CN and (b) I3NC, with atom labeling and displacement ellipsoids at the 50% probability level. Unlabeled atoms are generated by the symmetry operation $\left(1-x, \frac{3}{2}-y, z\right)$.

3. Structural commentary

Molecules of I3CN and I3NC (Fig. 3) lie about a twofold axis and two orthogonal vertical mirror planes. Thus, they have crystallographically-imposed $C_{2 v}$ symmetry and are planar, with the para I atom ($\mathrm{I} 4 ; \mathrm{I} 14$) collinear with the CN and NC groups. All of the aryl bond angles are roughly 120°. The ortho I atoms ($\mathrm{I} 2, \mathrm{I} 2^{\prime} ; \mathrm{I} 12, \mathrm{I12}$ ') are scissored slightly toward the ipso C atom ($\mathrm{C} 1 ; \mathrm{C} 11$), which is probably caused by the intermolecular $\mathrm{CN} \cdots$ I and $\mathrm{NC} \cdots$ I short contacts. The bond lengths are typical for their respective functional groups.

4. Supramolecular features

Crystals of I3CN and I3NC are isomorphous. The CN and NC groups are bisected by $\mathrm{C} 7 \equiv \mathrm{~N} 7 \cdots \mathrm{I} 2$ and $\mathrm{N} 17 \equiv \mathrm{C} 17 \cdots \mathrm{I} 12$ contacts (Table 1), forming ribbons of $R_{2}^{2}(10)$ rings parallel to (100) along [010]. Adjacent ribbons translate along [001]. The resulting planar sheet structure (Fig. 4) matches that observed in Br 3 CN and the corresponding isocyanide (Br 3 NC) (Britton et al., 2016), and the 4-chloro (Britton, 2005) and 4-nitro
(a)

(b)

(c)

Figure 2
(a) A sheet in a crystal of F 3 CN , showing two $\mathrm{CN} \cdots \mathrm{H}$ contacts per CN group, viewed along [001]; (b) A sheet in a crystal of Cl 3 CN , showing one $\mathrm{CN} \cdots \mathrm{H}$ and one $\mathrm{CN} \cdots \mathrm{Cl}$ contact per CN group, viewed along [100]; (c) A sheet in the $Z=8$ polytype of Br 3 CN , showing two $\mathrm{CN} \cdots \mathrm{Br}$ contacts per CN group, viewed along [100]. Dashed magenta lines represent short contacts.

Table 1
Contact geometry $\left(\AA,{ }^{\circ}\right)$ for I 3 CN and I3NC.

$A \equiv B \cdots \mathrm{I}$	$A \equiv B$	$B \cdots \mathrm{I}$	$A \equiv B \cdots \mathrm{I}$
$\mathrm{C} 7 \equiv \mathrm{~N} 7 \cdots \mathrm{I} 2^{\mathrm{i}}$	$1.151(3)$	$3.074(2)$	$132.85(3)$
$\mathrm{N} 17 \equiv \mathrm{C} 17 \cdots \mathrm{I} 12^{\mathrm{i}}$	$1.164(3)$	$3.106(2)$	134.18 (3)

Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+2$
(Noland \& Tritch, 2017) analogs of Br3CN. In crystals of I3CN and I3NC, all pairs of adjacent sheets have centric stacking along [100] (Fig. 5), with molecules stacked about a glide plane and an inversion center. In the polytypes of Br 3 CN and Br3NC, adjacent sheets had combinations of centric and translational stacking, but not solely centric stacking. The 4-chloro analog had translational stacking. The 4-nitro analog had glide stacking, with no inversion center between stacked molecules. Thus, the all-centric stacking of I3CN and I3NC can be regarded as a new polytype in this series.

The mean $\mathrm{CN} \cdots X$ contact lengths can be compared for $X=$ Cl, Br, and I (Table 2). For 4-chlorobenzonitrile (4 ClCN), 4-bromobenzonitrile (4BrCN), and 4-iodobenzonitrile (4ICN) (Table 2, col. 2), the contact distance decreases with increasing halogen size, highlighting the increase in contact strength (Desiraju \& Harlow, 1989). This trend is essentially mirrored among 2,4,6-trihalobenzonitriles (Table 2, col. 3), although the contact distance in I 3 CN is $0.01 \AA$ larger than in Br 3 CN . The $\mathrm{N} \cdots X$ non-bonded contact radii are listed (Table 2, col. 4; Rowland \& Taylor, 1996). The 'shortness' of contacts in 2,4,6trihalobenzonitriles is expressed as the ratios of contact radii to the respective contact distances (Table 2, col. 5). A similar comparison of $\mathrm{NC} \cdots X$ contact lengths in the corresponding trihalo isocyanides also shows decreasing contact length with increasing halogen size (Table 3, col. 2). The NC $\cdots X$ contacts

Figure 4
A space-filling drawing of the sheet structure of I3NC, viewed along [100].

Table 2
Mean $\mathrm{CN} \cdots X$ contact lengths (\AA) in 4-halobenzonitriles ($4 X \mathrm{CN}$) and 2,4,6-trihalobenzonitriles $(X 3 \mathrm{CN})$.

X	$4 X \mathrm{CN}$	$X 3 \mathrm{CN}$	$r[\mathrm{~N}+X](\AA)$	$[r / X 3 \mathrm{CN}]$
Cl	$3.370(4)$	$3.153(2)$	3.35	1.06
Br	$3.249(5)$	$3.064(4)$	3.46	1.13
I	$3.127(4)$	$3.074(2)$	3.61	1.17

Table 3
Mean NC $\cdots X$ contact lengths (\AA) in 2,4,6-trihalophenyl isocyanides ($X 3 \mathrm{NC}$).

X	$X 3 \mathrm{NC}$	$r[\mathrm{C}+X]$	$[r / X 3 \mathrm{NC}]$
Cl	$3.245(3)$	3.49	1.08
Br	$3.151(4)$	3.60	1.14
I	$3.106(2)$	3.75	1.21

have slightly greater shortness (Table 3, col. 4) than the corresponding $\mathrm{CN} \cdots X$ contacts. The $\mathrm{N} 17 \equiv \mathrm{C} 17 \cdots \mathrm{I} 12$ contacts in I3NC are the strongest cyano/isocyano-halo interactions in this series.

5. Synthesis and crystallization

2,4,6-Triiodoaniline (I3NH2), adapted from the work of Jackson \& Whitmore (1915): Aniline (1.0 mL) and hydrochloric acid ($0.7 \mathrm{M}, 850 \mathrm{~mL}$) were combined and stirred in a round-bottomed flask. Iodine monochloride (8.2 g) was placed in a separate flask and then warmed to 315 K . The two flasks were connected with a glass bridge. A slow stream of nitrogen was passed through the headspace in the second vessel so that the iodine monochloride was gradually swept into the first

Figure 5
Two adjacent sheets in I3NC, viewed along [100], illustrating the centric stacking mode. Dashed magenta lines represent short contacts in the front layer. Molecules in the rear layer are drawn with smaller balls and sticks, lower opacity, and green dashed lines representing short contacts.

Table 4
Experimental details.

	I3CN	I3NC
Crystal data		
Chemical formula	$\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{I}_{3} \mathrm{~N}$	$\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{I}_{3} \mathrm{~N}$
$M_{\text {r }}$	480.80	480.80
Crystal system, space group	Orthorhombic, Imma	Orthorhombic, Imma
Temperature (K)	100	100
$a, b, c(\AA)$	7.0593 (4), 10.5346 (5), 13.0658 (6)	7.0552 (3), 10.4947 (5), 13.1557 (5)
$V\left(\AA^{3}\right)$	971.66 (8)	974.08 (7)
Z	4	4
Radiation type	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	9.59	9.56
Crystal size (mm)	$0.12 \times 0.10 \times 0.10$	$0.15 \times 0.09 \times 0.07$
Data collection		
Diffractometer	Bruker VENTURE PHOTON-II	Bruker VENTURE PHOTON-II
Absorption correction	Multi-scan (SADABS; Sheldrick, 1996)	Multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}, T_{\text {max }}$	0.281, 0.344	0.251, 0.344
No. of measured, independent and observed [$I>2 \sigma(I)$] reflections	8436, 1303, 1261	13040, 1314, 1267
$R_{\text {int }}$	0.024	0.026
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.835	0.834
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.013, 0.030, 1.18	0.011, 0.024, 1.14
No. of reflections	1303	1314
No. of parameters	40	40
H -atom treatment	H -atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.89, -0.60	0.72, -0.48

Computer programs: APEX3 (Bruker, 2012), SAINT (Bruker, 2012), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).
vessel over 2-4 d. After the transfer was complete, the reaction mixture was neutralized with NaHCO_{3} solution, followed by reduction of excess iodine by washing with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. Dichloromethane (approx. 100 mL) was added, with stirring, until nearly all solids had dissolved. The organic portion was filtered through silica gel ($3 \mathrm{~cm} \mathrm{H} \times 4 \mathrm{~cm} \mathrm{D}$), and then the filter was washed with dichloromethane $(3 \times 20 \mathrm{~mL})$. The filtrate was placed in a loosely-covered beaker. After most of the dichloromethane had evaporated, beige needles were collected by suction filtration ($4.48 \mathrm{~g}, 89 \%$). M.p. $459-460 \mathrm{~K}$ (lit. 459); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.864(s, 2 \mathrm{H}), 4.658(s$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 147.0$ (1C), 145.4 (2C), 83.0 (2C), 78.8 (1C); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3417, 3056, 2987, 1632, 1422, 1265, 741, 704; MS (EI, m / z) [M] ${ }^{+}$calculated for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}_{3} \mathrm{~N}$ 470.7472, found 470.7470 .

2,4,6-Triiodobenzonitrile (I3CN), was prepared from I3NH2 (101 mg; Fig. 6) based on the Sandmeyer procedure described by Britton et al. (2016). Ethyl acetate (20 mL), toluene-4-sulfonic acid monohydrate (77 mg), and isoamyl nitrite $(60 \mu \mathrm{~L})$ were used in place of water, acetic and sulfuric acids, and sodium nitrite, respectively. The desired chromatographic fraction ($R_{f}=0.44$ in 4:1 hexane-ethyl acetate) was concentrated on a rotary evaporator, giving a beige powder ($67 \mathrm{mg}, \quad 65 \%$). M.p. $\quad 517-518 \mathrm{~K} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 8.431(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 3) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 147.5 (2C, C3), 127.3 (1C, C1), 120.7 (1C, C7), 101.1 (1C, C4), 99.6 (2C, C2); IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$) 3070, 2227, 1532, 1359, 1206, 1081, 861, 787, 706; MS (ESI, m / z) $[M+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{I}_{3} \mathrm{~N} 503.7213$, found 503.7216.

2,4,6-Triiodoformanilide (I3FA) was prepared from I3NH2 $(1.01 \mathrm{~g})$ according to the formylation procedure described by Britton et al. (2016), with 1,2-dichloroethane (10 mL and

I3NC

Figure 6
The synthesis of I 3 CN and I3NC.

100 mL) in place of tetrahydrofuran, giving white needles ($962 \mathrm{mg}, \quad 90 \%$). M.p. $\quad 557-558 \mathrm{~K} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} ; 2$ conformers observed) $\delta 10.089$ ($s, 1 \mathrm{H}$; major), 9.655 ($s, 1 \mathrm{H}$; minor), 8.303 ($s, 1 \mathrm{H}$; major), 8.278 ($s, 2 \mathrm{H}$; minor), 8.233 ($s, 2 \mathrm{H}$; major), 7.978 ($s, 1 \mathrm{H}$; minor); ${ }^{13} \mathrm{C}$ NMR (126 MHz , $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} ; 2$ conformers observed) $\delta 164.4$ (1C; minor), 159.4 (1C; major), 146.4 (2C; minor), 146.1 (2C; major), 141.0 (1C; major), 140.4 (1C; minor), 102.4 (2C; minor), 101.9 (2C; major), 95.9 (1C; minor), 95.6 (1C; major); IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$) 3221, 3076, 2919, 1637, 1490, 1380, 1232, 1143, 857, 794, 703, 682; MS (ESI, m/z) [M - H] ${ }^{-}$calculated for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{I}_{3} \mathrm{NO}$ 497.7354, found 497.7365.

2,4,6-Triiodophenyl isocyanide (I3NC) was prepared from I3FA (397 mg) according to the dehydration procedure described by Britton et al. (2016), giving a white powder ($330 \mathrm{mg}, 86 \%$). M.p. $467-468 \mathrm{~K} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.198(s, 2 \mathrm{H}, \mathrm{H} 13) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 170.0$ (1C, C17), 146.2 (2C, C13), 133.8 (1C, C11), 98.8 (1C, C14), 97.7 (2C, C12); IR (KBr, cm ${ }^{-1}$) 3073, 3037, 2920, 2126, 1529, 1079, 861, 704; MS (ESI, m / z) $[M-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{I}_{3} \mathrm{~N}$ 479.7249, found 479.7226 .

Crystallization: Crystals of I3CN and I3NC were prepared by slow evaporation of acetonitrile solutions at ambient temperature, followed by decantation and then washing with pentane.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. A direct-methods solution was calculated, followed by full-matrix least squares/differenceFourier cycles. All H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ and refined as riding atoms with $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Acknowledgements

The authors thank Victor G. Young, Jr. (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystallographic determination, and the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this
project. This work was taken in large part from the PhD thesis of KJT (Tritch, 2017).

References

Bond, A. D., Davies, J. E., Griffiths, J. \& Rawson, J. M. (2001). Acta Cryst. E57, o231-o233.
Britton, D. (2001). Acta Cryst. E57, o702-o704.
Britton, D. (2004). Acta Cryst. E60, o184-o186.
Britton, D. (2005). Acta Cryst. E61, o1726-o1727.
Britton, D. (2006). Acta Cryst. B62, 109-117.
Britton, D. (2008). Acta Cryst. C64, o583-o585.
Britton, D., Noland, W. E. \& Tritch, K. J. (2016). Acta Cryst. E72, 178183.

Bruker (2012). APEX3 and SAINT. Bruker AXS, Inc., Madison, WI, USA.
Desiraju, G. R. \& Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 67576764.

Garden, S. J., Custódio, C. de A., Wardell, J. L., Low, J. N. \& Glidewell, C. (2007). Acta Cryst. C63, o408-o410.
Gleason, W. B. \& Britton, D. (1978). Cryst. Struct. Commun. 7, 365370.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jackson, C. L. \& Whitmore, F. C. (1915). J. Am. Chem. Soc. 37, 15221537.

Ketels, M., Konrad, D. B., Karaghiosoff, K., Trauner, D. \& Knochel, P. (2017). Org. Lett. 19, 1666-1669.

Lam, S. \& Britton, D. (1974). Acta Cryst. B30, 1119-1120.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Merz, K. (2006). Cryst. Growth Des. 6, 1615-1619.
Noland, W. E. \& Tritch, K. J. (2017). IUCrData, 2, x171617.
Pink, M., Britton, D., Noland, W. E. \& Pinnow, M. J. (2000). Acta Cryst. C56, 1271-1273.
Rowland, R. S. \& Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
Salvati, M. E., Balog, A., Shan, W., Rampulla, R., Giese, S., Mitt, T., Furch, J. A., Vite, G. D., Attar, R. M., Jure-Kunkel, M., Geng, J., Rizzo, C. A., Gottardis, M. M., Krystek, S. R., Gougoutas, J., Galella, M. A., Obermeier, M., Fura, A. \& Chandrasena, G. (2008). Bioorg. Med. Chem. Lett. 18, 1910-1915.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Tritch, K. J. (2017). PhD thesis, University of Minnesota, Minneapolis, MN, USA.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2018). E74, 98-102 [https://doi.org/10.1107/S2056989017018217]

Crystal structures of 2,4,6-triiodobenzonitrile and 2,4,6-triiodophenyl isocyanide

Wayland E. Noland, Doyle Britton, Gregory K. Sutton, Andrew K. Schneerer and Kenneth J. Tritch

Computing details

For both structures, data collection: APEX3 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

2,4,6-Triiodobenzonitrile (I3CN)

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{I}_{3} \mathrm{~N}$

$M_{r}=480.80$
Orthorhombic, Imma
$a=7.0593$ (4) \AA
$b=10.5346(5) \AA$
$c=13.0658$ (6) \AA
$V=971.66(8) \AA^{3}$
$Z=4$
$F(000)=840$

Data collection

Bruker VENTURE PHOTON-II diffractometer
Radiation source: micro-focus
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.281, T_{\text {max }}=0.344$
8436 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.013$
$w R\left(F^{2}\right)=0.030$
$S=1.18$
1303 reflections
40 parameters
0 restraints
$D_{\mathrm{x}}=3.287 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 517 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2721 reflections
$\theta=2.5-36.4^{\circ}$
$\mu=9.59 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Square bipyramid, colorless
$0.12 \times 0.10 \times 0.10 \mathrm{~mm}$

1303 independent reflections
1261 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=36.4^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-9 \rightarrow 11$
$k=-17 \rightarrow 17$
$l=-21 \rightarrow 21$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0078 P)^{2}+1.2371 P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.89 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.60 \mathrm{e}^{-3}$

supporting information

Extinction correction: SHELXL2014
(Sheldrick, 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00199 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
I2	0.5000	$0.46395(2)$	$0.83491(2)$	$0.01267(4)$
I4	0.5000	0.7500	$0.43429(2)$	$0.01359(4)$
N7	0.5000	0.7500	$1.00506(18)$	$0.0167(4)$
C1	0.5000	0.7500	$0.80692(18)$	$0.0103(4)$
C2	0.5000	$0.63456(15)$	$0.75302(13)$	$0.0105(3)$
C3	0.5000	$0.63428(16)$	$0.64671(13)$	$0.0117(3)$
H3	0.5000	0.5565	0.6100	0.014^{*}
C4	0.5000	0.7500	$0.59458(19)$	$0.0113(4)$
C7	0.5000	0.7500	$0.9170(2)$	$0.0130(4)$

Atomic displacement parameters (\AA^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I2	$0.01764(6)$	$0.00914(5)$	$0.01122(5)$	0.000	0.000	$0.00198(3)$
I4	$0.01801(8)$	$0.01463(7)$	$0.00812(6)$	0.000	0.000	0.000
N7	$0.0218(11)$	$0.0137(9)$	$0.0145(9)$	0.000	0.000	0.000
C1	$0.0104(9)$	$0.0113(9)$	$0.0094(8)$	0.000	0.000	0.000
C2	$0.0123(6)$	$0.0088(6)$	$0.0104(6)$	0.000	0.000	$0.0017(5)$
C3	$0.0157(7)$	$0.0095(6)$	$0.0099(6)$	0.000	0.000	$0.0002(5)$
C4	$0.0121(9)$	$0.0115(9)$	$0.0104(9)$	0.000	0.000	0.000
C7	$0.0137(10)$	$0.0120(9)$	$0.0133(10)$	0.000	0.000	0.000

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{I} 2-\mathrm{C} 2$	$2.0916(16)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.438(3)$
$\mathrm{I} 4-\mathrm{C} 4$	$2.094(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.389(2)$
$\mathrm{N} 7-\mathrm{C} 7$	$1.151(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.396(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.405(2)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 1-\mathrm{C} 2^{\mathrm{i}}$	$1.405(2)$	$\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}$	$1.396(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2^{\mathrm{i}}$			
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$119.9(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.5
$\mathrm{C} 2 \mathrm{C}-\mathrm{C} 1-\mathrm{C} 7$	$120.07(11)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.07(11)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3$	$121.6(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{I} 2$	$120.19(16)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{I} 4$	$119.19(11)$
		$\mathrm{C} 3-\mathrm{C} 4-\mathrm{I} 4$	$119.19(11)$

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{I} 2$	$119.16(13)$	$\mathrm{N} 7-\mathrm{C} 7-\mathrm{C} 1$	180.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.07(16)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.000(1)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.000(1)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$180.000(1)$	$\mathrm{I} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$180.000(1)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{I} 2$	$180.000(1)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}$	$0.000(1)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{I} 2$	$0.000(1)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{I} 4$	$180.000(1)$

Symmetry code: (i) $-x+1,-y+3 / 2, z$.

2,4,6-Triiodophenyl isocyanide (I3NC)

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{I}_{3} \mathrm{~N}$
$M_{r}=480.80$
Orthorhombic, Imma
$a=7.0552$ (3) \AA
$b=10.4947$ (5) \AA
$c=13.1557$ (5) \AA
$V=974.08$ (7) \AA^{3}
$Z=4$
$F(000)=840$

Data collection

Bruker VENTURE PHOTON-II
diffractometer
Radiation source: micro-focus
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.251, T_{\text {max }}=0.344$
13040 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.011$
$w R\left(F^{2}\right)=0.024$
$S=1.14$
1314 reflections
40 parameters
0 restraints
Hydrogen site location: inferred from neighbouring sites
$D_{\mathrm{x}}=3.279 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 467 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2833 reflections
$\theta=2.5-36.3^{\circ}$
$\mu=9.56 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.14 \times 0.09 \times 0.07 \mathrm{~mm}$

1314 independent reflections
1267 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=36.3^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-17 \rightarrow 12$
$l=-21 \rightarrow 21$

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0044 P)^{2}+1.2499 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.72 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.48$ e \AA^{-3}
Extinction correction: SHELXL2014
(Sheldrick, 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00312 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
I12	0.5000	$0.46223(2)$	$0.83472(2)$	$0.01190(3)$
I14	0.5000	0.7500	$0.43715(2)$	$0.01245(4)$
N17	0.5000	0.7500	$0.91223(14)$	$0.0120(3)$
C11	0.5000	0.7500	$0.80681(15)$	$0.0098(3)$
C12	0.5000	$0.63389(13)$	$0.75389(11)$	$0.0102(2)$
C13	0.5000	$0.63411(14)$	$0.64790(11)$	$0.0112(2)$
H13	0.5000	0.5561	0.6113	0.013^{*}
C14	0.5000	0.7500	$0.59640(15)$	$0.0108(3)$
C17	0.5000	0.7500	$1.00074(17)$	$0.0150(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I12	$0.01610(5)$	$0.00910(4)$	$0.01051(4)$	0.000	0.000	$0.00184(3)$
I14	$0.01561(6)$	$0.01413(6)$	$0.00761(5)$	0.000	0.000	0.000
N17	$0.0134(7)$	$0.0125(7)$	$0.0102(7)$	0.000	0.000	0.000
C11	$0.0106(8)$	$0.0106(7)$	$0.0081(7)$	0.000	0.000	0.000
C12	$0.0121(5)$	$0.0086(5)$	$0.0098(5)$	0.000	0.000	$0.0012(4)$
C13	$0.0138(6)$	$0.0096(5)$	$0.0101(5)$	0.000	0.000	$0.0000(4)$
C14	$0.0124(8)$	$0.0116(8)$	$0.0086(7)$	0.000	0.000	0.000
C17	$0.0174(9)$	$0.0148(9)$	$0.0127(8)$	0.000	0.000	0.000

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

I12-C12	2.0920 (14)	C11-C12	1.4035 (17)
I14-C14	2.095 (2)	C12-C13	1.394 (2)
N17-C17	1.164 (3)	C13-C14	1.3922 (17)
N17-C11	1.387 (3)	C13-H13	0.9500
$\mathrm{C} 11-\mathrm{C} 12^{\text {i }}$	1.4035 (17)	C14-C13 ${ }^{\text {i }}$	1.3922 (17)
C17-N17-C11	180.0	C14-C13-C12	119.21 (14)
N17-C11-C12 ${ }^{\text {i }}$	119.75 (9)	C14-C13-H13	120.4
N17-C11-C12	119.74 (9)	C12-C13-H13	120.4
C12- ${ }^{\text {i }} 11-\mathrm{C} 12$	120.51 (18)	C13-C14-C13	121.76 (18)
C13-C12-C11	119.65 (13)	C13--C14-I14	119.12 (9)
C13-C12-I12	120.65 (10)	C13-C14-I14	119.12 (9)
C11-C12-I12	119.70 (11)		
N17-C11-C12-C13	180.000 (1)	C11-C12-C13-C14	0.000 (1)
C12-- $\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	0.000 (1)	I12-C12-C13-C14	180.000 (1)
N17-C11-C12-I12	0.000 (1)	C12-C13-C14-C13	0.000 (1)
C12- $\mathrm{C} 11-\mathrm{C} 12-\mathrm{I} 12$	180.000 (1)	C12-C13-C14-I14	180.000 (1)

[^0]
[^0]: Symmetry code: (i) $-x+1,-y+3 / 2, z$.

