

Received 26 November 2017 Accepted 20 January 2018

Edited by V. Khrustalev, Russian Academy of Sciences, Russia

Keywords: iron(III) complex; 5-bromo-salicylaldehyde-2-pyridylhydrazone; 5-bromo-salicylaldehyde-thiosemicarbazone; high-spin; magnetic property; crystal structure.

CCDC reference: 1818280

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN O ACCESS

A new mononuclear neutral high-spin iron(III) complex with the different tridentate ligands 5-bromosalicylaldehyde (pyridin-2-yl)hydrazone and 5-bromosalicylaldehyde thiosemicarbazone

Yun Zhao, Xiao-Feng Shen and Li-Fang Zhang*

School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China. *Correspondence e-mail: zhanglifang@cumt.edu.cn

The title neutral mononuclear complex, [1-(5-bromo-2-oxidobenzylidene)thiosemicarbazidato](4-bromo-2-{[2-(pyridin-2-yl)hydrazinylidene]methyl}phenolato)iron(III), [Fe(C₈H₆BrN₃OS)(C₁₂H₉BrN₃O)] (I), crystallizes in the monoclinic space group C_2/c and has two different planar tridentate ligands. The central Fe^{III} ion is coordinated to three N, two O and one S atom, forming a distorted octahedral FeN₃O₂S coordination geometry. In the crystal, the complex molecules are linked by N-H···O and N-H···N hydrogen bonds and π - π interactions into layers parallel to (100). Magnetic measurements show that the central Fe^{III} ion is in the high-spin state; this is also supported by the bond distances around the Fe^{III} ion.

1. Chemical context

Much attention have been paid to the design and synthesis of Fe^{III} complexes for magnetic materials owing to their interesting thermal- or light-induced spin conversion between the high-spin (HS, S = 5/2) and low-spin (LS, S = 1/2) states (Li et al., 2013; Phonsri et al., 2017; Sato et al., 2007). It is well known that the organic ligands usually play a significant role in the crystal structures and magnetic properties of metal complexes (Ni et al., 2017; Zhang et al., 2016). Up to date, many Fe^{III} complexes with spin-crossover (SCO) behavior have been designed and synthesized through the subtle design and combination of different ligands. Among the many organic ligands, Schiff bases are the most common ligands for new Fe^{III} complexes due to their convenient synthesis and regulation. Compared with homo-ligand complexes, the employment of mixed ligands provides more selection and modification strategies for new magnetic complexes. In previous reports, the ligands 5-bromo-salicylaldehyde-2pyridylhydrazone (5-Br-Hpsal), 5-bromo-salicylaldehydethiosemicarbazone (5-Br-H₂thsa) and their derivatives have been explored to assembly Fe^{III} and Mn^{III} complexes with SCO behavior (Shongwe et al., 2014). Recently, we obtained the title complex, [(C₂₀H₁₅N₆O₂SBr₂)Fe] (I), using 5-Br-Hpsal and 5-Br-H₂thsa ligands. Herein, we report the crystal structure and magnetic property of this iron(III) complex.

2. Structural commentary

The title complex (Fig. 1) crystallizes in the monoclinic space group C_2/c . Compound (I) is a neutral mononuclear complex

with two different rigid tridentate ligands – 5-Br-psal⁻ and 5-Br-thsa^{2–} – which adopt a meridional coordination mode. The central Fe^{III} ion lies almost within the plane of each ligand [give deviations] and is coordinated to three nitrogen, two oxygen and one sulfur atoms from the two tridentate 5-Brpsal⁻ and 5-Br-thsa²⁻ ligands, forming a distored octahedral FeN_3O_2S geometry. The Fe-O bond lengths are 1.943 (3) and 1.931 (3) Å, the Fe-N bond lengths range from 2.142 (3) to 2.157 (3) Å, and the Fe1-S1 bond length is 2.4093 (14) Å. All the bond lengths are normal and agree well with those in related high-spin state Fe^{III} compounds (Li et al., 2013; Phonsri et al., 2017). The C1–S1 bond length [1.720 (4) Å] is comparable with the ordinary C-S bond length (Li & Sato, 2017), whereas the C1=N2 and C2=N3 bond distances [1.314 (5) and 1.287 (5) Å, respectively] are significantly smaller than those of C1-N1 [1.350 (5) Å] and C16-N5 [1.377 (6) Å] indicating the double-bond character. The bond angles further evidence the significantly distorted octahedral coordination geometry around the Fe^{III} ion.

3. Supramolecular features

In the crystal, there are two independent hydrogen bonds (Table 1), which link the complex molecules into layers parallel to (100) (Fig. 2). In addition, there exist relatively strong π - π interactions between the pyridine and benzene rings of the 5-Br-psal⁻ ligands with a shortest interatomic distance of 3.485 (3) Å (Fig. 2).

4. Magnetic properties

The magnetic susceptibilities of (I) have been measured in the temperature range 2–350 K under an applied magnetic field strength of 2000 Oe by SQUID magnetometry. A plot of $\chi_m T$ versus *T* is presented in Fig. 3, where χ_m represents the molar

Table 1 Hydrogen-bond geometry (Å, °).

, , ,	2	/		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N5 - H5 \cdots N2^{i}$ N1 - H1A \cdots O2^{ii}	0.83 (4) 0.88	2.00 (4) 2.29	2.825 (5) 2.987 (4)	171 (4) 136

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x, -y + 2, z + \frac{1}{2}$.

magnetic susceptibility per Fe^{III} unit. The $\chi_m T$ value is 4.042 emu K mol⁻¹ at room temperature, which is slightly smaller than the expected value of $4.375 \text{ emu K mol}^{-1}$ for the single spin carrier of high-spin Fe^{III} (S = 5/2) based on g = 2.0. The measurement of the magnetic property shows that the Fe^{III} ion is in the high-spin state, which agrees well with the abovementioned bond lengths around the Fe^{III} ion. The $\chi_m T$ value keeps nearly constant with decreasing temperature until around 75 K, and then it decreases quickly to a minimum value of 1.12 emu K mol⁻¹ at 2.0 K. This tendency to change of the $\chi_m T$ curve indicates the existence of overall weak antiferromagnetic interactions in (I). The magnetic susceptibilities in the range of 2-350 K comply well with the Curie-Weiss law with a negative Weiss constant $\theta = -4.28$ K, and Curie constant C = 4.08 emu K mol⁻¹, which further confirms the presence of overall intermolecular antiferromagnetic interactions between neighboring Fe^{III} ions through intermolecular hydrogen bonds and $\pi - \pi$ interactions in complex (I).

Molecular structure of (I) with 30% probability displacement ellipsoids.

Figure 2

The layered structure of (I) formed through hydrogen bonds (green dotted lines) and $\pi - \pi$ interactions.

5. Synthesis and crystallization

All reactions were conducted in air using reagent grade solvents. The 5-Br-Hpsal and 5-Br-H $_2$ thsa ligands were

Figure 3

Temperature dependencies of $\chi_m T$ and χ_m versus temperature (T) for complex (I) measured under an applied field of 2000 Oe. The solid line represents the fitting curve based on the Curie–Weiss law.

synthesized by refluxing equimolar 5-bromosalicylaldehyde with thiosemicarbazone and 2-pyridylhydrazine, respectively, in an ethanol solvent. All other chemicals were purchased from the Sigma Aldrich Chemical Company and used as received. The precursors $[Fe(5-Br-psal)_2]Cl$ and $Li[Fe(5-Br-thsa)_2]$ were prepared according to literature methods (Phonsri *et al.*, 2016). $[Fe(5-Br-psal)_2]Cl$ (0.2 mmol) and $Li[Fe(5-Br-thsa)_2]$ (0.2 mmol) were dissolved in acetonitrile (20 mL). The mixture was filtered and kept at room temperature for two days. Brown block-shaped single crystals were collected with a relatively high yield of 76%. Elemental analysis calculated for $C_{20}H_{15}N_6O_2SBr_2Fe: C, 38.80\%; H, 2.44\%; N, 13.57\%;$ found: C, 38.72%, H, 2.38%; N, 13.62%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The amino-H atom of 5-Br-psal⁻ was found from the difference-Fourier map and refined isotropically. All other hydrogen atoms were placed in calculated positions with C-H = 0.88-0.95 Å and refined in the Table 2Experimental details.

Crystal data	
Chemical formula	$[Fe(C_8H_6BrN_3OS)(C_{12}H_9BrN_3O)]$
$M_{ m r}$	619.11
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	123
a, b, c (Å)	21.145 (4), 14.738 (3), 15.471 (3)
β (°)	112.47 (3)
$V(Å^3)$	4455.2 (18)
Ζ	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	4.39
Crystal size (mm)	$0.12\times0.10\times0.08$
Data collection	
Diffractometer	detector
Absorption correction	Multi-scan (<i>CrystalClear</i> ; Rigaku, 2008)
T_{\min}, T_{\max}	0.576, 0.707
No. of measured, independent and	17937, 5012, 3514
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.074
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)] wR(F^2) S$	0.048 0.106 1.00
No of reflections	5012
No. of parameters	293
H-atom treatment	H atoms treated by a mixture of
	refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.53, -0.76

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

riding model with fixed isotropic displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C,N)].$

Funding information

The work was supported by the Fundamental Research Funds for the Central Universities (No. 2015QNA24).

References

- Li, Z. Y., Dai, J. W., Shiota, Y., Yoshizawa, K., Kanegawa, S. & Sato, O. (2013). *Chem. Eur. J.* **19**, 12948–12952.
- Li, G.-L. & Sato, O. (2017). Acta Cryst. E73, 993-995.
- Ni, Z.-H., Xu, L., Li, N. & Zhang, L. F. (2017). Inorg. Chim. Acta, 462, 204–208.

Phonsri, W., Davies, C. G., Jameson, G. N. L., Moubaraki, B. & Murray, K. S. (2016). *Chem. Eur. J.* 22, 1322–1333.

- Phonsri, W., Harding, P., Murray, K. S., Moubaraki, B. & Harding, D. J. (2017). *New J. Chem.* **41**, 13747–13753.
- Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sato, O., Tao, J. & Zhang, Y.-Z. (2007). Angew. Chem. Int. Ed. 46, 2152–2187.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shongwe, M. S., Al-Barhi, K. S., Mikuriya, M., Adams, H., Morris, M. J., Bill, E. & Molloy, K. C. (2014). *Chem. Eur. J.* 20, 9693–9701.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, R., Xu, L., Ni, Z., Chen, H. & Zhang, L. (2016). *Inorg. Chem. Commun.* **67**, 99–102.

supporting information

Acta Cryst. (2018). E74, 252-255 [https://doi.org/10.1107/S2056989018001263]

A new mononuclear neutral high-spin iron(III) complex with the different tridentate ligands 5-bromosalicylaldehyde (pyridin-2-yl)hydrazone and 5bromosalicylaldehyde thiosemicarbazone

Yun Zhao, Xiao-Feng Shen and Li-Fang Zhang

Computing details

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear* (Rigaku, 2008); data reduction: *CrystalClear* (Rigaku, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

[1-(5-Bromo-2-oxidobenzylidene)thiosemicarbazidato](4-bromo-2-{[2-(pyridin-2-yl)hydrazinylidene]methyl}phenolato)iron(III)

Crystal data [Fe(C₈H₆BrN₃OS)(C₁₂H₉BrN₃O)] $M_r = 619.11$ Monoclinic, C2/c a = 21.145 (4) Å b = 14.738 (3) Å c = 15.471 (3) Å $\beta = 112.47$ (3)° V = 4455.2 (18) Å³ Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: Rotating Anode ω scans Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) $T_{\min} = 0.576, T_{\max} = 0.707$ 17937 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.106$ S = 1.005012 reflections 293 parameters F(000) = 2440 $D_x = 1.846 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2456 reflections $\theta = 3.0-26.6^{\circ}$ $\mu = 4.39 \text{ mm}^{-1}$ T = 123 KBlock, brown $0.12 \times 0.10 \times 0.08 \text{ mm}$

5012 independent reflections 3514 reflections with $I > 2\sigma(I)$ $R_{int} = 0.074$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -27 \rightarrow 25$ $k = -18 \rightarrow 19$ $l = -20 \rightarrow 18$

0 restraints Primary atom site location: difference Fourier map Secondary atom site location: difference Fourier map Hydrogen site location: mixed

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.53 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0455P)^2 + 0.2543P]$	$\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	V	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	
Fe1	0.25435 (3)	0.91027 (4)	0.12510 (4)	0.01599 (15)	
Br1	0.11616 (2)	1.34761 (3)	-0.13350(3)	0.02748 (14)	
Br2	0.56554 (3)	0.64748 (4)	0.14892 (4)	0.04080 (16)	
01	0.20626 (15)	0.96909 (19)	0.00536 (18)	0.0228 (7)	
02	0.33707 (15)	0.91116 (19)	0.1001 (2)	0.0226 (7)	
S1	0.30696 (6)	0.87380 (7)	0.28908 (7)	0.0232 (3)	
N1	0.32499 (18)	0.9869 (2)	0.4275 (2)	0.0250 (8)	
H1A	0.3225	1.0394	0.4532	0.030*	
H1B	0.3446	0.9402	0.4631	0.030*	
N2	0.27026 (18)	1.0507 (2)	0.2850 (2)	0.0184 (8)	
N3	0.24650 (17)	1.0386 (2)	0.1873 (2)	0.0160 (7)	
N4	0.26090 (17)	0.7660 (2)	0.1140 (2)	0.0165 (7)	
N5	0.20634 (19)	0.7168 (2)	0.1166 (2)	0.0212 (8)	
N6	0.15575 (18)	0.8575 (2)	0.1092 (2)	0.0198 (8)	
C1	0.2987 (2)	0.9781 (3)	0.3335 (3)	0.0183 (9)	
C2	0.2241 (2)	1.1126 (3)	0.1416 (3)	0.0191 (9)	
H2	0.2272	1.1656	0.1780	0.023*	
C3	0.1945 (2)	1.1242 (3)	0.0406 (3)	0.0171 (9)	
C4	0.1734 (2)	1.2118 (3)	0.0059 (3)	0.0190 (9)	
H4	0.1792	1.2605	0.0484	0.023*	
C5	0.1448 (2)	1.2278 (3)	-0.0876 (3)	0.0182 (9)	
C6	0.1360 (2)	1.1570 (3)	-0.1512 (3)	0.0252 (10)	
H6	0.1161	1.1686	-0.2165	0.030*	
C7	0.1558 (2)	1.0713 (3)	-0.1194 (3)	0.0246 (10)	
H7	0.1490	1.0235	-0.1632	0.030*	
C8	0.1863 (2)	1.0516 (3)	-0.0228 (3)	0.0170 (9)	
C9	0.3869 (2)	0.8521 (3)	0.1141 (3)	0.0211 (10)	
C10	0.4514 (2)	0.8828 (3)	0.1204 (3)	0.0272 (10)	
H10	0.4588	0.9460	0.1170	0.033*	
C11	0.5042 (2)	0.8236 (3)	0.1311 (3)	0.0298 (11)	
H11	0.5477	0.8453	0.1361	0.036*	
C12	0.4922 (2)	0.7305 (3)	0.1347 (3)	0.0295 (11)	
C13	0.4306 (2)	0.6972 (3)	0.1282 (3)	0.0241 (10)	
H13	0.4240	0.6335	0.1299	0.029*	
C14	0.3763 (2)	0.7575 (3)	0.1191 (3)	0.0207 (9)	

C15	0.3135 (2)	0.7189 (3)	0.1168 (3)	0.0202 (9)	
H15	0.3101	0.6546	0.1172	0.024*	
C16	0.1507 (2)	0.7671 (3)	0.1137 (3)	0.0209 (9)	
C17	0.0910 (2)	0.7237 (3)	0.1113 (3)	0.0279 (11)	
H17	0.0889	0.6595	0.1157	0.034*	
C18	0.0352 (2)	0.7776 (3)	0.1022 (3)	0.0315 (11)	
H18	-0.0060	0.7505	0.1005	0.038*	
C19	0.0396 (2)	0.8719 (3)	0.0956 (3)	0.0312 (11)	
H19	0.0016	0.9099	0.0885	0.037*	
C20	0.1007 (2)	0.9079 (3)	0.0996 (3)	0.0269 (10)	
H20	0.1041	0.9718	0.0953	0.032*	
Н5	0.214 (2)	0.665 (3)	0.140 (3)	0.022 (13)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
Fe1	0.0230 (3)	0.0106 (3)	0.0143 (3)	0.0020 (3)	0.0071 (3)	-0.0004 (2)
Br1	0.0358 (3)	0.0187 (2)	0.0243 (2)	0.0050(2)	0.0074 (2)	0.00645 (19)
Br2	0.0304 (3)	0.0502 (4)	0.0369 (3)	0.0172 (2)	0.0073 (2)	-0.0101 (2)
01	0.0372 (19)	0.0142 (15)	0.0146 (15)	0.0049 (13)	0.0073 (14)	0.0016 (12)
O2	0.0283 (17)	0.0176 (15)	0.0253 (16)	0.0048 (14)	0.0140 (14)	0.0042 (13)
S1	0.0350 (7)	0.0156 (5)	0.0160 (5)	0.0058 (5)	0.0063 (5)	-0.0004 (4)
N1	0.037 (2)	0.019 (2)	0.0144 (18)	0.0031 (17)	0.0049 (17)	0.0010 (15)
N2	0.029 (2)	0.0158 (18)	0.0109 (16)	0.0016 (15)	0.0085 (15)	-0.0026 (14)
N3	0.0220 (19)	0.0145 (18)	0.0129 (17)	0.0002 (15)	0.0082 (15)	-0.0029 (13)
N4	0.0217 (19)	0.0160 (18)	0.0098 (16)	-0.0018 (15)	0.0038 (14)	-0.0010 (13)
N5	0.032 (2)	0.0092 (18)	0.0214 (19)	-0.0001 (16)	0.0096 (17)	0.0003 (15)
N6	0.0219 (19)	0.019 (2)	0.0152 (18)	-0.0012 (16)	0.0035 (15)	-0.0012 (14)
C1	0.024 (2)	0.014 (2)	0.018 (2)	-0.0017 (18)	0.0093 (19)	-0.0021 (16)
C2	0.026 (2)	0.013 (2)	0.020(2)	0.0003 (18)	0.0116 (19)	-0.0010 (17)
C3	0.022 (2)	0.016 (2)	0.014 (2)	0.0054 (18)	0.0071 (18)	0.0024 (16)
C4	0.033 (3)	0.011 (2)	0.014 (2)	0.0027 (18)	0.0101 (19)	0.0021 (16)
C5	0.020(2)	0.014 (2)	0.021 (2)	0.0034 (17)	0.0072 (18)	0.0052 (17)
C6	0.030 (3)	0.029 (3)	0.015 (2)	0.004 (2)	0.0070 (19)	0.0036 (19)
C7	0.034 (3)	0.026 (3)	0.012 (2)	0.004 (2)	0.0065 (19)	-0.0018 (18)
C8	0.018 (2)	0.015 (2)	0.018 (2)	0.0013 (17)	0.0056 (18)	0.0027 (16)
C9	0.029 (3)	0.021 (2)	0.014 (2)	0.009 (2)	0.0096 (19)	0.0027 (17)
C10	0.031 (3)	0.029 (3)	0.023 (2)	-0.001 (2)	0.011 (2)	-0.001 (2)
C11	0.023 (3)	0.040 (3)	0.025 (2)	0.000 (2)	0.007 (2)	-0.003 (2)
C12	0.029 (3)	0.035 (3)	0.024 (2)	0.012 (2)	0.009 (2)	-0.004 (2)
C13	0.032 (3)	0.018 (2)	0.022 (2)	0.004 (2)	0.010(2)	-0.0044 (18)
C14	0.027 (2)	0.023 (2)	0.011 (2)	0.0045 (19)	0.0060 (18)	-0.0031 (17)
C15	0.029 (3)	0.012 (2)	0.013 (2)	0.0022 (18)	0.0000 (18)	-0.0017 (16)
C16	0.030 (2)	0.021 (2)	0.0089 (19)	-0.003 (2)	0.0035 (18)	-0.0010 (16)
C17	0.034 (3)	0.028 (3)	0.024 (2)	-0.008 (2)	0.012 (2)	-0.006 (2)
C18	0.027 (3)	0.035 (3)	0.030 (3)	-0.009 (2)	0.008 (2)	-0.002 (2)
C19	0.026 (3)	0.036 (3)	0.029 (3)	0.004 (2)	0.007 (2)	-0.001 (2)
C20	0.029(3)	0.027(2)	0.023(2)	0.005(2)	0.000(2)	-0.002(2)

Geometric parameters (Å, °)

Fe1—O2	1.931 (3)	C4—C5	1.359 (5)
Fe1—O1	1.943 (3)	C4—H4	0.9500
Fe1—N4	2.142 (3)	C5—C6	1.396 (6)
Fe1—N6	2.150 (4)	C6—C7	1.362 (6)
Fe1—N3	2.157 (3)	С6—Н6	0.9500
Fe1—S1	2.4093 (14)	С7—С8	1.412 (5)
Br1—C5	1.913 (4)	С7—Н7	0.9500
Br2—C12	1.921 (4)	C9—C10	1.405 (6)
O1—C8	1.307 (5)	C9—C14	1.418 (6)
O2—C9	1.318 (5)	C10—C11	1.376 (6)
S1—C1	1.720 (4)	C10—H10	0.9500
N1—C1	1.350 (5)	C11—C12	1.399 (6)
N1—H1A	0.8800	C11—H11	0.9500
N1—H1B	0.8800	C12—C13	1.361 (6)
N2—C1	1.314 (5)	C13—C14	1.416 (6)
N2—N3	1.409 (4)	С13—Н13	0.9500
N3—C2	1.287 (5)	C14—C15	1.433 (6)
N4—C15	1.298 (5)	С15—Н15	0.9500
N4—N5	1.376 (5)	C16—C17	1.403 (6)
N5—C16	1.377 (6)	C17—C18	1.384 (6)
N5—H5	0.83 (4)	С17—Н17	0.9500
N6—C20	1.339 (5)	C18—C19	1.400 (6)
N6—C16	1.341 (5)	C18—H18	0.9500
C2—C3	1.454 (5)	C19—C20	1.376 (6)
С2—Н2	0.9500	С19—Н19	0.9500
C3—C4	1.403 (5)	С20—Н20	0.9500
C3—C8	1.416 (5)		
O2—Fe1—O1	89.41 (12)	C4—C5—Br1	120.3 (3)
O2—Fe1—N4	84.23 (12)	C6—C5—Br1	119.4 (3)
O1—Fe1—N4	113.13 (12)	C7—C6—C5	119.9 (4)
O2—Fe1—N6	153.25 (13)	С7—С6—Н6	120.0
O1—Fe1—N6	85.48 (13)	С5—С6—Н6	120.0
N4—Fe1—N6	73.81 (13)	C6—C7—C8	121.7 (4)
O2—Fe1—N3	108.28 (13)	С6—С7—Н7	119.2
O1—Fe1—N3	86.13 (12)	С8—С7—Н7	119.2
N4—Fe1—N3	157.59 (12)	O1—C8—C7	120.1 (4)
N6—Fe1—N3	97.57 (13)	O1—C8—C3	122.3 (4)
O2—Fe1—S1	97.11 (10)	C7—C8—C3	117.6 (4)
O1—Fe1—S1	165.00 (9)	O2—C9—C10	119.5 (4)
N4—Fe1—S1	81.07 (9)	O2—C9—C14	121.7 (4)
N6—Fe1—S1	94.42 (10)	C10—C9—C14	118.7 (4)
N3—Fe1—S1	79.01 (9)	С11—С10—С9	121.7 (4)
C8—O1—Fe1	135.9 (3)	C11—C10—H10	119.1
C9—O2—Fe1	133.6 (3)	С9—С10—Н10	119.1
C1—S1—Fe1	98.35 (14)	C10-C11-C12	118.5 (4)

C1—N1—H1A	120.0	C10-C11-H11	120.8
C1—N1—H1B	120.0	C12—C11—H11	120.8
H1A—N1—H1B	120.0	C13—C12—C11	122.2 (4)
C1—N2—N3	114.1 (3)	C13—C12—Br2	119.1 (4)
C2—N3—N2	112.8 (3)	C11—C12—Br2	118.6 (4)
C2—N3—Fe1	125.0 (3)	C12—C13—C14	119.8 (4)
N2—N3—Fe1	122.2 (2)	С12—С13—Н13	120.1
C15—N4—N5	115.8 (4)	C14—C13—H13	120.1
C15—N4—Fe1	127.5 (3)	C13—C14—C9	119.0 (4)
N5—N4—Fe1	116.1 (2)	C13—C14—C15	117.4 (4)
N4—N5—C16	115.6 (4)	C9—C14—C15	123.5 (4)
N4—N5—H5	118 (3)	N4—C15—C14	124.2 (4)
C16—N5—H5	122 (3)	N4—C15—H15	117.9
C20—N6—C16	118.2 (4)	C14—C15—H15	117.9
C20—N6—Fe1	125.1 (3)	N6-C16-N5	116.9 (4)
C16—N6—Fe1	116.6 (3)	N6—C16—C17	122.8 (4)
N2—C1—N1	116.6 (4)	N5-C16-C17	120.3 (4)
N2—C1—S1	126.4 (3)	C18—C17—C16	117.6 (4)
N1—C1—S1	117.0 (3)	C18—C17—H17	121.2
N3—C2—C3	127.3 (4)	С16—С17—Н17	121.2
N3—C2—H2	116.4	C17—C18—C19	120.0 (4)
С3—С2—Н2	116.4	C17—C18—H18	120.0
C4—C3—C8	119.5 (4)	C19—C18—H18	120.0
C4—C3—C2	117.5 (4)	C20—C19—C18	117.8 (4)
C8—C3—C2	123.0 (4)	С20—С19—Н19	121.1
C5—C4—C3	121.0 (4)	C18—C19—H19	121.1
C5—C4—H4	119.5	N6-C20-C19	123.6 (5)
C3—C4—H4	119.5	N6-C20-H20	118.2
C4—C5—C6	120.3 (4)	C19—C20—H20	118.2

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
N5—H5…N2 ⁱ	0.83 (4)	2.00 (4)	2.825 (5)	171 (4)
N1—H1A····O2 ⁱⁱ	0.88	2.29	2.987 (4)	136

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) x, -y+2, z+1/2.