

15514 2050-5050

Received 29 November 2017 Accepted 4 January 2018

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia

Keywords: crystal structure; charge transfer; ternary co-crystals.

CCDC references: 1814637; 1814636; 1814635; 1814634

Supporting information: this article has supporting information at journals.iucr.org/e

Binary and ternary charge-transfer complexes using 1,3,5-trinitrobenzene

Tania Hill, Demetrius C. Levendis and Andreas Lemmerer*

Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag, PO WITS, 2050, Johannesburg, South Africa. *Correspondence e-mail: andreas.lemmerer@wits.ac.za

Three binary and one ternary charge-transfer complexes have been made using 1,3,5-trinitrobenzene, *viz.* 1,3,5-trinitrobenzene–2-acetylnaphthalene (1/1), C₆H₃N₃O₆·C₁₂H₁₀O, (I), 1,3,5-trinitrobenzene–9-bromoanthracene (1/1), C₁₄H₉Br·C₆H₃N₃O₆, (II), 1,3,5-trinitrobenzene–methyl red (1/1), C₁₅H₁₅-N₃O₂·C₆H₃N₃O₆, (III) (systematic name for methyl red: 2-{(*E*)-[4-(dimethyl-amino)phenyl]diazenyl}benzoic acid), and 1,3,5-trinitrobenzene–1-naphthoic acid–2-amino-5-nitropyridine (1/1/1), C₆H₃N₃O₆·C₁₁H₈O₂·C₅H₅N₃O₂, (IV). All charge-transfer complexes show alternating donor and acceptor stacks, which have weak C–H···O hydrogen bonds perpendicular to the stacking axis. In addition, complex (IV) is a crystal engineering attempt to modify the packing of the stacks by inserting a third molecule into the structure. This third molecule is stabilized by strong hydrogen bonds between the carboxylic acid group of the donor molecule and the pyridine acceptor molecule.

1. Chemical context

The crystal structure of 1,3,5-trinitrobenzene (TNB), an energetic or high-explosive material, was first reported as far back as 1930 (Hertel & Romer, 1930). A number of structures of pure TNB have appeared since then, including a neutron diffraction study in 1972 (Choi & Abel, 1972). More recently, polymorphs (Thallapally *et al.*, 2004) and pseudo-polymorphs of TNB (Jetti *et al.*, 2003) have been reported.

Crystal engineering, the conception and synthesis of molecular solid-state structures, is fundamentally based upon the discernment and subsequent exploitation of intermolecular interactions. Thus, primarily non-covalent bonding is used to achieve the organization of molecules and ions in the solid state in order to produce materials with desired properties. The stability of an energetic material is one of the decisive factors in determining the viability of the final product, be it for fuels, propellants, pyrotechnics or explosives. If the energetic cannot be safely synthesized, handled and stored before its ultimate use, it is regarded as a failure, discarded and forgotten. Although not a forgotten but rather an old energetic material, 1,3,5-trinitrobenzene (TNB) falls into the class of energetics that are shock and heat sensitive, especially when in powdered dry form. Co-crystallization presents an opportunity to re-look at these problems for example, Guo et al. (2013a) have shown that taking 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) and co-crystallizing it with caprolactam (CPL) has lead to new and interesting effects on the relevant properties. The importance of crystal engineering in the stabilization of explosive materials, such as trinitrotoluene (TNT) and ethylenedinitramine, was described recently (Landenberger et al., 2010; Aakeröy et al., 2015). Recently,

research communications

Chen et al. (2017) isolated a novel co-crystal of 1,3,5-trinitrobenzene (TNB) and 1-nitronaphthalene (NNAP), synthesized by using both solution and mechanochemical methods. The TNB/NNAP co-crystal has the largest proportion of $\pi - \pi$ stacking interaction (12.7%). A charge-transfer complex of TNT and TNB has also been reported (Guo et al., 2013b). The results indicate that the electronic effect has an influence on the intermolecular interactions in the co-crystal. Our study comprises of an investigation of TNB as a model energetic with various polycyclic aromatic hydrocarbons in order to observe their effect on the structural aspects of the solid state. The structure and properties of many charge-transfer (CT) complexes of TNB with a variety of aromatic molecules have been investigated (Brown et al., 1964; Herbstein & Kaftory, 1975), and reviewed by Herbstein in different sections of his book (Herbstein, 2005). To this end, we have synthesized four new charge-transfer co-crystals, three binary (I)–(III), and one ternary (IV): trinitrobenzene-2-acetylnaphthalene, (I), trinitrobenzene–9-bromoanthracene, (II), trinitrobenzenemethyl red, (III), and trinitrobenzene-1-naphthoic acid-2amino-5-nitropyridine, (IV).

2. Structural commentary

The asymmetric units and atom-labelling schemes for the title charge-transfer complexes are shown in Fig. 1. All compounds

Centroid	distances	(Å)	between	the	trinitrobenzene	and	the	ring
centroids	(Cg) of the	e aroi	matic poly	cycli	cs.			

Structure	Donor	Acceptor	$Cg \cdot \cdot \cdot Cg$	Symmetry operator
(I)	C1-C6	C11-C20	3.3745 (2)	x, v, z
(II)	C1-C6	C11-C24	3.5173 (11)	x, y, z
(III)	C1-C6	C11-C16	3.6587 (14)	1 - x, 1 - y, 1 - z
ÌIIÌ	C1-C6	C19-C24	4.6432 (18)	x, v, z
(IV)	C1-C6	C11-C20	4.0417 (8)	x, y + 1, z

have Z' = 1 with all molecules in general positions. As a result of the strong polarizing effect of the nitro groups, TNB has an electron-poor π -system. On the other hand, the donor molecules (polycyclic aromatic hydrocarbons) have an electronrich π -system. The packing of the unit cell of the complexes follows a donor (D) acceptor (A) π - π interaction, which is the major driving force in the formation of these complexes, as seen in Fig. 2 (donor molecules shown in blue and acceptors in green), resulting in a general face-to-face π -stacking, with Table 1 summarizing the closest centroid-centroid distances between the TNB acceptor and aromatic donor systems. The intermolecular interactions of the $D \cdots A$ stacks can be quantified using Hirschfeld surface analysis as well as the resulting fingerprint plots using the programme Crystal-Explorer17.5 (Spackman & McKinnon, 2002). In the paper by Chen et al. (2017), the authors describe the regions of blue and red triangles on the Hirshfeld surface using the shape index as evidence of π - π interactions. Fig. 3 shows such surfaces plotted for the TNB molecules in (I)-(IV). The red triangles show concave regions indicative of ring carbons of the π stacked molecule above it. (I) and (II) show the most triangles, indicative that they have the greatest proportion of π - π stacking of the four structures. This can be quantified by looking at the contribution that $C \cdots C$ contacts make up in the fingerprint plots. (I) and (II) have values of 12.0 and 12.6%, respectively, much greater than the 4.4 and 7.5% for (III) and (IV), respectively. Table 2 summarizes the percentages of $C \cdots C$, $H \cdots H$ and $C \cdots H$ contacts and the relevant fingerprint plots are given in the supporting information. In terms of the molecular geometry, the TNB molecules show some changes from the geometries encountered in the pure compound. The pure compound has torsion angles of the nitro group to the benzene ring in the range from 0 to 28.17°, whereas in the CT complexes described here they range from -20.0(4) to $+20.0(5)^{\circ}$. The packing and hydrogen-bonding interactions are further described below individually for each compound.

Table 2

Proportion (%) of intermolecular contacts between donor and acceptor molecules in the Hirshfeld fingerprint plots.

Structure	$C \cdots C$	$H{\cdots}H$	C···H
(I)	12.0	10.7	1.5
(II)	12.6	6.6	0.9
(III)	4.4	11.0	5.4
(IV)	7.5	8.8	4.6

Figure 1

Perspective views of compounds (I)–(IV), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed lines indicate the symmetry-independent $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds.

Figure 2

The packing diagrams for all four compounds (I)-(IV). The acceptor molecules are shown in green and the donor molecules in blue. The third molecule of 2-amino-5-nitropyridine is shown in red in (IV).

research communications

Table 3	
Hydrogen-bond geometry (Å, °) for (I).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C4-H4\cdots O2^i$	0.93	2.4	3.189 (3)	143
$C11-H11\cdots O3^{ii}$	0.93	2.48	3.323 (4)	150
$C22-H22A\cdots O4^{iii}$	0.96	2.64	3.554 (4)	159

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

 Table 4

 Hydrogen-bond geometry (Å, °) for (II).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C4 U4 O6 ⁱ	0.05	25	2 297 (2)	140
$C4 - H4 \cdots O6$	0.93	2.5	3.287 (3)	140
C6-H605"	0.95	2.68	3.593 (3)	162
$C14 - H14 \cdots O4^{m}$	0.95	2.57	3.255 (3)	129
$C21 - H21 \cdots O1^{N}$	0.95	2.65	3.364 (3)	132

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x, y + 1, z; (iv) x + 1, y - 1, z.

3. Supramolecular features

Structure (I) crystallizes in the $P2_1/c$ space group with both the TNB and 2-acetylnaphthalene molecules in the asymmetric unit. The donor and acceptor molecules pack in a checkerboard fashion parallel to the *ab* plane (Fig. 2*a*). In the plane perpendicular to the stacking, the *ac* plane, there are C-H···O interactions between TNB and 2-acetylnaphthalene molecules (Table 3, Fig. 4*a*), forming an $R_3^3(17)$ ring described using graph set notation (Bernstein *et al.*, 1995).

Structure (II) crystallizes in the $P2_1/c$ space group with both the TNB and 9-bromoanthracene in the asymmetric unit. The packing of the structure displays a clear separation of the donor (blue) and acceptor (green) layers (Fig. 2b). The

Figure 3

The molecular Hirshfeld surfaces mapped with shape index for the TNB acceptor molecule in (I)-(IV).

Table 5	
Hydrogen-bond geometry (Å, °) for (III).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots O4^{i}$	0.95	2.35	3.285 (4)	169
C15-H15···O11 ⁱⁱ	0.95	2.34	3.254 (4)	161
$C18-H18A\cdots O11^{ii}$	0.98	2.55	3.519 (4)	170
C20−H20···O3 ⁱⁱⁱ	0.95	2.64	3.574 (4)	167
O12−H12···N12	0.95 (6)	1.70(6)	2.577 (3)	153 (5)
$C21 - H21 \cdots O2^{iii}$	0.95	2.56	3.469 (4)	161

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y, -z + 1.

 Table 6

 Hydrogen-bond geometry (Å, °) for (IV).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N5-H5 A ···O8	0.90 (5)	2.03 (5)	2.919 (5)	168 (5)
$N5-H5B\cdotsO9^{i}$	0.86(4)	2.24 (4)	3.069 (5)	161 (4)
$O7 - H7 \cdot \cdot \cdot N4$	0.95 (5)	1.71 (5)	2.650 (4)	171 (5)
$C23 - H23 \cdots O9^{i}$	0.95	2.5	3.272 (5)	139
C26−H26···O1	0.95	2.69	3.530 (5)	147
C26-H26···O2	0.95	2.72	3.477 (5)	138

Symmetry code: (i) x, y - 1, z.

alternating *DA* stacks show that the bromine atom of the 9-bromoanthracene packs in a head-to-head stacked fashion; however, the distance between the nearest Br atoms is very long [4.981 (1) Å], much longer than the sum of their van der Waals radii, and as a result Br····Br interactions are not involved in the molecular aggregation. In the plane perpendicular to the stacking, there are $C-H\cdot\cdot\cdot O$ interactions (Table 4) between TNB molecules forming an $R_2^2(10)$ ring, and a discrete hydrogen bond between the TNB and 9-bromo-anthracene molecules (Fig. 4*b*).

Structure (III) crystallizes in the $P\overline{1}$ space group with both the TNB and the methyl red in the asymmetric unit. The packing of the structure illustrates that for each phenyl ring on the methyl red molecule, there is an associated TNB molecule. The two TNB molecules are at different distances from the ring centroids, with a variation of *ca* 0.98 Å (Table 2). Along the *bc* plane, the TNB molecules display similar hydrogenbonded rings as those observed for (II) (Fig. 2c), and an additional six-membered intramolecular S(6) hydrogen bond is found (Fig. 1*c*). The TNB and methyl red molecules are again joined by C-H···O hydrogen bonds (Table 5) to the nitro oxygen atoms, forming an $R_2^2(11)$ ring (Fig. 4*c*).

Structure (IV) crystallizes in the $P\overline{1}$ space group with the TNB, 1-naphthoic and 2-amino-5-nitropyridine molecules in the asymmetric unit. The addition of a third molecule into this charge-transfer complex results in groups of alternating DA stacks separated by the added pyridine component (Fig. 2*d*). The TNB molecules are joined by $R_2^1(6)$ rings, whereas a strong hydrogen-bonding interaction between the DA stacks and the 2-amino-5-nitropyridine molecule was found, forming an $R_2^2(8)$ ring, as well as a weaker bifurcated $C-H\cdots O R_1^2(4)$ ring (Table 6, Fig. 4*d*); interestingly there is no additional DA stacking with the 1-naphthoic and the pyridine components.

Figure 4

The hydrogen-bonding diagrams for all four compounds. Atoms with superscripts (i)–(v) are at the symmetry positions $(-x + 1, -y + 1, -z + 1), (-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}), (x, y - 1, z), (x - 1, y + 1, z)$ and (1 - x, -y, -z + 1) respectively.

In summary, we have contributed to the field of CT complexes using TNB, presenting further evidence that TNB is an ideal acceptor and, when paired with a donor that has hydrogen-bonding functionality, can be used to make ternary complexes.

4. Database survey

A database survey in the Cambridge Structural Database (CSD, Version 5.38; April 2017 update; Groom *et al.*, 2016) was undertaken for any structures containing the 1,3,5-trinitrobenzene moiety. A total of 135 hits where found, which was then reduced to 95 by evaluating if there is evidence of π - π interactions as indicative for a CT complex.

5. Synthesis and crystallization

All chemicals were purchased from commercial sources (Sigma Aldrich) and used as received without further purification. The 1,3,5-trinitrobenzene charge-transfer complexes were prepared in a 10 mL ethanolic solution with a 1:1 or 1:1:1 stoichiometric ratio of the donor to the acceptor molecule (based on 0.469 mmol of TNB), which was then heated until total dissolution took place (approx. 4 h). The solution was then cooled very slowly to obtain crystals suitable for X-ray diffraction. Detailed masses are as follows: (I): 0.100 g of 1,3,5-trinitrobenzene and 0.080 g of 2-acetylnaphthalene; (II): 0.100 g of 1,3,5-trinitrobenzene and 0.121 g of 9-bromoanthracene; (III): 0.100 g of 1,3,5-trinitrobenzene and 0.127 g of methyl red; and (IV): 0.100 g of 1,3,5-trinitrobenzene, 0.081 of 1-naphthoic acid and 0.065 g of 2-amino-5-nitropyridine.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 7. For all compounds, the C-bound H atoms were placed geometrically [C–H bond lengths of 0.96 (methyl CH₃), and 0.95 Å (Ar–H)] and refined as riding with $U_{iso}(H) = 1.2U_{eq}(Ar-C)$ or $U_{iso}(H) = 1.5U_{eq}(methyl-C)$. The O and N–bound H atoms were located in the difference map and their coordinates and isotropic displacement parameters allowed to refine freely.

Funding information

This material is based upon work supported financially by the University of the Witwatersrand Friedel Sellschop Grant and

research communications

 Table 7

 Experimental details.

	(I)	(II)	(III)	(IV)
Crystal data				
Chemical formula	$C_6H_3N_3O_6{\cdot}C_{12}H_{10}O$	$C_{14}H_9Br{\cdot}C_6H_3N_3O_6$	$C_{15}H_{15}N_{3}O_{2}{\cdot}C_{6}H_{3}N_{3}O_{6}$	$C_{6}H_{3}N_{3}O_{6} \cdot C_{11}H_{8}O_{2} \cdot C_{5}H_{5}N_{3}O_{2}$
M _r	383.31	470.24	482.41	524.41
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	293	173	173	173
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.6728 (10), 6.8197 (3), 15.4419 (7)	7.0928 (2), 9.7701 (3), 27.0563 (7)	8.550 (3), 10.437 (3), 13.072 (5)	7.5365 (15), 7.9003 (16), 19.153 (4)
$lpha,eta,\gamma(^\circ)$	90, 102.217 (3), 90	90, 100.674 (1), 90	110.689 (10), 103.510 (12), 90.730 (12)	97.580 (7), 94.667 (6), 99.547 (7)
$V(Å^3)$	1716.03 (15)	1842.49 (9)	1055.2 (7)	1108.5 (4)
Z	4	4	2	2
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.12	2.28	0.12	0.13
Crystal size (mm)	$0.15 \times 0.12 \times 0.07$	$0.33 \times 0.12 \times 0.11$	$0.29\times0.13\times0.12$	$0.63\times0.33\times0.06$
Data collection				
Diffractometer	Bruker D8 Venture Photon CCD area detector	Bruker D8 Venture Photon CCD area detector	Bruker D8 Venture Photon CCD area detector	Bruker D8 Venture Photon CCD area detector
Absorption correction	Multi-scan (SADABS; Sheldrick, 1996)	Multi-scan (SADABS; Sheldrick, 1996)	Multi-scan (SADABS; Sheldrick, 1996)	Multi-scan (SADABS; Sheldrick, 1996)
T_{\min}, T_{\max}	0.9, 0.95	0.56, 0.77	0.9, 0.95	0.9, 0.95
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15612, 3195, 1874	28424, 4450, 3758	39527, 5072, 3262	12982, 3988, 3368
R _{int}	0.063	0.048	0.072	0.034
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.152, 1.01	0.040, 0.096, 1.08	0.078, 0.249, 1.07	0.072, 0.168, 1.22
No. of reflections	3195	4450	5072	3988
No. of parameters	254	271	322	355
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.40, -0.29	1.42, -0.94	0.49, -0.43	0.32, -0.37

Computer programs: APEX3, SAINT-Plus and XPREP (Bruker, 2016), SHELXS97 (Sheldrick, 2015), SHELXL2017/1 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012) and Mercury (Macrae et al., 2006).

the Molecular Sciences Institute. Tania Hill thanks the University of the Witwatersrand Research Office for a postdoctoral fellowship. The National Research Foundation National Equipment Programme (UID: 78572) is thanked for financing the purchase of the single-crystal diffractometer. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the NRF does not accept any liability in regard thereto.

References

- Aakeröy, C. B., Wijethunga, T. K. & Desper, J. (2015). *Chem. Eur. J.* **21**, 11029–11037.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Brown, D. S., Wallwork, S. C. & Wilson, A. (1964). Acta Cryst. 17, 168–176.
- Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, P. Y., Zhang, L., Zhu, S. G., Cheng, G. B. & Li, N. R. (2017). J. Mol. Struct. 1128, 629–635.
- Choi, C. S. & Abel, J. E. (1972). Acta Cryst. B28, 193-201.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Guo, C., Zhang, H., Wang, X., Liu, X. & Sun, J. (2013b). J. Mater. Sci. 48, 1351–1357.
- Guo, C., Zhang, H., Wang, X., Xu, J., Liu, Y., Liu, X., Huang, H. & Sun, J. (2013a). J. Mol. Struct. 1048, 267–273.
- Herbstein, F. H. (2005). Crystalline molecular complexes and compounds: structures and principles. Oxford University Press.
- Herbstein, F. H. & Kaftory, M. (1975). Acta Cryst. B31, 60-67.
- Hertel, E. & Romer, G. H. (1930). Z. Phys. Chem. B, 11, 87.
- Jetti, R. K., Boese, R., Thallapally, P. K. & Desiraju, G. R. (2003). *Cryst. Growth Des.* 3, 1033–1040.
- Landenberger, K. B. & Matzger, A. J. (2010). *Cryst. Growth Des.* **10**, 5341–5347.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378– 392.
- Thallapally, P. K., Jetti, R. K., Katz, A. K., Carrell, H. L., Singh, K., Lahiri, K., Kotha, S., Boese, R. & Desiraju, G. R. (2004). Angew. Chem. Int. Ed. 43, 1149–1155.

Acta Cryst. (2018). E74, 113-118 [https://doi.org/10.1107/S2056989018000245]

Binary and ternary charge-transfer complexes using 1,3,5-trinitrobenzene

Tania Hill, Demetrius C. Levendis and Andreas Lemmerer

Computing details

For all structures, data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT-Plus* (Bruker, 2016); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2016). Program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008) for (I); *SHELXS97* (Sheldrick, 2015) for (II), (III), (IV). For all structures, program(s) used to refine structure: *SHELXL2017/1* (Sheldrick, 2015). Molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) for (I); *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2006) for (II), (III), (IV). For all structures, software used to prepare material for publication: *WinGX* publication routines (Farrugia, 2012).

1,3,5-Trinitrobenzene-1-(naphthalen-2-yl)ethan-1-one (1/1) (I)

Crystal data $C_6H_3N_3O_6 \cdot C_{12}H_{10}O$ F(000) = 792 $M_r = 383.31$ $D_{\rm x} = 1.484 {\rm Mg m^{-3}}$ Monoclinic, $P2_1/c$ Mo Ka radiation. $\lambda = 0.71073$ Å Hall symbol: -P 2ybc Cell parameters from 1787 reflections $\theta = 2.5 - 19.9^{\circ}$ a = 16.6728 (10) Åb = 6.8197(3) Å $\mu = 0.12 \text{ mm}^{-1}$ c = 15.4419(7) Å T = 293 K $\beta = 102.217 (3)^{\circ}$ Plate, yellow $V = 1716.03 (15) \text{ Å}^3$ $0.15 \times 0.12 \times 0.07 \text{ mm}$ Z = 4Data collection Bruker D8 Venture Photon CCD area detector 3195 independent reflections diffractometer 1874 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.063$ ω scans $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$ Absorption correction: multi-scan $h = -18 \rightarrow 20$ (SADABS; Sheldrick, 1996) $k = -8 \rightarrow 8$ $T_{\rm min} = 0.9, \ T_{\rm max} = 0.95$ $l = -18 \rightarrow 18$ 15612 measured reflections Refinement Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.053$ H-atom parameters constrained $wR(F^2) = 0.152$ $w = 1/[\sigma^2(F_0^2) + (0.0652P)^2 + 0.4622P]$ *S* = 1.01 where $P = (F_0^2 + 2F_c^2)/3$ 3195 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 254 parameters $\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$ 0 restraints $\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$ 0 constraints

Special details

Experimental. (SADABS; Sheldrick, 1996)

Geometry. All standard uncertainties (s.u.) (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u. are taken into account individually in the estimation of s.u. in distances, angles and torsion angles; correlations between s.u. in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u. is used for estimating s.u. involving l.s. planes.

Fractional atomic coordinates and	isotropic or e	equivalent isotropic	c displacement	parameters ($(Å^2)$)
		· · · · · · · · · · · · · · · · · · ·		r	· /	

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.21511 (18)	0.3392 (4)	0.53179 (17)	0.0389 (7)	
C2	0.29340 (17)	0.3382 (4)	0.51644 (18)	0.0405 (7)	
H2	0.338939	0.313665	0.561495	0.049*	
C3	0.30078 (16)	0.3753 (4)	0.43143 (18)	0.0375 (6)	
C4	0.23515 (17)	0.4104 (3)	0.36307 (17)	0.0380 (7)	
H4	0.242162	0.435636	0.305949	0.046*	
C5	0.15851 (17)	0.4066 (3)	0.38276 (17)	0.0373 (6)	
C6	0.14629 (17)	0.3724 (3)	0.46663 (17)	0.0393 (7)	
H6	0.093996	0.371735	0.478805	0.047*	
N1	0.2053 (2)	0.3015 (4)	0.62306 (17)	0.0552 (7)	
N2	0.38409 (17)	0.3748 (3)	0.4122 (2)	0.0530 (7)	
N3	0.08572 (17)	0.4407 (4)	0.31102 (18)	0.0552 (7)	
01	0.14078 (18)	0.3516 (4)	0.64216 (16)	0.0780 (8)	
O2	0.26172 (18)	0.2195 (3)	0.67273 (14)	0.0753 (8)	
03	0.44113 (14)	0.3279 (3)	0.47247 (19)	0.0778 (8)	
O4	0.39003 (15)	0.4197 (4)	0.33769 (17)	0.0748 (7)	
05	0.09752 (15)	0.5061 (3)	0.24181 (15)	0.0707 (7)	
06	0.01788 (16)	0.4066 (4)	0.32863 (18)	0.0871 (8)	
C11	0.37425 (18)	0.8616 (4)	0.44847 (17)	0.0416 (7)	
H11	0.431199	0.855588	0.46446	0.05*	
C12	0.33560 (17)	0.8871 (4)	0.35789 (17)	0.0386 (6)	
C13	0.25164 (17)	0.9004 (4)	0.33542 (18)	0.0399 (7)	
H13	0.225873	0.918682	0.276412	0.048*	
C14	0.20357 (16)	0.8866 (3)	0.40060 (17)	0.0355 (6)	
C15	0.11648 (17)	0.8960 (4)	0.37776 (19)	0.0447 (7)	
H15	0.090008	0.917791	0.319232	0.054*	
C16	0.07171 (19)	0.8732 (4)	0.4412 (2)	0.0491 (8)	
H16	0.014733	0.878211	0.425528	0.059*	
C17	0.11022 (19)	0.8425 (4)	0.5296 (2)	0.0490 (8)	
H17	0.078694	0.827225	0.572177	0.059*	
C18	0.19420 (19)	0.8348 (4)	0.55427 (19)	0.0437 (7)	
H18	0.2192	0.815473	0.61345	0.052*	
C19	0.24309 (17)	0.8560 (3)	0.49009 (17)	0.0363 (6)	
C20	0.32950 (17)	0.8457 (4)	0.51201 (18)	0.0402 (7)	
H20	0.356146	0.827898	0.57077	0.048*	
C21	0.3838 (2)	0.8968 (4)	0.2863 (2)	0.0473 (7)	
C22	0.4755 (2)	0.9057 (5)	0.3127 (2)	0.0672 (10)	
H22A	0.498045	0.917132	0.260632	0.101*	

H22B	0.495732	0.788375	0.344169	0.101*
H22C	0.491439	1.017472	0.350196	0.101*
O7	0.34871 (15)	0.8966 (3)	0.20881 (14)	0.0650 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0476 (19)	0.0333 (14)	0.0369 (15)	-0.0045 (12)	0.0118 (14)	-0.0014 (11)
C2	0.0381 (18)	0.0357 (14)	0.0434 (16)	0.0008 (12)	-0.0011 (14)	-0.0009 (12)
C3	0.0303 (16)	0.0325 (13)	0.0510 (17)	0.0010 (11)	0.0114 (14)	-0.0037 (12)
C4	0.0447 (19)	0.0346 (14)	0.0363 (14)	0.0034 (12)	0.0121 (14)	-0.0028 (11)
C5	0.0352 (17)	0.0306 (13)	0.0421 (15)	0.0039 (11)	-0.0007 (13)	-0.0036 (11)
C6	0.0346 (17)	0.0345 (14)	0.0502 (17)	-0.0023 (12)	0.0121 (14)	-0.0070 (12)
N1	0.073 (2)	0.0471 (15)	0.0475 (16)	-0.0166 (14)	0.0164 (16)	-0.0030 (12)
N2	0.0416 (17)	0.0424 (14)	0.078 (2)	0.0023 (12)	0.0204 (16)	-0.0066 (13)
N3	0.0462 (19)	0.0524 (15)	0.0570 (17)	0.0066 (13)	-0.0114 (14)	-0.0043 (13)
01	0.095 (2)	0.0840 (17)	0.0698 (16)	-0.0071 (15)	0.0500 (16)	-0.0035 (13)
O2	0.097 (2)	0.0782 (16)	0.0457 (13)	-0.0164 (15)	0.0035 (14)	0.0144 (12)
O3	0.0317 (14)	0.0797 (16)	0.118 (2)	0.0058 (12)	0.0062 (15)	0.0163 (15)
O4	0.0642 (18)	0.0922 (18)	0.0813 (17)	-0.0031 (13)	0.0449 (15)	-0.0105 (14)
05	0.0794 (19)	0.0802 (16)	0.0436 (12)	0.0271 (13)	-0.0073 (13)	0.0002 (12)
06	0.0373 (16)	0.101 (2)	0.112 (2)	-0.0084 (14)	-0.0087 (15)	0.0112 (16)
C11	0.0329 (16)	0.0417 (15)	0.0488 (17)	0.0003 (12)	0.0056 (14)	-0.0014 (12)
C12	0.0349 (17)	0.0365 (14)	0.0451 (16)	-0.0017 (12)	0.0102 (13)	-0.0027 (12)
C13	0.0406 (18)	0.0362 (14)	0.0407 (15)	0.0010 (12)	0.0038 (13)	-0.0014 (12)
C14	0.0290 (16)	0.0292 (12)	0.0461 (16)	0.0018 (11)	0.0032 (13)	-0.0040 (11)
C15	0.0361 (18)	0.0404 (15)	0.0538 (17)	0.0053 (12)	0.0010 (15)	-0.0034 (13)
C16	0.0349 (18)	0.0454 (16)	0.068 (2)	0.0061 (13)	0.0131 (16)	-0.0054 (15)
C17	0.044 (2)	0.0430 (16)	0.066 (2)	0.0039 (13)	0.0249 (17)	-0.0054 (14)
C18	0.049 (2)	0.0382 (15)	0.0456 (16)	0.0023 (13)	0.0137 (15)	-0.0019 (12)
C19	0.0359 (17)	0.0307 (14)	0.0413 (15)	0.0020 (11)	0.0063 (13)	-0.0026 (11)
C20	0.0381 (18)	0.0401 (14)	0.0396 (15)	0.0016 (12)	0.0016 (13)	0.0004 (12)
C21	0.052 (2)	0.0463 (16)	0.0466 (18)	0.0000 (14)	0.0180 (16)	-0.0048 (14)
C22	0.046 (2)	0.095 (3)	0.067 (2)	-0.0053 (19)	0.0274 (18)	-0.0026 (19)
07	0.0648 (16)	0.0863 (16)	0.0466 (13)	-0.0020 (13)	0.0180 (12)	-0.0060 (11)

Geometric parameters (Å, °)

C1—C2	1.375 (4)	C12—C13	1.372 (4)
C1—C6	1.375 (4)	C12—C21	1.500 (4)
C1—N1	1.475 (4)	C13—C14	1.416 (4)
С2—С3	1.368 (4)	C13—H13	0.93
С2—Н2	0.93	C14—C19	1.415 (4)
C3—C4	1.371 (4)	C14—C15	1.421 (4)
C3—N2	1.481 (4)	C15—C16	1.361 (4)
C4—C5	1.375 (4)	C15—H15	0.93
C4—H4	0.93	C16—C17	1.396 (4)
C5—C6	1.373 (4)	C16—H16	0.93

C5—N3	1.478 (4)	C17—C18	1.372 (4)
С6—Н6	0.93	С17—Н17	0.93
N1—O2	1.217 (4)	C18—C19	1.418 (4)
N1	1.222 (3)	C18—H18	0.93
N2—O4	1.214 (3)	C19—C20	1.410 (4)
N2—O3	1.224 (3)	C20—H20	0.93
N3—O5	1.212 (3)	C21—O7	1.215 (3)
N3—06	1240(3)	C21—C22	1 497 (4)
$C_{11} - C_{20}$	1.210(3) 1 357(4)	C^{22} H ²² A	0.96
C_{11} C_{12}	1.337(4) 1.422(4)	C_{22} H_{22R}	0.96
C11_U11	0.02	C22—1122D	0.90
СП—НП	0.95	C22—H22C	0.90
C2—C1—C6	123.4 (2)	C12—C13—C14	121.1 (3)
C2-C1-N1	117.7 (3)	C12—C13—H13	119.5
C6-C1-N1	1189(3)	C14—C13—H13	119.5
$C_3 - C_2 - C_1$	116.5(3)	C19-C14-C13	119.3 119.2(2)
$C_3 = C_2 = C_1$	121.8	$C_{10} = C_{14} = C_{15}$	119.2(2)
$C_3 = C_2 = H_2$	121.0	$C_{13} = C_{14} = C_{15}$	119.5(2)
C1 - C2 - H2	121.8	C13 - C14 - C13	121.3(2)
$C_2 = C_3 = C_4$	123.5 (2)	C16 - C15 - C14	120.2 (3)
C2 - C3 - N2	118.1 (3)	С16—С15—Н15	119.9
C4—C3—N2	118.4 (2)	С14—С15—Н15	119.9
C3—C4—C5	117.0 (2)	C15—C16—C17	120.8 (3)
C3—C4—H4	121.5	C15—C16—H16	119.6
C5—C4—H4	121.5	C17—C16—H16	119.6
C6—C5—C4	122.8 (3)	C18—C17—C16	120.5 (3)
C6—C5—N3	118.1 (3)	C18—C17—H17	119.7
C4—C5—N3	119.0 (2)	С16—С17—Н17	119.7
C5—C6—C1	116.8 (3)	C17—C18—C19	120.4 (3)
С5—С6—Н6	121.6	C17—C18—H18	119.8
С1—С6—Н6	121.6	C19—C18—H18	119.8
02—N1—01	125.4 (3)	C20—C19—C14	118.9 (2)
Ω^2 —N1—C1	1170(3)	C_{20} C_{19} C_{18}	122.4(2)
01-N1-C1	117.6 (3)	C_{14} C_{19} C_{18}	122.1(2) 118 7 (3)
$O_4 N_2 O_3$	117.0(3) 125.5(3)	C_{11} C_{20} C_{10}	120.8(3)
04 N2 C3	125.5(3) 117.2(3)	$C_{11} = C_{20} = C_{13}$	120.8 (3)
$O_4 = N_2 = C_3$	117.2(3)	$C_{11} = C_{20} = H_{20}$	119.0
05 - N2 - C3	117.3(3)	C19 - C20 - H20	119.0
05—N3—06	126.0 (3)	07-021-022	121.3 (3)
05—N3—C5	117.3 (3)	07-C21-C12	120.2 (3)
06—N3—C5	116.6 (3)	C22—C21—C12	118.4 (3)
C20—C11—C12	121.1 (3)	C21—C22—H22A	109.5
C20—C11—H11	119.4	C21—C22—H22B	109.5
C12—C11—H11	119.4	H22A—C22—H22B	109.5
C13—C12—C11	118.9 (2)	C21—C22—H22C	109.5
C13—C12—C21	119.2 (3)	H22A—C22—H22C	109.5
C11—C12—C21	121.9 (3)	H22B—C22—H22C	109.5
C6—C1—C2—C3	0.9 (4)	C20—C11—C12—C13	1.5 (4)
N1—C1—C2—C3	-179.4 (2)	C20—C11—C12—C21	-177.5 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.6 (4) \\ -179.8 (2) \\ -0.3 (4) \\ 178.9 (2) \\ 0.9 (4) \\ -179.1 (2) \\ -0.7 (4) \\ 179.4 (2) \\ -0.2 (4) \\ -179.9 (2) \\ -20.0 (4) \\ 159.7 (3) \\ 161.3 (3) \\ -19.0 (4) \\ -175.6 (2) \\ 5.2 (4) \\ 4.9 (4) \\ -174.4 (2) \\ 166.6 (2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.8 (4) \\ 178.3 (2) \\ -0.9 (3) \\ -178.7 (2) \\ -0.9 (4) \\ 176.9 (2) \\ 0.7 (4) \\ 0.0 (4) \\ -0.6 (4) \\ 1.8 (3) \\ 179.6 (2) \\ -177.6 (2) \\ 0.3 (3) \\ -178.9 (2) \\ 0.4 (4) \\ -0.6 (4) \\ -1.1 (3) \\ 178.2 (2) \\ -7.3 (4) \end{array}$
C4—C3—N2—O3	-174.4 (2)	C18—C19—C20—C11	178.2 (2)
C6—C5—N3—O5	166.6 (2)	C13—C12—C21—O7	-7.3 (4)
C4—C5—N3—O5	-13.4 (3)	C11—C12—C21—O7	171.7 (3)
C6—C5—N3—O6	-10.7 (4)	C13—C12—C21—C22	173.0 (3)
C4—C5—N3—O6	169.3 (3)	C11—C12—C21—C22	-8.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
C4—H4…O2 ⁱ	0.93	2.4	3.189 (3)	143
С11—Н11…ОЗіі	0.93	2.48	3.323 (4)	150
C22—H22A····O4 ⁱⁱⁱ	0.96	2.64	3.554 (4)	159

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, *y*+1/2, -*z*+1/2.

1,3,5-Trinitrobenzene-9-bromoanthracene (1/1) (II)

Crystal data	
$C_{14}H_9Br \cdot C_6H_3N_3O_6$ $M_r = 470.24$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.0928 (2) Å b = 9.7701 (3) Å c = 27.0563 (7) Å $\beta = 100.674$ (1)° V = 1842.49 (9) Å ³ Z = 4	F(000) = 944 $D_x = 1.695 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8164 reflections $\theta = 2.2-27.9^{\circ}$ $\mu = 2.28 \text{ mm}^{-1}$ T = 173 K Needle, yellow $0.33 \times 0.12 \times 0.11 \text{ mm}$
Data collection	
Bruker D8 Venture Photon CCD area detector diffractometer Graphite monochromator ω scans	Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.56$, $T_{max} = 0.77$ 28424 measured reflections

4450 independent reflections	$h = -9 \rightarrow 9$
3758 reflections with $I > 2\sigma(I)$	$k = -12 \rightarrow 12$
$R_{\rm int} = 0.048$	$l = -35 \rightarrow 35$
$\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 1.5^{\circ}$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.096$	$w = 1/[\sigma^2(F_o^2) + (0.0343P)^2 + 2.1935P]$
S = 1.08	where $P = (F_o^2 + 2F_c^2)/3$
4450 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
271 parameters	$\Delta \rho_{\rm max} = 1.42 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.94 \text{ e } \text{\AA}^{-3}$
0 constraints	·

Special details

Experimental. (SADABS; Sheldrick, 1996)

Geometry. All standard uncertainties (s.u.) (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u. are taken into account individually in the estimation of s.u. in distances, angles and torsion angles; correlations between s.u. in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u. is used for estimating s.u. involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.3620 (3)	0.7554 (2)	0.10545 (9)	0.0275 (5)
C2	0.3965 (3)	0.6350(2)	0.08161 (9)	0.0256 (5)
H2	0.369113	0.62674	0.046011	0.031*
C3	0.4723 (3)	0.5280 (2)	0.11194 (9)	0.0236 (4)
C4	0.5164 (3)	0.5366 (2)	0.16372 (9)	0.0267 (5)
H4	0.568061	0.460884	0.183771	0.032*
C5	0.4822 (4)	0.6599 (3)	0.18498 (9)	0.0293 (5)
C6	0.4047 (4)	0.7724 (2)	0.15702 (10)	0.0303 (5)
H6	0.382248	0.856585	0.172517	0.036*
N1	0.2782 (3)	0.8716 (2)	0.07398 (10)	0.0370 (5)
N2	0.5097 (3)	0.3967 (2)	0.08822 (8)	0.0290 (4)
N3	0.5319 (4)	0.6732 (2)	0.24030 (8)	0.0401 (6)
O1	0.2533 (3)	0.9777 (2)	0.09572 (9)	0.0543 (6)
O2	0.2376 (3)	0.8538 (2)	0.02904 (9)	0.0519 (6)
O3	0.4729 (3)	0.3904 (2)	0.04231 (7)	0.0396 (4)
O4	0.5756 (3)	0.30406 (19)	0.11577 (8)	0.0434 (5)
O5	0.5774 (5)	0.5714 (2)	0.26496 (8)	0.0654 (7)
O6	0.5271 (4)	0.7868 (3)	0.25776 (9)	0.0634 (7)
C11	0.9660 (3)	0.6511 (2)	0.16436 (8)	0.0235 (4)
C12	0.8864 (3)	0.7691 (2)	0.13900 (8)	0.0231 (4)
C13	0.8514 (4)	0.8940 (2)	0.16310 (9)	0.0305 (5)
H13	0.883923	0.900938	0.198681	0.037*
C14	0.7719 (4)	1.0031 (2)	0.13575 (10)	0.0338 (6)
H14	0.748685	1.084959	0.15261	0.041*
C15	0.7233 (4)	0.9972 (3)	0.08274 (10)	0.0319 (5)

H15	0.668981	1.074876	0.064272	0.038*	
C16	0.7543 (3)	0.8804 (2)	0.05821 (9)	0.0285 (5)	
H16	0.721939	0.877421	0.02255	0.034*	
C17	0.8346 (3)	0.7622 (2)	0.08509 (8)	0.0223 (4)	
C18	0.8607 (3)	0.6406 (2)	0.06047 (8)	0.0239 (5)	
H18	0.824385	0.636703	0.024888	0.029*	
C19	0.9385 (3)	0.5241 (2)	0.08641 (8)	0.0226 (4)	
C20	0.9636 (3)	0.4002 (2)	0.06075 (9)	0.0274 (5)	
H20	0.924336	0.396003	0.02525	0.033*	
C21	1.0428 (4)	0.2876 (3)	0.08608 (10)	0.0322 (5)	
H21	1.058174	0.205658	0.068314	0.039*	
C22	1.1019 (4)	0.2928 (3)	0.13873 (10)	0.0319 (5)	
H22	1.159053	0.214283	0.156067	0.038*	
C23	1.0789 (3)	0.4077 (2)	0.16519 (9)	0.0282 (5)	
H23	1.118668	0.408027	0.200702	0.034*	
C24	0.9956 (3)	0.5283 (2)	0.14027 (8)	0.0224 (4)	
Br1	1.03399 (4)	0.65915 (3)	0.23592 (2)	0.03853 (10)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0215 (11)	0.0233 (11)	0.0390 (13)	0.0012 (9)	0.0088 (10)	0.0050 (10)
C2	0.0224 (11)	0.0255 (12)	0.0296 (11)	-0.0013 (9)	0.0067 (9)	0.0014 (9)
C3	0.0203 (10)	0.0211 (11)	0.0306 (11)	-0.0022 (8)	0.0075 (9)	-0.0027 (9)
C4	0.0268 (12)	0.0232 (11)	0.0307 (12)	-0.0006 (9)	0.0068 (9)	0.0009 (9)
C5	0.0297 (12)	0.0287 (12)	0.0301 (12)	-0.0045 (10)	0.0071 (10)	-0.0041 (10)
C6	0.0309 (13)	0.0228 (12)	0.0393 (13)	-0.0013 (10)	0.0121 (10)	-0.0064 (10)
N1	0.0296 (11)	0.0304 (12)	0.0515 (14)	0.0040 (9)	0.0094 (10)	0.0117 (10)
N2	0.0264 (10)	0.0259 (10)	0.0353 (11)	-0.0005 (8)	0.0076 (8)	-0.0060 (9)
N3	0.0492 (14)	0.0377 (13)	0.0331 (12)	-0.0039 (11)	0.0068 (10)	-0.0095 (10)
01	0.0568 (14)	0.0288 (11)	0.0759 (16)	0.0161 (10)	0.0087 (12)	0.0048 (10)
O2	0.0588 (14)	0.0489 (13)	0.0476 (13)	0.0129 (11)	0.0091 (10)	0.0208 (10)
O3	0.0412 (11)	0.0416 (11)	0.0347 (10)	0.0031 (9)	0.0040 (8)	-0.0129 (8)
O4	0.0580 (13)	0.0250 (9)	0.0485 (12)	0.0132 (9)	0.0136 (10)	0.0009 (8)
O5	0.116 (2)	0.0441 (13)	0.0327 (11)	-0.0039 (13)	0.0041 (12)	0.0036 (10)
O6	0.0894 (19)	0.0487 (13)	0.0455 (13)	0.0123 (13)	-0.0048 (12)	-0.0221 (11)
C11	0.0252 (11)	0.0260 (11)	0.0195 (10)	0.0006 (9)	0.0044 (8)	0.0025 (8)
C12	0.0239 (11)	0.0214 (11)	0.0242 (11)	0.0001 (9)	0.0047 (9)	0.0014 (8)
C13	0.0406 (14)	0.0230 (11)	0.0279 (12)	0.0002 (10)	0.0061 (10)	-0.0032 (9)
C14	0.0423 (15)	0.0183 (11)	0.0409 (14)	0.0006 (10)	0.0077 (11)	-0.0026 (10)
C15	0.0334 (13)	0.0232 (12)	0.0388 (13)	0.0023 (10)	0.0062 (10)	0.0078 (10)
C16	0.0297 (12)	0.0277 (12)	0.0275 (11)	0.0021 (10)	0.0042 (9)	0.0061 (9)
C17	0.0199 (10)	0.0233 (11)	0.0245 (10)	-0.0006 (8)	0.0060 (8)	0.0031 (8)
C18	0.0225 (11)	0.0290 (12)	0.0207 (10)	0.0019 (9)	0.0053 (8)	0.0003 (8)
C19	0.0188 (10)	0.0242 (11)	0.0260 (11)	0.0005 (8)	0.0071 (8)	-0.0003 (9)
C20	0.0249 (11)	0.0286 (12)	0.0300 (12)	-0.0002 (9)	0.0086 (9)	-0.0047 (10)
C21	0.0301 (13)	0.0227 (11)	0.0465 (15)	0.0021 (10)	0.0146 (11)	-0.0055 (10)
C22	0.0309 (13)	0.0219 (11)	0.0443 (14)	0.0046 (10)	0.0103 (11)	0.0073 (10)

C23	0.0274 (12)	0.0252 (12)	0.0319 (12)	0.0020 (9)	0.0056 (10)	0.0057 (9)
C24	0.0197 (10)	0.0216 (11)	0.0267 (11)	0.0000 (8)	0.0061 (8)	0.0019 (8)
Br1	0.05475 (19)	0.03823 (16)	0.02111 (13)	0.01206 (12)	0.00313 (10)	0.00126 (10)

Geometric parameters (Å, °)

C1—C6	1.382 (4)	C12—C17	1.438 (3)	
C1—C2	1.385 (3)	C13—C14	1.359 (3)	
C1—N1	1.477 (3)	C13—H13	0.95	
C2—C3	1.376 (3)	C14—C15	1.413 (4)	
C2—H2	0.95	C14—H14	0.95	
C3—C4	1.381 (3)	C15—C16	1.358 (4)	
C3—N2	1.480 (3)	C15—H15	0.95	
C4—C5	1.376 (3)	C16—C17	1.426 (3)	
C4—H4	0.95	C16—H16	0.95	
C5—C6	1.388 (3)	C17—C18	1.391 (3)	
C5—N3	1.479 (3)	C18—C19	1.396 (3)	
С6—Н6	0.95	C18—H18	0.95	
N1-02	1.209 (3)	C19—C20	1.423 (3)	
N1-01	1.221 (3)	C19—C24	1.439 (3)	
N204	1.210 (3)	C20—C21	1.362 (4)	
N2—O3	1.222 (3)	C20—H20	0.95	
N3—O5	1.208 (3)	C21—C22	1.409 (4)	
N3—O6	1.209 (3)	C21—H21	0.95	
C11—C24	1.400 (3)	C22—C23	1.358 (4)	
C11—C12	1.405 (3)	C22—H22	0.95	
C11—Br1	1.908 (2)	C23—C24	1.430 (3)	
C12—C13	1.426 (3)	С23—Н23	0.95	
C6—C1—C2	123.2 (2)	C12—C13—H13	119.6	
C6-C1-N1	118.6 (2)	C13—C14—C15	121.3 (2)	
C2-C1-N1	118.1 (2)	C13—C14—H14	119.4	
C3—C2—C1	116.8 (2)	C15—C14—H14	119.4	
С3—С2—Н2	121.6	C16—C15—C14	119.9 (2)	
C1—C2—H2	121.6	C16—C15—H15	120	
C2—C3—C4	123.3 (2)	C14—C15—H15	120	
C2-C3-N2	118.8 (2)	C15—C16—C17	121.1 (2)	
C4—C3—N2	117.9 (2)	C15—C16—H16	119.4	
C5—C4—C3	117.0 (2)	C17—C16—H16	119.4	
С5—С4—Н4	121.5	C18—C17—C16	121.6 (2)	
С3—С4—Н4	121.5	C18—C17—C12	119.6 (2)	
C4—C5—C6	123.2 (2)	C16—C17—C12	118.8 (2)	
C4—C5—N3	118.2 (2)	C17—C18—C19	122.1 (2)	
C6-C5-N3	118.6 (2)	C17—C18—H18	119	
C1—C6—C5	116.4 (2)	C19—C18—H18	119	
C1—C6—H6	121.8	C18—C19—C20	121.5 (2)	
С5—С6—Н6	121.8	C18—C19—C24	119.8 (2)	
02—N1—O1	125.3 (2)	C20—C19—C24	118.8 (2)	

O2—N1—C1	117.7 (2)	C21—C20—C19	121.3 (2)
O1—N1—C1	117.0 (2)	С21—С20—Н20	119.4
O4—N2—O3	125.0 (2)	С19—С20—Н20	119.4
O4—N2—C3	117.4 (2)	C20—C21—C22	119.8 (2)
O3—N2—C3	117.6 (2)	C20—C21—H21	120.1
05—N3—06	124.3 (2)	C22—C21—H21	120.1
05—N3—C5	1184(2)	C^{23} — C^{22} — C^{21}	1214(2)
06—N3—C5	1172(2)	C^{23} C^{22} H^{22}	1193
C_{24} C_{11} C_{12}	1239(2)	C_{21} C_{22} H_{22}	119.3
$C_{24} = C_{11} = C_{12}$	123.9(2) 118.43(16)	$C_{21} = C_{22} = 1122$	119.5
$C_{12} = C_{11} = D_{11}$	110.43(10) 117.60(17)	$C_{22} = C_{23} = C_{24}$	120.8 (2)
C12 - C11 - B11	117.09(17) 124.5(2)	С22—С23—Н23	119.0
C11 - C12 - C13	124.5(2)	C11 C24 C23	119.0
	11/.4 (2)	C11 - C24 - C23	124.9 (2)
C13—C12—C17	118.0 (2)	C11—C24—C19	117.23 (19)
C14—C13—C12	120.8 (2)	C23—C24—C19	117.9 (2)
C14—C13—H13	119.6		
	1.0.(4)		0.0 (4)
$C_{0} - C_{1} - C_{2} - C_{3}$	1.8 (4)	C17 - C12 - C13 - C14	-0.2(4)
NI = CI = C2 = C3	-1/9.2(2)	C12-C13-C14-C15	-0.6(4)
C1 - C2 - C3 - C4	-0.9(3)	CI3—CI4—CI5—CI6	0.6 (4)
C1—C2—C3—N2	179.4 (2)	C14—C15—C16—C17	0.4 (4)
C2—C3—C4—C5	-0.3 (4)	C15—C16—C17—C18	177.7 (2)
N2—C3—C4—C5	179.4 (2)	C15—C16—C17—C12	-1.2 (4)
C3—C4—C5—C6	0.8 (4)	C11—C12—C17—C18	1.3 (3)
C3—C4—C5—N3	-178.7 (2)	C13—C12—C17—C18	-177.8 (2)
C2-C1-C6-C5	-1.3 (4)	C11—C12—C17—C16	-179.7 (2)
N1-C1-C6-C5	179.6 (2)	C13—C12—C17—C16	1.2 (3)
C4—C5—C6—C1	0.0 (4)	C16—C17—C18—C19	-179.8 (2)
N3—C5—C6—C1	179.5 (2)	C12—C17—C18—C19	-0.8 (3)
C6-C1-N1-O2	-178.3 (2)	C17—C18—C19—C20	179.7 (2)
C2-C1-N1-O2	2.6 (3)	C17—C18—C19—C24	-0.4 (3)
C6-C1-N1-O1	0.8 (3)	C18—C19—C20—C21	178.8 (2)
C2-C1-N1-01	-178.3 (2)	C24—C19—C20—C21	-1.0(3)
C2—C3—N2—O4	-179.7(2)	C19—C20—C21—C22	-0.1(4)
C4—C3—N2—O4	0.6 (3)	C20—C21—C22—C23	1.1 (4)
C2-C3-N2-O3	0.8(3)	$C_{21} - C_{22} - C_{23} - C_{24}$	-0.8(4)
C4-C3-N2-O3	-1790(2)	C12-C11-C24-C23	1790(2)
C4-C5-N3-O5	-9.2(4)	Br1-C11-C24-C23	-1.9(3)
C6-C5-N3-O5	171.2(3)	C12-C11-C24-C19	-0.7(3)
C4 $C5$ N3 $C6$	169.6(3)	Br1 C11 C24 C19	178.46(16)
$C_{4} = C_{5} = N_{5} = 00$	-0.0(4)	$C_{22} = C_{24} = C_{14}$	170.40(10)
$C_0 = C_3 = N_3 = 0_0$	-9.9(4)	$C_{22} = C_{23} = C_{24} = C_{10}$	1/9.9(2)
$C_{24} - C_{11} - C_{12} - C_{13}$	1/0.3(2)	$C_{22} = C_{23} = C_{24} = C_{19}$	-0.3(3)
DII - UII - UI2 - UI3	-0.0(3)	$C_{10} = C_{19} = C_{24} = C_{11}$	1.2(3)
$U_{24} - U_{11} - U_{12} - U_{17}$	-0.0 (3)	C_{20} C_{19} C_{24} C_{11} C_{10} C_{24} C_{22}	-1/9.0 (2)
Bri—Cii—Cii2—Ci/	-1/9./0(16)	C18 - C19 - C24 - C23	-1/8.5(2)
C11—C12—C13—C14	-179.3 (2)	C20—C19—C24—C23	1.3 (3)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
C4—H4…O6 ⁱ	0.95	2.5	3.287 (3)	140	
С6—Н6…О5 ^{іі}	0.95	2.68	3.593 (3)	162	
C14—H14…O4 ⁱⁱⁱ	0.95	2.57	3.255 (3)	129	
C21— $H21$ ···O1 ^{iv}	0.95	2.65	3.364 (3)	132	

Z = 2

F(000) = 500

 $\theta = 3.1 - 28.2^{\circ}$

 $\mu = 0.12 \text{ mm}^{-1}$ T = 173 K

Cuboid, red

 $D_{\rm x} = 1.518 {\rm Mg} {\rm m}^{-3}$

 $0.29 \times 0.13 \times 0.12$ mm

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9824 reflections

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x+1, y+1/2, -z+1/2; (iii) x, y+1, z; (iv) x+1, y-1, z.

1,3,5-Trinitrobenzene–2-{(E)-[4-(dimethylamino)phenyl]diazenyl}benzoic acid (1/1) (III)

Crystal data $C_{15}H_{15}N_3O_2 \cdot C_6H_3N_3O_6$ $M_r = 482.41$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.550 (3) Åb = 10.437 (3) Åc = 13.072 (5) Å $\alpha = 110.689 (10)^{\circ}$ $\beta = 103.510 \ (12)^{\circ}$ $\gamma = 90.730 (12)^{\circ}$ V = 1055.2 (7) Å³

Data collection

Bruker D8 Venture Photon CCD area detector diffractometer Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.9, \ T_{\rm max} = 0.95$ 39527 measured reflections

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.078$ and constrained refinement $wR(F^2) = 0.249$ $w = 1/[\sigma^2(F_o^2) + (0.1346P)^2 + 0.8758P]$ *S* = 1.07 where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ 5072 reflections $\Delta \rho_{\rm max} = 0.49 \text{ e } \text{\AA}^{-3}$ 322 parameters 0 restraints $\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$ 0 constraints

Special details

Experimental. (SADABS; Sheldrick, 1996)

Geometry. All standard uncertainties (s.u.) (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u. are taken into account individually in the estimation of s.u. in distances, angles and torsion angles; correlations between s.u. in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u. is used for estimating s.u. involving l.s. planes.

5072 independent reflections 3262 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.072$ $\theta_{\rm max} = 28.0^\circ, \ \theta_{\rm min} = 3.4^\circ$ $h = -11 \rightarrow 11$ $k = -13 \rightarrow 13$ $l = -17 \rightarrow 17$

H atoms treated by a mixture of independent

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$		
C1	0.3627 (3)	0.4196 (3)	0.8376 (2)	0.0274 (6)		
C2	0.4468 (3)	0.3469 (3)	0.7610(2)	0.0265 (6)		
H2	0.49673	0.267951	0.76649	0.032*		
C3	0.4549 (3)	0.3944 (3)	0.6758 (2)	0.0266 (6)		
C4	0.3817 (3)	0.5079 (3)	0.6651 (2)	0.0279 (6)		
H4	0.386476	0.537651	0.605026	0.033*		
C5	0.3010 (4)	0.5763 (3)	0.7456 (3)	0.0287 (6)		
C6	0.2887 (3)	0.5341 (3)	0.8327 (2)	0.0284 (6)		
H6	0.231723	0.582036	0.88668	0.034*		
N1	0.3560 (3)	0.3737 (3)	0.9312 (2)	0.0324 (6)		
N2	0.5442 (3)	0.3204 (3)	0.5938 (2)	0.0305 (6)		
N3	0.2291 (3)	0.7015 (3)	0.7399 (2)	0.0367 (6)		
01	0.2796 (3)	0.4374 (3)	0.9979 (2)	0.0475 (6)		
O2	0.4303 (3)	0.2766 (3)	0.93921 (19)	0.0437 (6)		
O3	0.6018 (3)	0.2169 (2)	0.6015 (2)	0.0405 (6)		
04	0.5548 (3)	0.3668 (3)	0.5212 (2)	0.0435 (6)		
05	0.2266 (3)	0.7301 (3)	0.6567 (2)	0.0485 (7)		
O6	0.1772 (3)	0.7707 (3)	0.8201 (2)	0.0507 (7)		
C11	0.1578 (3)	0.1335 (3)	0.5551 (2)	0.0255 (6)		
C12	0.1935 (4)	0.0433 (3)	0.6139 (2)	0.0272 (6)		
H12A	0.258146	-0.028852	0.588579	0.033*		
C13	0.1372 (3)	0.0571 (3)	0.7067 (2)	0.0278 (6)		
H13	0.163717	-0.004867	0.745181	0.033*		
C14	0.0402 (3)	0.1627 (3)	0.7454 (2)	0.0262 (6)		
C15	-0.0005 (3)	0.2516 (3)	0.6840 (3)	0.0293 (6)		
H15	-0.068293	0.32188	0.707451	0.035*		
C16	0.0572 (3)	0.2365 (3)	0.5914 (3)	0.0283 (6)		
H16	0.028785	0.296526	0.551294	0.034*		
C17	0.0277 (4)	0.0891 (4)	0.9028 (3)	0.0388 (8)		
H17A	-0.012745	-0.006156	0.852959	0.058*		
H17B	-0.022233	0.116076	0.966614	0.058*		
H17C	0.145383	0.096273	0.93118	0.058*		
C18	-0.1074 (5)	0.2903 (4)	0.8855 (3)	0.0444 (9)		
H18A	-0.116874	0.351673	0.842831	0.067*		
H18B	-0.053611	0.342523	0.965088	0.067*		
H18C	-0.215479	0.251383	0.87965	0.067*		
C19	0.2781 (3)	0.1679 (3)	0.3235 (2)	0.0265 (6)		
C20	0.3656 (4)	0.0550 (3)	0.2908 (3)	0.0336 (7)		
H20	0.380119	-0.005691	0.331185	0.04*		
C21	0.4310 (4)	0.0317 (3)	0.1995 (3)	0.0378 (7)		
H21	0.490257	-0.045347	0.177299	0.045*		
C22	0.4111 (4)	0.1198 (3)	0.1398 (3)	0.0347 (7)		
H22	0.455378	0.10206	0.076507	0.042*		
C23	0.3273 (4)	0.2324 (3)	0.1724 (2)	0.0315 (7)		
H23	0.314185	0.292407	0.131361	0.038*		

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C24	0.2613 (3)	0.2597 (3)	0.2650 (2)	0.0259 (6)	
C25	0.1757 (4)	0.3865 (3)	0.2948 (3)	0.0338 (7)	
N11	0.2263 (3)	0.1105 (2)	0.4652 (2)	0.0280 (6)	
N12	0.2057 (3)	0.1977 (3)	0.4154 (2)	0.0282 (6)	
N13	-0.0133 (3)	0.1802 (3)	0.8396 (2)	0.0343 (6)	
011	0.1681 (4)	0.4628 (3)	0.2426 (2)	0.0520 (7)	
012	0.1077 (3)	0.4150 (2)	0.3810 (2)	0.0395 (6)	
H12	0.130 (6)	0.347 (6)	0.413 (5)	0.096 (18)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0319 (15)	0.0312 (16)	0.0233 (14)	-0.0012 (12)	0.0082 (12)	0.0144 (12)
C2	0.0295 (15)	0.0266 (15)	0.0271 (14)	0.0022 (11)	0.0080 (12)	0.0138 (11)
C3	0.0283 (15)	0.0286 (15)	0.0275 (14)	0.0014 (11)	0.0117 (12)	0.0130 (12)
C4	0.0310 (15)	0.0302 (16)	0.0273 (14)	0.0010 (12)	0.0080 (12)	0.0162 (12)
C5	0.0340 (16)	0.0247 (15)	0.0322 (15)	0.0045 (12)	0.0108 (12)	0.0147 (12)
C6	0.0308 (15)	0.0286 (16)	0.0284 (15)	0.0018 (12)	0.0111 (12)	0.0115 (12)
N1	0.0394 (15)	0.0364 (15)	0.0263 (13)	0.0010 (11)	0.0120 (11)	0.0150 (11)
N2	0.0340 (14)	0.0340 (14)	0.0290 (13)	0.0028 (11)	0.0128 (11)	0.0151 (11)
N3	0.0400 (15)	0.0311 (15)	0.0463 (16)	0.0088 (11)	0.0155 (13)	0.0197 (12)
01	0.0657 (17)	0.0558 (16)	0.0391 (13)	0.0174 (12)	0.0322 (12)	0.0264 (11)
O2	0.0643 (16)	0.0442 (14)	0.0379 (13)	0.0172 (12)	0.0205 (12)	0.0283 (11)
03	0.0502 (14)	0.0396 (13)	0.0461 (14)	0.0167 (11)	0.0266 (11)	0.0232 (11)
O4	0.0583 (16)	0.0514 (15)	0.0398 (13)	0.0125 (11)	0.0292 (12)	0.0285 (11)
05	0.0607 (16)	0.0482 (15)	0.0630 (17)	0.0212 (12)	0.0295 (13)	0.0424 (13)
O6	0.0681 (18)	0.0384 (14)	0.0545 (16)	0.0222 (12)	0.0277 (13)	0.0194 (12)
C11	0.0235 (14)	0.0251 (14)	0.0304 (15)	0.0009 (11)	0.0062 (11)	0.0138 (11)
C12	0.0304 (15)	0.0251 (15)	0.0286 (15)	0.0056 (11)	0.0074 (12)	0.0129 (11)
C13	0.0329 (16)	0.0257 (15)	0.0289 (15)	0.0065 (12)	0.0069 (12)	0.0154 (12)
C14	0.0245 (14)	0.0278 (15)	0.0284 (14)	-0.0001 (11)	0.0056 (11)	0.0134 (12)
C15	0.0269 (15)	0.0301 (16)	0.0361 (16)	0.0075 (12)	0.0095 (12)	0.0173 (13)
C16	0.0280 (15)	0.0289 (15)	0.0332 (15)	0.0029 (11)	0.0062 (12)	0.0185 (12)
C17	0.049 (2)	0.0442 (19)	0.0345 (17)	0.0110 (15)	0.0156 (15)	0.0247 (15)
C18	0.054 (2)	0.047 (2)	0.048 (2)	0.0202 (16)	0.0299 (17)	0.0257 (16)
C19	0.0272 (15)	0.0297 (15)	0.0255 (14)	0.0022 (11)	0.0074 (11)	0.0130 (11)
C20	0.0400 (18)	0.0306 (16)	0.0373 (17)	0.0089 (13)	0.0128 (14)	0.0188 (13)
C21	0.0437 (19)	0.0353 (18)	0.0395 (18)	0.0131 (14)	0.0151 (15)	0.0163 (14)
C22	0.0404 (18)	0.0392 (18)	0.0294 (15)	0.0066 (14)	0.0161 (13)	0.0135 (13)
C23	0.0387 (17)	0.0324 (17)	0.0285 (15)	0.0046 (13)	0.0106 (13)	0.0159 (12)
C24	0.0310 (15)	0.0255 (15)	0.0236 (14)	0.0031 (11)	0.0086 (11)	0.0110 (11)
C25	0.0413 (18)	0.0328 (17)	0.0356 (16)	0.0088 (13)	0.0156 (14)	0.0186 (13)
N11	0.0310 (13)	0.0289 (13)	0.0284 (12)	0.0023 (10)	0.0077 (10)	0.0155 (10)
N12	0.0303 (13)	0.0280 (13)	0.0320 (13)	0.0039 (10)	0.0104 (10)	0.0162 (10)
N13	0.0427 (15)	0.0367 (15)	0.0351 (14)	0.0125 (12)	0.0185 (12)	0.0214 (12)
011	0.0814 (19)	0.0462 (15)	0.0579 (16)	0.0309 (13)	0.0425 (14)	0.0375 (13)
O12	0.0535 (15)	0.0356 (13)	0.0446 (14)	0.0169 (10)	0.0292 (11)	0.0218 (11)

Geometric parameters (Å, °)

<u></u> <u>C1C6</u>	1.374 (4)	C15—C16	1.371 (4)
C1—C2	1.382 (4)	C15—H15	0.95
C1—N1	1.476 (4)	C16—H16	0.95
C2—C3	1.384 (4)	C17—N13	1.461 (4)
C2—H2	0.95	C17—H17A	0.98
C3—C4	1.382 (4)	C17—H17B	0.98
C3—N2	1.463 (4)	C17—H17C	0.98
C4—C5	1.383 (4)	C18—N13	1.446 (4)
C4—H4	0.95	C18—H18A	0.98
C5—C6	1.383 (4)	C18—H18B	0.98
C5—N3	1.469 (4)	C18—H18C	0.98
С6—Н6	0.95	C19—C20	1.396 (4)
N1—O1	1.223 (4)	C19—C24	1.412 (4)
N1—O2	1.225 (4)	C19—N12	1.418 (4)
N2—O3	1.219 (3)	C20—C21	1.380 (5)
N2—O4	1.227 (3)	C20—H20	0.95
N3—O5	1.221 (4)	C21—C22	1.390 (5)
N3—O6	1.228 (4)	C21—H21	0.95
C11—N11	1.381 (4)	C22—C23	1.374 (4)
C11—C16	1.406 (4)	C22—H22	0.95
C11—C12	1.406 (4)	C23—C24	1.395 (4)
C12—C13	1.370 (4)	C23—H23	0.95
C12—H12A	0.95	C24—C25	1.494 (4)
C13—C14	1.408 (4)	C25—O11	1.212 (4)
С13—Н13	0.95	C25—O12	1.331 (4)
C14—N13	1.366 (4)	N11—N12	1.285 (3)
C14—C15	1.425 (4)	O12—H12	0.95 (6)
C6—C1—C2	123.5 (3)	C15—C16—C11	120.9 (3)
C6—C1—N1	118.4 (3)	C15—C16—H16	119.6
C2—C1—N1	118.1 (3)	C11—C16—H16	119.6
C1—C2—C3	116.9 (3)	N13—C17—H17A	109.5
C1—C2—H2	121.5	N13—C17—H17B	109.5
С3—С2—Н2	121.5	H17A—C17—H17B	109.5
C4—C3—C2	122.6 (3)	N13—C17—H17C	109.5
C4—C3—N2	119.1 (2)	H17A—C17—H17C	109.5
C2—C3—N2	118.3 (3)	H17B—C17—H17C	109.5
C3—C4—C5	117.2 (3)	N13—C18—H18A	109.5
C3—C4—H4	121.4	N13—C18—H18B	109.5
C5—C4—H4	121.4	H18A—C18—H18B	109.5
C6—C5—C4	122.9 (3)	N13—C18—H18C	109.5
C6—C5—N3	118.6 (3)	H18A—C18—H18C	109.5
C4—C5—N3	118.5 (3)	H18B—C18—H18C	109.5
C1—C6—C5	116.9 (3)	C20—C19—C24	119.7 (3)
С1—С6—Н6	121.6	C20—C19—N12	123.1 (3)
С5—С6—Н6	121.6	C24—C19—N12	117.3 (2)

O1—N1—O2	124.0 (3)	C21—C20—C19	119.8 (3)
O1—N1—C1	117.8 (3)	С21—С20—Н20	120.1
O2—N1—C1	118.2 (3)	C19—C20—H20	120.1
O3—N2—O4	124.5 (3)	C20—C21—C22	120.8 (3)
03-N2-C3	1181(2)	C20—C21—H21	119.6
04 N2 C3	110.1(2) 117.3(3)	$C_{22} = C_{21} = H_{21}$	119.6
05 N3 06	117.3(3) 124.7(3)	$C_{22} = C_{21} = H_{21}$	119.0 120.0(3)
$O_5 N_2 C_5$	124.7(3)	C_{23} C_{22} C_{21} C_{23} C	120.0 (3)
05-N5-C5	117.9 (3)	$C_{23} - C_{22} - H_{22}$	120
06—N3—C5	11/.3 (3)	C21—C22—H22	120
N11—C11—C16	126.2 (3)	C22—C23—C24	120.7 (3)
N11—C11—C12	115.5 (3)	С22—С23—Н23	119.7
C16—C11—C12	118.3 (3)	С24—С23—Н23	119.7
C13—C12—C11	121.6 (3)	C23—C24—C19	119.1 (3)
C13—C12—H12A	119.2	C23—C24—C25	116.4 (3)
C11—C12—H12A	119.2	C19—C24—C25	124.5 (3)
C12—C13—C14	120.3 (3)	O11—C25—O12	120.1 (3)
C12—C13—H13	119.9	O11—C25—C24	121.4 (3)
C14—C13—H13	119.9	O12—C25—C24	118.4 (3)
N13—C14—C13	121.1 (3)	N12—N11—C11	116.7(2)
N13-C14-C15	120.6(3)	N11_N12_C19	110.0(2)
C_{13} C_{14} C_{15}	120.0(3) 118.3(3)	C14 N13 $C18$	123.2(3)
$C_{15} = C_{14} = C_{15}$	110.5(3)	C14 N13 $C17$	123.2(3)
$C_{10} - C_{13} - C_{14}$	120.0 (3)	C18 N13 C17	120.9(3)
С10—С15—Н15	119.7	C16 - N13 - C17	113.9 (3)
C14—C15—H15	119./	C25—012—H12	108 (3)
C6-C1-C2-C3	0 0 (4)	N13—C14—C15—C16	178 1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1783(3)	C_{13} C_{14} C_{15} C_{16}	-1.7(4)
$C_1 = C_2 = C_3$	-0.8(4)	$C_{13} = C_{14} = C_{15} = C_{16}$	-0.1(4)
$C_1 = C_2 = C_3 = C_4$	170.5(2)	C14 - C13 - C16 - C17	0.1(4)
C1 = C2 = C3 = N2	1/9.5(2)	NII - CII - CI6 - CI5	-1/8.3(3)
12 - 13 - 14 - 15	1.5 (4)		2.1 (4)
N2—C3—C4—C5	-178.9(3)	C24—C19—C20—C21	-1.8 (5)
C3—C4—C5—C6	-1.4 (4)	N12—C19—C20—C21	179.2 (3)
C3—C4—C5—N3	176.9 (3)	C19—C20—C21—C22	0.1 (5)
C2-C1-C6-C5	0.0 (4)	C20—C21—C22—C23	0.8 (5)
N1—C1—C6—C5	178.4 (3)	C21—C22—C23—C24	-0.1 (5)
C4—C5—C6—C1	0.7 (4)	C22—C23—C24—C19	-1.6 (4)
N3—C5—C6—C1	-177.6 (3)	C22—C23—C24—C25	178.7 (3)
C6-C1-N1-O1	2.5 (4)	C20-C19-C24-C23	2.5 (4)
C2-C1-N1-01	-179.1 (3)	N12—C19—C24—C23	-178.5 (3)
C6-C1-N1-O2	-175.7 (3)	C20—C19—C24—C25	-177.7(3)
C2-C1-N1-O2	2.7 (4)	N12-C19-C24-C25	1.3 (4)
C4-C3-N2-O3	-176.7 (3)	C23—C24—C25—O11	-1.7(5)
C_{2} C_{3} N_{2} O_{3}	29(4)	C19 - C24 - C25 - O11	178 5 (3)
C_{4} C_{3} N_{2} O_{4}	2.5(1) 28(4)	C_{23} C_{24} C_{25} O_{12}	178 5 (3)
$C_{1} C_{2} C_{3} N_{2} O_{4}$	-177.6(3)	$C_{23} = C_{24} = C_{23} = 012$	-12(5)
$C_2 = C_3 = 1N_2 = 0.4$	-172.8(3)	$C_{17} - C_{24} - C_{23} - C_{12}$	1.2(3)
$C_{0} = C_{0} = C_{0}$	-1/2.8(3)	C10-C11-N11-N12	5.5 (4)
	00(4)	C12 C11 N11 N12	1740(3)
	8.8 (4)	C12—C11—N11—N12	-174.9 (2)

C4 C5 N2 O(170 5 (2)	C20. C10. N12. N11	07(4)
C4 - C5 - N3 - O6	-1/0.5(3)	C20—C19—N12—N11	-0.7 (4)
N11-C11-C12-C13	178.1 (3)	C24—C19—N12—N11	-179.7 (2)
C16-C11-C12-C13	-2.3 (4)	C13-C14-N13-C18	177.4 (3)
C11—C12—C13—C14	0.4 (4)	C15-C14-N13-C18	-2.4 (5)
C12-C13-C14-N13	-178.2 (3)	C13—C14—N13—C17	-0.4 (4)
C12—C13—C14—C15	1.6 (4)	C15—C14—N13—C17	179.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D···A	D—H···A
C4—H4····O4 ⁱ	0.95	2.35	3.285 (4)	169
С15—Н15…О11іі	0.95	2.34	3.254 (4)	161
C18—H18A…O11 ⁱⁱ	0.98	2.55	3.519 (4)	170
C20—H20····O3 ⁱⁱⁱ	0.95	2.64	3.574 (4)	167
O12—H12…N12	0.95 (6)	1.70 (6)	2.577 (3)	153 (5)
C21—H21…O2 ⁱⁱⁱ	0.95	2.56	3.469 (4)	161

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y, -z+1.

1,3,5-Trinitrobenzene-1-naphthoic acid-2-amino-5-nitropyridine (1/1/1) (IV)

Crystal data

$C_6H_3N_3O_6$ · $C_{11}H_8O_2$ · $C_5H_5N_3O_2$
$M_r = 524.41$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
a = 7.5365 (15) Å
b = 7.9003 (16) Å
c = 19.153 (4) Å
$\alpha = 97.580(7)^{\circ}$
$\beta = 94.667 \ (6)^{\circ}$
$\gamma = 99.547 (7)^{\circ}$
V = 1108.5 (4) Å ³
Data collection
Bruker D8 Venture Photon CCD area detector diffractometer
a 11 1

Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.9, T_{\max} = 0.95$ 12982 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.072$ $wR(F^2) = 0.168$ S = 1.223988 reflections 355 parameters 0 restraints 0 constraints Z = 2 F(000) = 540 $D_x = 1.571 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8623 reflections $\theta = 3.1-28.3^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 173 KPlate, brown $0.63 \times 0.33 \times 0.06 \text{ mm}$

3988 independent reflections 3368 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 3.2^{\circ}$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 8$ $l = -23 \rightarrow 23$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + 2.9593P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.32 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.36 \text{ e } \text{Å}^{-3}$

Special details

Experimental. (SADABS; Sheldrick, 1996)

Geometry. All standard uncertainties (s.u.) (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u. are taken into account individually in the estimation of s.u. in distances, angles and torsion angles; correlations between s.u. in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u. is used for estimating s.u. involving l.s. planes.

Fractional a	tomic c	oordinates a	and	isotropic of	r equivalent	isotropic	displacement	parameters	$(Å^2)$)
				1	1	1	1	1	\ /	

				TT +/TT
	X	У	Ζ	U _{iso} */U _{eq}
C1	0.3489 (5)	0.8531 (5)	0.28180 (19)	0.0286 (8)
C2	0.5027 (5)	0.7901 (5)	0.2644 (2)	0.0305 (8)
H2	0.592398	0.774878	0.299662	0.037*
C3	0.5190 (5)	0.7506 (5)	0.1933 (2)	0.0321 (9)
C4	0.3924 (5)	0.7760 (5)	0.1413 (2)	0.0337 (9)
H4	0.406294	0.747525	0.092526	0.04*
C5	0.2448 (5)	0.8441 (5)	0.1624 (2)	0.0309 (8)
C6	0.2177 (5)	0.8818 (5)	0.23294 (19)	0.0287 (8)
H6	0.113733	0.925419	0.246843	0.034*
N1	0.3220 (5)	0.8876 (4)	0.35735 (17)	0.0340 (8)
N2	0.6777 (5)	0.6813 (5)	0.1725 (2)	0.0445 (9)
N3	0.1080 (5)	0.8742 (5)	0.10842 (18)	0.0416 (9)
01	0.1697 (4)	0.8928 (4)	0.37245 (15)	0.0441 (7)
O2	0.4547 (4)	0.9063 (5)	0.40103 (15)	0.0521 (9)
O3	0.7923 (4)	0.6648 (5)	0.2201 (2)	0.0562 (9)
O4	0.6891 (5)	0.6423 (5)	0.10927 (19)	0.0617 (10)
O5	0.1245 (5)	0.8221 (6)	0.04677 (17)	0.0680 (11)
O6	-0.0122 (4)	0.9495 (5)	0.12813 (17)	0.0520 (8)
C11	0.2801 (5)	0.3592 (5)	0.23195 (19)	0.0283 (8)
C12	0.1324 (5)	0.4164 (5)	0.2022 (2)	0.0339 (9)
H12	0.0557	0.466551	0.232661	0.041*
C13	0.0906 (6)	0.4036 (6)	0.1289 (2)	0.0413 (10)
H13	-0.013342	0.442495	0.109979	0.05*
C14	0.2039 (6)	0.3333 (6)	0.0846 (2)	0.0423 (11)
H14	0.176484	0.322585	0.034787	0.051*
C15	0.3602 (5)	0.2768 (5)	0.11240 (19)	0.0333 (9)
C16	0.4790 (6)	0.2077 (6)	0.0674 (2)	0.0427 (11)
H16	0.451417	0.196379	0.017572	0.051*
C17	0.6309 (6)	0.1573 (6)	0.0937 (2)	0.0465 (11)
H17	0.709603	0.112982	0.06254	0.056*
C18	0.6715 (5)	0.1709 (5)	0.1671 (2)	0.0370 (10)
H18	0.778609	0.136036	0.185356	0.044*
C19	0.5604 (5)	0.2332 (5)	0.2127 (2)	0.0309 (8)
H19	0.590396	0.240016	0.262266	0.037*
C20	0.3986 (5)	0.2887 (5)	0.18715 (19)	0.0296 (8)
C21	0.3071 (5)	0.3680 (5)	0.31063 (19)	0.0293 (8)
07	0.2603 (4)	0.5052 (4)	0.34527 (15)	0.0370 (7)
08	0.3642 (4)	0.2557 (4)	0.33988 (14)	0.0385 (7)

H5A	0.309 (7)	0.226 (7)	0.440 (3)	0.058 (15)*
H5B	0.256 (5)	0.144 (6)	0.506 (2)	0.030 (11)*
H7	0.270 (7)	0.503 (7)	0.395 (3)	0.063 (15)*
C22	0.2465 (5)	0.3802 (5)	0.51944 (18)	0.0265 (8)
C23	0.1956 (5)	0.3906 (5)	0.58930 (19)	0.0296 (8)
H23	0.183191	0.291092	0.612665	0.036*
C24	0.1651 (5)	0.5429 (5)	0.62225 (19)	0.0309 (9)
H24	0.132639	0.553261	0.669335	0.037*
C25	0.1822 (5)	0.6859 (5)	0.58541 (19)	0.0272 (8)
C26	0.2293 (5)	0.6680 (5)	0.51770 (19)	0.0295 (8)
H26	0.240027	0.766188	0.493543	0.035*
N4	0.2607 (4)	0.5197 (4)	0.48431 (15)	0.0290 (7)
N5	0.2777 (5)	0.2340 (4)	0.48463 (19)	0.0353 (8)
N6	0.1470 (4)	0.8518 (4)	0.61748 (17)	0.0325 (7)
09	0.1578 (4)	0.9701 (4)	0.58321 (17)	0.0439 (7)
O10	0.1098 (5)	0.8655 (4)	0.67946 (15)	0.0508 (8)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0303 (19)	0.025 (2)	0.0300 (19)	0.0012 (15)	0.0051 (15)	0.0064 (15)
C2	0.0284 (19)	0.026 (2)	0.038 (2)	0.0046 (16)	0.0043 (16)	0.0101 (16)
C3	0.0267 (19)	0.025 (2)	0.045 (2)	0.0021 (16)	0.0119 (17)	0.0048 (17)
C4	0.034 (2)	0.031 (2)	0.034 (2)	-0.0036 (17)	0.0090 (16)	0.0040 (17)
C5	0.0273 (19)	0.030(2)	0.033 (2)	-0.0025 (16)	0.0025 (15)	0.0057 (16)
C6	0.0250 (18)	0.0252 (19)	0.036 (2)	0.0028 (15)	0.0065 (15)	0.0047 (16)
N1	0.042 (2)	0.0284 (18)	0.0328 (18)	0.0076 (15)	0.0059 (15)	0.0074 (14)
N2	0.035 (2)	0.037 (2)	0.064 (3)	0.0037 (16)	0.0163 (18)	0.0109 (19)
N3	0.037 (2)	0.050(2)	0.034 (2)	-0.0059 (17)	0.0021 (15)	0.0095 (17)
01	0.0461 (18)	0.052 (2)	0.0390 (16)	0.0127 (15)	0.0175 (14)	0.0090 (14)
O2	0.0512 (19)	0.069 (2)	0.0340 (16)	0.0103 (17)	-0.0051 (14)	0.0065 (15)
O3	0.0378 (18)	0.056 (2)	0.083 (3)	0.0206 (15)	0.0153 (17)	0.0201 (19)
O4	0.052 (2)	0.068 (3)	0.064 (2)	0.0079 (18)	0.0286 (17)	-0.0023 (19)
05	0.058 (2)	0.107 (3)	0.0313 (18)	0.004 (2)	-0.0025 (15)	0.0035 (18)
O6	0.0405 (18)	0.066 (2)	0.0508 (19)	0.0108 (16)	0.0000 (15)	0.0138 (17)
C11	0.0286 (19)	0.024 (2)	0.0307 (19)	0.0004 (15)	0.0074 (15)	0.0017 (15)
C12	0.030(2)	0.033 (2)	0.039 (2)	0.0021 (17)	0.0073 (17)	0.0092 (17)
C13	0.033 (2)	0.047 (3)	0.040 (2)	-0.0048 (19)	-0.0023 (18)	0.0105 (19)
C14	0.044 (2)	0.046 (3)	0.030 (2)	-0.006 (2)	-0.0002 (18)	0.0029 (19)
C15	0.035 (2)	0.034 (2)	0.0260 (19)	-0.0062 (17)	0.0064 (16)	-0.0008 (16)
C16	0.055 (3)	0.041 (3)	0.030 (2)	0.002 (2)	0.0142 (19)	-0.0001 (18)
C17	0.049 (3)	0.044 (3)	0.044 (2)	0.000(2)	0.018 (2)	-0.001 (2)
C18	0.032 (2)	0.035 (2)	0.041 (2)	-0.0008 (17)	0.0113 (17)	-0.0005 (18)
C19	0.0294 (19)	0.026 (2)	0.035 (2)	0.0004 (16)	0.0047 (16)	0.0007 (16)
C20	0.032 (2)	0.025 (2)	0.0282 (19)	-0.0052 (16)	0.0064 (15)	0.0018 (15)
C21	0.0298 (19)	0.027 (2)	0.031 (2)	0.0026 (16)	0.0085 (15)	0.0050 (17)
07	0.0569 (18)	0.0299 (16)	0.0279 (15)	0.0144 (13)	0.0103 (13)	0.0055 (12)
08	0.0495 (17)	0.0396 (17)	0.0307 (14)	0.0163 (14)	0.0107 (12)	0.0064 (13)

C22	0.0257 (18)	0.026 (2)	0.0279 (18)	0.0047 (15)	0.0000 (14)	0.0045 (15)
C23	0.0316 (19)	0.032 (2)	0.0265 (19)	0.0071 (16)	0.0016 (15)	0.0087 (16)
C24	0.033 (2)	0.034 (2)	0.0249 (18)	0.0044 (17)	0.0033 (15)	0.0053 (16)
C25	0.0253 (18)	0.028 (2)	0.0278 (18)	0.0037 (15)	0.0020 (14)	0.0022 (15)
C26	0.033 (2)	0.023 (2)	0.032 (2)	0.0046 (16)	0.0036 (16)	0.0052 (16)
N4	0.0364 (17)	0.0246 (17)	0.0265 (16)	0.0041 (13)	0.0071 (13)	0.0043 (13)
N5	0.057 (2)	0.0199 (18)	0.0309 (18)	0.0082 (16)	0.0117 (16)	0.0045 (15)
N6	0.0298 (17)	0.0297 (19)	0.0373 (19)	0.0056 (14)	0.0041 (14)	0.0019 (15)
09	0.0505 (18)	0.0277 (16)	0.0605 (19)	0.0122 (13)	0.0210 (15)	0.0159 (14)
O10	0.075 (2)	0.051 (2)	0.0318 (16)	0.0285 (17)	0.0119 (15)	0.0012 (14)

Geometric parameters (Å, °)

C1—C6	1.373 (5)	C15—C20	1.425 (5)	
C1—C2	1.382 (5)	C16—C17	1.354 (7)	
C1—N1	1.474 (5)	C16—H16	0.95	
C2—C3	1.376 (5)	C17—C18	1.400 (6)	
С2—Н2	0.95	C17—H17	0.95	
C3—C4	1.380 (6)	C18—C19	1.360 (5)	
C3—N2	1.458 (5)	C18—H18	0.95	
C4—C5	1.380 (6)	C19—C20	1.434 (6)	
C4—H4	0.95	C19—H19	0.95	
C5—C6	1.383 (5)	C21—O8	1.227 (5)	
C5—N3	1.470 (5)	C21—O7	1.309 (5)	
С6—Н6	0.95	O7—H7	0.95 (5)	
N1-01	1.212 (4)	C22—N5	1.321 (5)	
N102	1.227 (4)	C22—N4	1.359 (5)	
N204	1.222 (5)	C22—C23	1.418 (5)	
N2O3	1.240 (5)	C23—C24	1.347 (6)	
N3—O5	1.221 (5)	С23—Н23	0.95	
N3—O6	1.222 (5)	C24—C25	1.403 (5)	
C11—C12	1.378 (5)	C24—H24	0.95	
C11—C20	1.417 (5)	C25—C26	1.368 (5)	
C11—C21	1.495 (5)	C25—N6	1.447 (5)	
C12—C13	1.400 (6)	C26—N4	1.325 (5)	
С12—Н12	0.95	C26—H26	0.95	
C13—C14	1.380 (6)	N5—H5A	0.90 (5)	
С13—Н13	0.95	N5—H5B	0.86 (4)	
C14—C15	1.416 (6)	N6—O9	1.207 (4)	
C14—H14	0.95	N6—O10	1.237 (4)	
C15—C16	1.416 (6)			
C6—C1—C2	124.0 (3)	C17—C16—C15	121.7 (4)	
C6—C1—N1	117.9 (3)	C17—C16—H16	119.2	
C2	118.1 (3)	C15—C16—H16	119.2	
C3—C2—C1	116.6 (4)	C16—C17—C18	119.7 (4)	
С3—С2—Н2	121.7	С16—С17—Н17	120.2	
C1—C2—H2	121.7	C18—C17—H17	120.2	

C2—C3—C4	122.5 (4)	C19—C18—C17	121.1 (4)
C2—C3—N2	118.5 (4)	C19—C18—H18	119.4
C4—C3—N2	119.0 (4)	C17—C18—H18	119.4
C5—C4—C3	117.8 (4)	C18—C19—C20	121.0 (4)
C5—C4—H4	121.1	C18—C19—H19	119.5
C3—C4—H4	121.1	C20-C19-H19	119.5
C4-C5-C6	122.5 (4)	$C_{11} = C_{20} = C_{15}$	118.9(4)
C4-C5-N3	1193(3)	$C_{11} - C_{20} - C_{19}$	123.7(3)
C6-C5-N3	119.3(3) 118.2(4)	C_{15} C_{20} C_{19} C_{19}	125.7(5) 117.3(4)
$C_1 C_5 C_5$	116.2(4)	08 $C21$ 07	117.3(4)
C1C6H6	110.5 (4)	08 - 021 - 07	123.2(3)
$C_1 = C_0 = H_0$	121.7	03 - 021 - 011	123.2(4)
C_{3}	121.7	07 - 07 - 07	113.3 (3)
01 - N1 - 02	124.1 (3)	$C_{21} = 0/-H/$	112 (3)
OI—NI—CI	118.0 (3)	N5—C22—N4	116.8 (3)
O2—NI—CI	117.9 (3)	N5—C22—C23	121.9 (4)
04—N2—O3	124.1 (4)	N4—C22—C23	121.3 (3)
O4—N2—C3	118.1 (4)	C24—C23—C22	119.4 (4)
O3—N2—C3	117.8 (4)	С24—С23—Н23	120.3
O5—N3—O6	124.9 (4)	С22—С23—Н23	120.3
O5—N3—C5	116.9 (4)	C23—C24—C25	118.4 (3)
O6—N3—C5	118.1 (3)	C23—C24—H24	120.8
C12—C11—C20	119.2 (3)	C25—C24—H24	120.8
C12—C11—C21	118.9 (3)	C26—C25—C24	119.7 (4)
C20-C11-C21	121.9 (3)	C26—C25—N6	119.4 (3)
C11—C12—C13	122.8 (4)	C24—C25—N6	120.9 (3)
C11—C12—H12	118.6	N4—C26—C25	122.9 (4)
C13—C12—H12	118.6	N4—C26—H26	118.5
C14—C13—C12	118.5 (4)	С25—С26—Н26	118.5
C14—C13—H13	120.7	C26—N4—C22	118.2 (3)
C12—C13—H13	120.7	C22—N5—H5A	123 (3)
C13—C14—C15	121.1 (4)	C22—N5—H5B	116 (3)
C13—C14—H14	119.5	H5A—N5—H5B	121 (4)
C15—C14—H14	119.5	09—N6—010	123 (1)
C_{14} C_{15} C_{16}	121 4 (4)	09 - N6 - C25	123.2(3) 118.9(3)
$C_{14} = C_{15} = C_{10}$	121.4(4) 1194(4)	010 - N6 - C25	117.9(3)
$C_{14} = C_{15} = C_{20}$	119.4(4)	010-10-025	117.7 (5)
010-013-020	119.1 (4)		
$C \in C 1 = C 2 = C 2$	1.9(6)	C15 C16 C17 C19	1.0.(7)
$C_0 - C_1 - C_2 - C_3$	-1.8(0) 1767(2)	C16 - C17 - C18 - C10	1.0(7)
NI - CI - C2 - C3	1/0.7(5)	C10 - C17 - C18 - C19	0.3(7)
C1 - C2 - C3 - C4	1.7 (6)	C17 - C18 - C19 - C20	-0.6 (6)
C1—C2—C3—N2	-179.1(3)	C12—C11—C20—C15	-0.8(5)
$C_2 - C_3 - C_4 - C_5$	0.2 (6)	C21—C11—C20—C15	177.1 (3)
N2-C3-C4-C5	-179.1 (3)	C12—C11—C20—C19	177.0 (4)
C3—C4—C5—C6	-2.1 (6)	C21—C11—C20—C19	-5.1 (5)
C3—C4—C5—N3	179.5 (3)	C14—C15—C20—C11	-0.8 (5)
C2-C1-C6-C5	0.1 (6)	C16—C15—C20—C11	179.5 (3)
N1-C1-C6-C5	-178.4 (3)	C14—C15—C20—C19	-178.8 (4)
C4—C5—C6—C1	1.9 (5)	C16—C15—C20—C19	1.6 (5)

N3—C5—C6—C1	-179.6 (3)	C18—C19—C20—C11	-178.2 (4)
C6-C1-N1-O1	19.8 (5)	C18—C19—C20—C15	-0.3 (5)
C2-C1-N1-O1	-158.8 (4)	C12—C11—C21—O8	142.1 (4)
C6-C1-N1-O2	-161.4 (4)	C20-C11-C21-O8	-35.8 (5)
C2-C1-N1-O2	20.0 (5)	C12—C11—C21—O7	-36.5 (5)
C2-C3-N2-O4	178.1 (4)	C20-C11-C21-O7	145.6 (3)
C4—C3—N2—O4	-2.6 (5)	N5-C22-C23-C24	-179.8 (4)
C2—C3—N2—O3	-1.5 (5)	N4—C22—C23—C24	-1.7 (5)
C4—C3—N2—O3	177.8 (4)	C22—C23—C24—C25	1.0 (5)
C4—C5—N3—O5	6.4 (5)	C23—C24—C25—C26	-0.1 (5)
C6—C5—N3—O5	-172.1 (4)	C23—C24—C25—N6	178.6 (3)
C4—C5—N3—O6	-173.2 (4)	C24—C25—C26—N4	-0.1 (6)
C6—C5—N3—O6	8.3 (5)	N6-C25-C26-N4	-178.8 (3)
C20-C11-C12-C13	1.8 (6)	C25—C26—N4—C22	-0.5 (5)
C21—C11—C12—C13	-176.1 (4)	N5-C22-N4-C26	179.7 (3)
C11—C12—C13—C14	-1.0 (6)	C23-C22-N4-C26	1.5 (5)
C12—C13—C14—C15	-0.7 (6)	C26—C25—N6—O9	1.0 (5)
C13—C14—C15—C16	-178.7 (4)	C24—C25—N6—O9	-177.7 (3)
C13—C14—C15—C20	1.6 (6)	C26-C25-N6-O10	-178.0 (3)
C14—C15—C16—C17	178.4 (4)	C24—C25—N6—O10	3.4 (5)
C20-C15-C16-C17	-1.9 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N5—H5A…O8	0.90 (5)	2.03 (5)	2.919 (5)	168 (5)
N5—H5 <i>B</i> ····O9 ⁱ	0.86 (4)	2.24 (4)	3.069 (5)	161 (4)
O7—H7…N4	0.95 (5)	1.71 (5)	2.650 (4)	171 (5)
C23—H23····O9 ⁱ	0.95	2.5	3.272 (5)	139
C26—H26…O1	0.95	2.69	3.530 (5)	147
C26—H26····O2	0.95	2.72	3.477 (5)	138

Symmetry code: (i) x, y-1, z.