

Received 2 December 2017 Accepted 18 December 2017

Edited by G. Smith, Queensland University of Technology, Australia

Keywords: crystal structure; fructosamine; Maillard reaction; D-fructose-2-aminoisobutyric acid; hydrogen bonding; Hirshfeld surface analysis.

CCDC reference: 1583254

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and hydrogen bonding in N-(1-deoxy- β -D-fructopyranos-1-yl)-2-amino-isobutyric acid

Valeri V. Mossine,^a* Charles L. Barnes^b and Thomas P. Mawhinney^a

^aDepartment of Biochemistry, University of Missouri, Columbia, MO 65211, USA, and ^bDepartment of Chemistry, University of Missouri, Columbia, MO 65211, USA. *Correspondence e-mail: MossineV@missouri.edu

The title compound, alternatively called D-fructose-2-aminoisobutyric acid (FruAib), $C_{10}H_{19}NO_7$, (I), crystallizes exclusively in the β -pyranose form, with two conformationally non-equivalent molecules [(IA) and (IB)] in the asymmetric unit. In solution, FruAib establishes an equilibrium, with 75.6% of the population consisting of β -pyranose, 10.4% β -furanose, 10.1% α -furanose, 3.0% α -pyranose and <0.7% the acyclic forms. The carbohydrate ring in (I) has the normal ${}^{2}C_{5}$ chair conformation and the amino acid portion is in the zwitterion form. Bond lengths and valence angles compare well with the average values from related pyranose structures. All carboxyl, hydroxy and ammonium groups are involved in hydrogen bonding and form a three-dimensional network of infinite chains that are connected through homodromic rings and short chains. Intramolecular hydrogen bonds bridge the amino acid and sugar portions in both molecules. A comparative Hirshfeld surfaces analysis of FruAib and four other sugar-amino acids suggests an increasing role of intramolecular heteroatom interactions in crystal structures with an increasing proportion of C-H bonds.

1. Chemical context

D-Fructose-amino acids are derivatives of fructosamine and represent the major fraction of the early Maillard reaction products which form non-enzymatically both in processed foods and in vivo (Mossine & Mawhinney, 2010). Naturally occurring D-fructose-amino acids act as intermediates in the formation of food aroma and colour, while elevated fructosamine content in humans has been linked to the development of diabetic complications and tissue damage. Synthetic fructosamine derivatives have been offered as lectin blockers and antioxidants that might stimulate immune system (Tarnawski, Kuliś-Orzechowska & Szelepin, 2007), be potentially useful in prevention of cancer metastasis (Mossine et al., 2010), or neuroinflammation (Song et al., 2016). The chemical and biological reactivity of fructosamines stems from their structural instability. Thus, in solutions, fructosamine derivatives rapidly establish a equilibrium between several cyclic and acyclic forms (Kaufmann et al., 2016), as exemplified in Fig. 1 for the title compound. The acyclic tautomers, while present in minute (<1%) proportions, are responsible for chemical transformations of fructosamines in numerous redox, isomerization, or degradation reactions. The cyclic conformers are responsible for the carbohydrate recognition by proteins such as lectins, transporters or enzymes, and thus define a number of biological activities of fructosamines (Mossine & Mawhinney, 2010).

As a part of our structure–activity studies, we have prepared D-fructose-2-aminoisobutyric acid (FruAib), a structural analogue of an efficient blocker of galectins-1, -3 and -4, D-fructose-L-leucine (Mossine *et al.*, 2008). In this work, we report on the molecular and crystal structure of FruAib, $C_{10}H_{19}NO_7$ (I), with an emphasis on hydrogen-bonding patterns in the structure. A comparative Hirshfeld surfaces analysis of FruAib and four other sugar-amino acids is also completed.

2. Structural commentary

Crystalline FruAib has two conformationally nonequivalent molecules, (IA) and (IB), in the asymmetric unit. The molecular structures and atomic numbering are shown in Figs. 2 and 3. The molecules may be considered as conjugates of a carbohydrate, 1-amino-1-deoxy-D-fructose, and an amino acid, 2-aminoisobutyric acid, which are joined through the common amino group. The β -D-fructopyranose rings of the carbohydrate,

Figure 1 Equilibrium in aqueous solution of (I), at 293 K and pH 6.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H1NA \cdots O6A$	0.86 (3)	2.40 (3)	2.813 (3)	110 (2)
$N1A - H1NA \cdots O7A$	0.86 (3)	2.30 (3)	2.674(2)	107(2)
$O2B - H2OB \cdots O8A^{i}$	0.84 (3)	1.78 (3)	2.596 (3)	165 (3)
$N1A - H2NA \cdots O7B$	0.98 (3)	1.78 (3)	2.743 (3)	169 (3)
$O5A - H5OA \cdots O2B^{ii}$	0.76(4)	2.14 (4)	2.886 (3)	168 (4)
$O5B-H5OB\cdots O3A^{iii}$	0.83 (4)	1.99 (4)	2.804 (3)	165 (3)
$O2A - H2OA \cdots O3A$	0.82(4)	2.62 (3)	2.847 (2)	97 (3)
$O3A - H3OA \cdots O4B^{iv}$	0.78(4)	2.08 (4)	2.785 (3)	149 (3)
$O4A - H4OA \cdots O8A^{v}$	0.84(4)	2.00(4)	2.822 (3)	170 (4)
$O2A - H2OA \cdots O8B$	0.82(4)	1.87 (4)	2.657 (3)	161 (4)
$O4B - H4OB \cdots O3B$	0.84(4)	2.51 (4)	2.886 (2)	108 (3)
$O4B - H4OB \cdots O4A^{vi}$	0.84 (5)	2.14 (5)	2.864 (3)	145 (5)
$N1B - H2NB \cdots O7A^{i}$	0.90 (3)	1.91 (3)	2.795 (3)	168 (3)
$N1B - H1NB \cdots O3B$	0.90 (4)	2.02 (4)	2.800 (3)	144 (3)
$N1B - H1NB \cdots O7B$	0.90 (4)	2.40 (3)	2.681 (3)	100 (2)
$O3B - H3OB \cdots O5B^{vii}$	0.86 (4)	1.92 (4)	2.717 (3)	154 (4)

Symmetry codes: (i) x + 1, y - 1, z; (ii) x - 1, y + 1, z + 1; (iii) x, y, z - 1; (iv) x - 1, y, z + 1; (v) x, y, z + 1; (vi) x + 1, y, z - 1; (vii) x + 1, y, z.

drate portions in both (IA) and (IB) exist in the ${}^{2}C_{5}$ chair conformation, with puckering parameters Q = 0.582 Å, $q = 177.7^{\circ}$, and $f = 224^{\circ}$ for (IA) and Q = 0.565 Å, $q = 175.5^{\circ}$, and $f = 268^{\circ}$ for (IB). These parameters correspond to a conformation with the lowest energy possible for fructose

Figure 2

Atomic numbering and displacement ellipsoids at the 50% probability level for molecule (IA). Intramolecular $N-H\cdots O$ and $O-H\cdots O$ interactions are shown as dotted lines.

Figure 3

Atomic numbering and displacement ellipsoids at the 50% probability level for molecule (IB). Intramolecular $N-H\cdots O$ and $O-H\cdots O$ interactions are shown as dotted lines.

research communications

Table 2						
Suspected	$C - H \cdots O$	contacts	(Å,	°)	in ((I).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$	Symmetry code	
$C1A - H1A1 \cdots O3A$	0.99	2.56	2.909 (3)	101		
$C4A - H4A \cdots O4B$	1.00	2.63	3.608 (3)	167	x, y, z + 1	
$C9A - H9A1 \cdots O8A$	0.98	2.55	3.313 (3)	135	x + 1, y, z	
C9A−H9A3···O3B	0.98	2.66	3.575 (3)	156		
C9A−H9A3···O7B	0.98	2.68	3.381 (3)	129		
$C10A - H10A \cdots O7B$	0.98	2.72	3.451 (3)	132		
C10A-H10B···O3B	0.98	2.64	3.076 (3)	107	x - 1, y, z	
$C5B-H5B\cdots O8A$	1.00	2.41	3.355 (3)	156	x, y, z - 1	
$C6B - H6B2 \cdots O5A$	0.99	2.61	3.556 (3)	161	x + 1, y - 1, z	
$C10B - H10E \cdots O5A$	0.98	2.71	3.517 (3)	140	x + 1, y - 1, z	
$C10B - H10F \cdots O7A$	0.98	2.70	3.443 (3)	133	x + 1, y - 1, z	

(French *et al.*, 1997), with (*IB*) providing a better fit. The bond distances and the valence angles are close to the average values for a number of crystalline pyranose structures (Jeffrey & Taylor, 1980). In the solution of FruAib, the β -D-pyranose anomer dominates the equilibrium, at 76.6%, as follows from the ¹³C NMR spectrum (Fig. 1, Supporting Table S1). In the ¹H NMR spectrum of the major anomer (see Section 5), the vicinal proton–proton coupling constants $J_{3,4} = 9.8$ Hz and $J_{4,5} = 3.4$ Hz indicate H4 is in the *trans* disposition to H3 and in the *gauche* disposition to H5. Hence, the predominant conformation of FruAib in solution is the ²C₅ β -D-fructopyranose, as well.

The amino acid portions of both (IA) and (IB) are in the zwitterion form with a positively charged tetrahedral secondary ammonium nitrogen and a negatively charged deprotonated carboxyl group. Each molecule has three intramolecular interactions (Table 1), two of which bridge the carboxylate, ammonium, and the carbohydrate portions of the molecules. The intramolecular hydrogen-bonding patterns differ in the molecules. Thus, in (IB), the string of short heteroatom contacts stretches from O4B through O7B and can be denoted in terms of the $S_2^3(5)$ pattern descriptor. In (IA), the intramolecular hydrogen bonding is fragmented between the shorter zwitterionic bridge O7A···H1NA···O6A [the $S_1^2(3)$ pattern] and the O2A – H···O3A contact. In the ¹H NMR spectrum of FruAib (see Section 5), the two protons attached to C1 produce two distinct signals at 3.297 and 3.210

ppm, with $J_{1A,1B} = -12.7$ Hz. The inequality of these protons indicates restricted rotation around the C1-C2 and C1-C7 bonds, thus suggesting that the intramolecular hydrogen bonds retain the structure in solution (Mossine et al., 1994). There are non-equivalences in carboxylate C-O distances that are observed in both molecules and which could be attributed to unequal participation of the oxygen atoms in hydrogen bonding. In (IA), O8A is involved in a three-center hydrogen-bonding interaction, with H...O8A distances of 1.79 and 1.98 Å, while for the O7A interaction, the distances are 1.91 and 2.30 Å (Table 1), which explains the elongation of the C8A-O8A bond (1.260 Å), as compared to the C8A-O7A distance (1.249 Å). Similar considerations can be applied to (IB), where O7B is involved in two short heteroatom contacts and O8B participates in only one (Table 1), hence the difference in the C8B-O7B (1.263 Å) and C8B-O8B (1.241 Å) bond lengths.

3. Supramolecular features

FruAib crystallizes in the triclinic space group P1, with two non-equivalent molecules per unit cell. The molecular packing of (I) features infinite chains of hydrogen bonds spiralling along the *a* axis (Fig. 4). The basic hydrogen-bonding patterns

Figure 4

The molecular packing in (I). Color code for crystallographic axes: red -a, green -b, blue -c. Hydrogen bonds are shown as cyan dotted lines.

Figure 5 Hydrogen-bond patterns in the crystal structure of (I).

Table 3

Hydrogen bonding and contributions of the O···H/H···O contacts to the Hirshfeld surfaces of sugar-amino acids.

Notes: (*) All sugar-amino acids are in the pyranose form and all have four hydroxy, one carboxyl and one ammonium group, and one pyranose ring oxygen; (**) hydrogen-bond selection criteria: $D \cdots A < 2.9 \text{ Å}$; $H \cdots A < 2.7 \text{ Å}$; $D - H \cdots A > 95^{\circ}$.

Structure*	No. of CH/CH ₂ /CH ₃ groups (total C–H)	No. of intra/inter hydrogen-bonds**	% of O···H/H···O contacts on Hirshfeld surface	Reference
GalGly	3/3/0 (9)	2/6	55.7	Mossine et al. (1996)
GlcGly	3/3/0 (9)	3/6	57.6	Mossine et al. (1996)
FruGly	3/3/0 (9)	2/6	51.6	Mossine et al. (1995)
FruAib (IA)	3/2/2 (13)	3/5	44.0	This work
FruAib (IB)	3/2/2 (13)	3/5	45.9	This work
FruPro·H ₂ O	4/5/0 (14)	3/6	49.2	Mossine et al. (2007)
FruPro-2H ₂ O	4/5/0 (14)	3/6	49.3	Tarnawski, Ślepokura et al. (2007)
FruPro MeOH	4/5/1 (17)	4/5	40.2	Tarnawski, Ślepokura et al. (2007)

are depicted in Fig. 5 and include the main infinite chain pattern $C_5^5(12)$; in the crystal, these infinite chains are connected through homodromic rings $[R_4^4(8)]$ and short chains $[D_1^{\ 2}(5)$ and D(4)]. Thus, hydrogen bonds form a three-dimensional network of short heteroatomic contacts throughout the crystal of (I). In addition, there are a number of close C-H···O contacts that may qualify as weak hydrogen bonds (Table 2). Interestingly, molecule (IA) provides most of donors for these contacts.

4. Database survey

Search of SciFinder, Google Scholar, and the Cambridge Structural Database (Groom et al., 2016) by both structure and chemical names revealed no previous structural description of D-fructose-2-aminoisobutyric acid: thus the compound appears to be novel. The D-fructosamine portion of the molecule is more interesting for a structure comparison survey due to its conformational instability and practical significance to food and health sciences. The most closely related structures are D-fructose-glycine (FruGly, CCDC 1307697; Mossine et al., 1995) and D-fructose-L-proline (FruPro, CCDC 628806, 628807, 631528; Tarnawski, Ślepokura et al., 2007). These D-fructose-amino acids crystallize in the ${}^{2}C_{5} \beta$ -pyranose conformations and exist as zwitterions as well, with the intramolecular hydrogen bonding that necessarily involves the amino acid carboxylate, the ammonium group and one hydroxy group donated by the carbohydrate moiety. However, none of these structures features the involvement of the pyranose ring O6 in the intramolecular hydrogen bonding found in (IA). On the other hand, (IB) is structurally close to both FruGly (Mossine et al., 1995) and FruPro (Tarnawski, Slepokura et al., 2007). In the molecules, the conformations around the C1-C2 bond are trans-gauche, with respective values of the N-C1-C2-O6 torsion angle falling into the 165-177° range and are stabilized with the similar intramolecular hydrogen-bonding pattern $O3 \cdot \cdot H1N \cdot \cdot \cdot O7$.

A compendium of structures close to (I) is presented in Table 3. In addition to FruPro and FruGly, two structures isomeric to FruGly were included: D-galactose-glycine (GalGly, CCDC123625; Mossine *et al.*, 1996) and D-glucose-glycine (GlcGly, CCDC123624; Mossine *et al.*, 1996). In sugar-

Acta Cryst. (2018). E**74**, 72–77

amino acids, as demonstrated in Table 3, an increase in the proportion of C-H bonds leads to an increase in number of intramolecular hydrogen bonds. Such tendency towards the 'internalization' of hydrogen bonding was also noticed as a result of a comparative analysis of the 'fingerprint plots' based

Figure 6

Two-dimensional fingerprint plots produced for the Hirshfeld surfaces of (IA) and (IB). The full plots for (IA) and (IB) are shown in (a) and (b), respectively. Contributions to the plots from the H \cdots H contacts are shown in (c) and (d) and the contributions from the O \cdots H/H \cdots O contacts are depicted in (e) and (f).

research communications

on the calculated Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and delineated for the $O \cdots H/H \cdots O$ contacts (Fig. 6). Table 3 lists the relative abundances of these contacts calculated for (IA), (IB) and structurally close sugar-amino acids. There is an obvious trend towards decrease in the proportion of intermolecular $O \cdots H$ contacts as the number of the C-H bonds in the structure increases, although a total number of hydrogen-bonds per molecule increases as well.

5. Synthesis and crystallization

2-Aminoisobutyric acid (2.1 g, 0.02 mol), D-glucose (9 g, 0.05 mol), and sodium acetate (0.82 g, 0.01 mol) were dissolved in 100 ml of a methanol/glycerol (3:1) mixture and refluxed for 3 h. The reaction progress was monitored by TLC on silica. The reaction mixture was diluted with 900 ml of water and passed through a column charged with 80 ml of Amberlite IRN-77 (H⁺-form). The target compound was then eluted with 0.2 M pyridine, and fractions containing pure FruAib were pooled and evaporated. The residue was redissolved in 100 ml of water, decolorized with 0.5 g of charcoal and evaporated to a syrup. The latter was dissolved in 30 ml of ethanol and made nearly cloudy with dropwise addition of acetone. Crystallization occurred within a week at room temperature. Yield 2.0 g (38%, based on starting Aib). Major (β -pyranose anomer) peaks (ppm) in the ¹³C NMR spectrum in D₂O: 179.35 (C8); 98.33 (C2); 72.39 (C4); 72.21 (C3); 71.79 (C5); 67.00 (C7); 66.68 (C6); 51.72 (C1); 24.66, 24.47 (C9, C10). See Supporting Table S1 for minor peak assignments in the spectrum. Major signals (ppm) and resolved coupling constants (Hz) in the ¹H NMR spectrum: 4.038 (dd, H6B); 4.021 (*m*, H5); 3.903 (*dd*, H4); 3.784 (*d*, H3); 3.775 (*dd*, H6A); 3.297 (*d*, H1*B*); 3.210 (*d*, H1*A*); 1.517 (*s*, 3H10); 1.512 (*s*, 3H9); $J_{1A,1B} = -12.7; J_{3,4} = 9.8; J_{4,5} = 3.4; J_{5,6A} = 1.3; J_{6A,6B} = -12.9.$

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. Hydroxy and nitrogen-bound H atoms were located in difference-Fourier analyses and were allowed to refine fully. Other H atoms were placed at calculated positions and treated as riding, with C-H = 0.98 Å (methyl), 0.99 Å (methylene) or 1.00 Å (methine) and with $U_{iso}(H) = 1.2U_{eq}$ (methine or methylene) or $1.5U_{eq}$ (methyl). As a result of the unrealistic value obtained for the Flack absolute structure parameter [-0.5 (3) for 2254 quotients (Parsons *et al.*, 2013)], the absolute configuration of the ring system (2*R*,3*S*,4*R*,5*R*) was assigned on the basis of the known configuration for the starting compound D-glucose (McNaught, 1996).

Acknowledgements

The authors thank Dr Shaokai Jiang for assistance with acquiring NMR spectra.

1	
Crystal data	
Chemical formula	$C_{10}H_{19}NO_7$
M _r	265.26
Crystal system, space group	Triclinic, P1
Temperature (K)	100
a, b, c (Å)	5.8008 (19), 9.636 (3), 10.676 (4)
α, β, γ (°)	87.766 (3), 86.330 (4), 82.042 (4)
$V(\dot{A}^3)$	589.5 (3)
Z	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.13
Crystal size (mm)	$0.25\times0.20\times0.08$
Data collection	
Diffractometer	Bruker APEXII CCD area detector
Absorption correction	Multi-scan (SADABS; Sheldrick, 2003)
T_{\min}, T_{\max}	0.86, 0.99
No. of measured, independent and observed $[L > 2\sigma(L)]$ reflections	6952, 5160, 4927
$R_{\rm e}$	0.022
$(\sin \theta/\lambda)$ (\mathring{A}^{-1})	0.652
$(\sin \theta/\lambda)_{\max}(A^{-})$	0.052
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.081, 1.03
No. of reflections	5160
No. of parameters	377
No. of restraints	3
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}$, $\Delta \rho_{\rm min}$ (e Å ⁻³)	0.30, -0.22
Absolute structure	Flack x determined using 2254 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.5(3)

Computer programs: APEX2 and SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015), X-SEED (Barbour, 2001), Mercury (Macrae et al., 2008), CIFTAB (Sheldrick, 2008) and publCIF (Westrip, 2010).

Funding information

Funding for this research was provided by: University of Missouri Agriculture Experiment Station Chemical Laboratories.

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker. (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- French, A. D., Dowd, M. K. & Reilly, P. J. (1997). J. Mol. Struct. Theochem, 395–396, 271–287.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jeffrey, G. A. & Taylor, R. (1980). J. Comput. Chem. 1, 99-109.
- Kaufmann, M., Meissner, P. M., Pelke, D., Mügge, C. & Kroh, L. W. (2016). *Carbohydr. Res.* 428, 87–99.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- McNaught, A. D. (1996). Pure Appl. Chem. 68, 1919–2008.
- Mossine, V. V., Barnes, C. L., Glinsky, G. V. & Feather, M. S. (1996). *Carbohydr. Res.* **284**, 11–24.
- Mossine, V. V., Barnes, C. L. & Mawhinney, T. P. (2007). J. Carbohydr. *Chem.* **26**, 249–266.

- Mossine, V. V., Glinsky, G. V., Barnes, C. L. & Feather, M. S. (1995). Carbohydr. Res. 266, 5–14.
- Mossine, V. V., Glinsky, G. V. & Feather, M. S. (1994). Carbohydr. Res. 262, 257–270.
- Mossine, V. V., Glinsky, V. V. & Mawhinney, T. P. (2008). In *Galectins*, Klyosov, A. A., Platt, D. & Witczak, Z. J., Eds. John Wiley & Sons, pp. 235–270.
- Mossine, V. V., Glinsky, V. V. & Mawhinney, T. P. (2010). In *The Maillard Reaction: Interface between Aging, Nutrition and Metabolism*, edited by M. C. Thomas and J. Forbes, pp. 170–179. Royal Society of Chemistry.
- Mossine, V. V. & Mawhinney, T. P. (2010). Adv. Carbohydr. Chem. Biochem. 64, 291–402.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Song, H., Lu, Y., Qu, Z., Mossine, V. V., Martin, M. B., Hou, J., Cui, J., Peculis, B. A., Mawhinney, T. P., Cheng, J., Greenlief, C. M., Fritsche, K., Schmidt, F. J., Walter, R. B., Lubahn, D. B., Sun, G. Y. & Gu, Z. (2016). Sci. Rep. 6, 35323.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Tarnawski, M., Kuliś-Orzechowska, R. & Szelepin, B. (2007). Int. Immunopharmacol. 7, 1577–1581.
- Tarnawski, M., Ślepokura, K., Lis, T., Kuliś-Orzechowska, R. & Szelepin, B. (2007). Carbohydr. Res. 342, 1264–1270.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2018). E74, 72-77 [https://doi.org/10.1107/S2056989017018060]

Crystal structure and hydrogen bonding in N-(1-deoxy- β -D-fructopyranos-1-yl)-2-aminoisobutyric acid

Valeri V. Mossine, Charles L. Barnes and Thomas P. Mawhinney

Computing details

Data collection: *APEX2* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2017* (Sheldrick, 2015); molecular graphics: *X-SEED* (Barbour, 2001) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *CIFTAB* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

(I)

Crystal data $C_{10}H_{19}NO_7$ $M_r = 265.26$ Triclinic, P1 a = 5.8008 (19) Å b = 9.636 (3) Å c = 10.676 (4) Å $a = 87.766 (3)^{\circ}$ $\beta = 86.330 (4)^{\circ}$ $\gamma = 82.042 (4)^{\circ}$ $V = 589.5 (3) Å^{3}$

Data collection

Bruker APEXII CCD area detector diffractometer ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.86, T_{\max} = 0.99$ 6952 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.081$ S = 1.035160 reflections 377 parameters 3 restraints Hydrogen site location: mixed Z = 2 F(000) = 284 $D_x = 1.494 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 4131 reflections $\theta = 2.8-27.6^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.25 \times 0.20 \times 0.08 \text{ mm}$

5160 independent reflections 4927 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 27.6^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -7 \rightarrow 7$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 13$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0439P)^2 + 0.1P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack *x* determined using 2254 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.5 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1A	0.4852 (3)	0.7001 (2)	0.59886 (18)	0.0140 (4)	
C1A	0.2937 (4)	0.6814 (2)	0.6955 (2)	0.0155 (4)	
H1A1	0.258387	0.583790	0.696105	0.019*	
H1A2	0.150865	0.745067	0.675402	0.019*	
O2A	0.5882 (3)	0.6392 (2)	0.84699 (16)	0.0201 (4)	
C2A	0.3701 (4)	0.7143 (2)	0.8240 (2)	0.0149 (4)	
O3A	0.1611 (3)	0.54217 (18)	0.93040 (17)	0.0200 (4)	
C3A	0.1796 (4)	0.6889 (2)	0.9256 (2)	0.0160 (4)	
H3A	0.027565	0.743040	0.902764	0.019*	
O4A	0.0554 (3)	0.7173 (2)	1.14090 (17)	0.0235 (4)	
C4A	0.2446 (4)	0.7366 (2)	1.0515 (2)	0.0166 (4)	
H4A	0.388769	0.676038	1.077616	0.020*	
O5A	0.0858 (3)	0.9847 (2)	1.01890 (19)	0.0256 (4)	
C5A	0.2914 (4)	0.8897 (2)	1.0402 (2)	0.0173 (5)	
H5A	0.356155	0.914273	1.119767	0.021*	
06A	0.3959 (3)	0.85831 (17)	0.81688 (15)	0.0185 (3)	
C6A	0.4700 (4)	0.9059 (3)	0.9321 (2)	0.0208 (5)	
H6A1	0.492827	1.005718	0.921278	0.025*	
H6A2	0.621286	0.851162	0.951912	0.025*	
O7A	0.2928 (3)	0.95121 (17)	0.51308 (16)	0.0205 (4)	
C7A	0.4156 (4)	0.7112 (2)	0.4646 (2)	0.0140 (4)	
08A	0.1246 (3)	0.86077 (17)	0.35794 (16)	0.0204 (4)	
C8A	0.2629 (4)	0.8535 (2)	0.4449 (2)	0.0147 (4)	
C9A	0.6394 (4)	0.7138 (3)	0.3809 (2)	0.0190 (5)	
H9A1	0.718756	0.791634	0.404061	0.028*	
H9A2	0.600415	0.726203	0.292846	0.028*	
H9A3	0.742340	0.625157	0.392235	0.028*	
C10A	0.2936 (4)	0.5854 (2)	0.4386 (2)	0.0176 (5)	
H10A	0.386894	0.499035	0.467924	0.026*	
H10B	0.276226	0.581322	0.348147	0.026*	
H10C	0.139289	0.595194	0.483013	0.026*	
N1B	0.9798 (3)	0.1994 (2)	0.51896 (19)	0.0148 (4)	
C1B	0.7661 (4)	0.1679 (2)	0.4597 (2)	0.0162 (4)	
H1B1	0.628379	0.230040	0.494220	0.019*	
H1B2	0.742314	0.069761	0.481061	0.019*	

O2B	0.9828 (3)	0.10708 (18)	0.26199 (16)	0.0177 (3)
C2B	0.7867 (4)	0.1888 (2)	0.3164 (2)	0.0153 (4)
O3B	1.0020 (3)	0.39052 (17)	0.31557 (16)	0.0179 (3)
C3B	0.7993 (4)	0.3425 (2)	0.2743 (2)	0.0147 (4)
H3B	0.660381	0.401144	0.314343	0.018*
O4B	0.7785 (3)	0.50320 (19)	0.09278 (18)	0.0220 (4)
C4B	0.7840 (4)	0.3599 (2)	0.1331 (2)	0.0157 (4)
H4B	0.923045	0.303446	0.090998	0.019*
O5B	0.3592 (3)	0.39757 (19)	0.13899 (18)	0.0212 (4)
C5B	0.5615 (4)	0.3074 (3)	0.0932 (2)	0.0178 (5)
H5B	0.564638	0.306047	-0.000506	0.021*
O6B	0.5737 (3)	0.15023 (18)	0.28044 (16)	0.0184 (3)
C6B	0.5487 (4)	0.1611 (3)	0.1472 (2)	0.0196 (5)
H6B1	0.396939	0.132758	0.129061	0.023*
H6B2	0.673214	0.095284	0.105088	0.023*
O7B	0.7832 (3)	0.45290 (18)	0.59469 (17)	0.0248 (4)
C7B	0.9506 (4)	0.2216 (2)	0.6593 (2)	0.0158 (4)
O8B	0.6794 (4)	0.3715 (2)	0.78640 (18)	0.0301 (5)
C8B	0.7867 (4)	0.3608 (2)	0.6822 (2)	0.0174 (5)
C9B	1.1926 (4)	0.2407 (3)	0.7005 (3)	0.0241 (5)
H9B1	1.299035	0.153209	0.689055	0.036*
H9B2	1.180988	0.264886	0.789159	0.036*
H9B3	1.252503	0.316092	0.649424	0.036*
C10B	0.8641 (5)	0.0944 (3)	0.7269 (2)	0.0221 (5)
H10D	0.705980	0.087100	0.702985	0.033*
H10E	0.862555	0.104968	0.817864	0.033*
H10F	0.968250	0.009301	0.703146	0.033*
H1NA	0.536 (5)	0.778 (3)	0.613 (3)	0.016 (7)*
H2OB	1.012 (6)	0.032 (3)	0.303 (3)	0.021 (7)*
H2NA	0.599 (5)	0.616 (3)	0.607 (3)	0.019 (7)*
H5OA	0.040 (6)	1.015 (4)	1.082 (4)	0.027 (9)*
H5OB	0.311 (6)	0.453 (4)	0.082 (4)	0.032 (9)*
H3OA	0.030 (7)	0.539 (4)	0.951 (3)	0.029 (9)*
H4OA	0.086 (7)	0.750 (4)	1.208 (4)	0.045 (11)*
H2OA	0.590 (6)	0.555 (4)	0.840 (3)	0.033 (9)*
H4OB	0.852 (10)	0.549 (5)	0.138 (5)	0.074 (15)*
H2NB	1.090 (5)	0.124 (3)	0.507 (3)	0.017 (7)*
H1NB	1.021 (6)	0.276 (4)	0.478 (3)	0.029 (8)*
H3OB	1.114 (7)	0.365 (4)	0.261 (4)	0.045 (10)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1A	0.0143 (9)	0.0143 (9)	0.0131 (9)	-0.0003 (7)	-0.0011 (7)	-0.0013 (7)
C1A	0.0159 (10)	0.0182 (11)	0.0124 (10)	-0.0020 (8)	0.0001 (8)	-0.0009 (8)
O2A	0.0173 (8)	0.0212 (9)	0.0204 (9)	0.0038 (7)	-0.0035 (6)	-0.0043 (7)
C2A	0.0162 (10)	0.0133 (10)	0.0150 (10)	-0.0010 (8)	-0.0018 (8)	-0.0020 (8)
O3A	0.0232 (9)	0.0181 (8)	0.0197 (8)	-0.0070 (7)	0.0012 (7)	-0.0010 (7)

supporting information

C3A	0.0196 (11)	0.0155 (10)	0.0129 (10)	-0.0019 (8)	0.0001 (8)	-0.0012 (8)
O4A	0.0285 (9)	0.0306 (10)	0.0135 (8)	-0.0125 (8)	0.0040 (7)	-0.0050 (7)
C4A	0.0183 (11)	0.0174 (11)	0.0144 (11)	-0.0040 (9)	0.0002 (8)	-0.0008 (9)
O5A	0.0301 (10)	0.0236 (9)	0.0199 (9)	0.0087 (8)	-0.0009 (8)	-0.0050 (8)
C5A	0.0217 (11)	0.0157 (11)	0.0147 (11)	-0.0024 (9)	-0.0006 (8)	-0.0033 (9)
06A	0.0255 (9)	0.0161 (8)	0.0145 (8)	-0.0054 (7)	0.0011 (6)	-0.0018 (6)
C6A	0.0246 (12)	0.0197 (11)	0.0197 (12)	-0.0078 (9)	0.0005 (9)	-0.0054 (9)
O7A	0.0259 (9)	0.0160 (8)	0.0188 (8)	0.0021 (7)	-0.0040 (7)	-0.0038 (7)
C7A	0.0158 (10)	0.0153 (10)	0.0109 (10)	-0.0015 (8)	-0.0014 (8)	-0.0007 (8)
08A	0.0221 (9)	0.0177 (8)	0.0212 (9)	0.0011 (7)	-0.0076 (7)	0.0001 (7)
C8A	0.0149 (10)	0.0152 (10)	0.0131 (10)	-0.0006 (8)	0.0029 (8)	-0.0001 (8)
C9A	0.0178 (11)	0.0208 (11)	0.0169 (11)	0.0004 (9)	0.0030 (9)	0.0005 (9)
C10A	0.0210 (11)	0.0152 (10)	0.0171 (11)	-0.0028 (9)	-0.0028 (9)	-0.0033 (9)
N1B	0.0150 (9)	0.0152 (9)	0.0138 (9)	-0.0004 (7)	-0.0006 (7)	-0.0013 (8)
C1B	0.0148 (10)	0.0182 (11)	0.0155 (11)	-0.0021 (8)	-0.0011 (8)	0.0003 (8)
O2B	0.0199 (8)	0.0157 (8)	0.0160 (8)	0.0030 (6)	-0.0002 (6)	-0.0006 (7)
C2B	0.0144 (10)	0.0159 (11)	0.0153 (11)	-0.0014 (8)	-0.0012 (8)	-0.0003 (9)
O3B	0.0170 (8)	0.0211 (8)	0.0171 (8)	-0.0072 (7)	-0.0007 (7)	-0.0023 (7)
C3B	0.0129 (10)	0.0155 (10)	0.0158 (11)	-0.0023 (8)	-0.0003 (8)	-0.0005 (8)
O4B	0.0236 (9)	0.0201 (9)	0.0236 (9)	-0.0073 (7)	-0.0063 (7)	0.0068 (7)
C4B	0.0138 (10)	0.0173 (11)	0.0156 (11)	-0.0016 (8)	-0.0004 (8)	0.0008 (8)
O5B	0.0153 (8)	0.0230 (9)	0.0242 (9)	-0.0002 (7)	-0.0014 (7)	0.0055 (7)
C5B	0.0162 (11)	0.0234 (12)	0.0142 (11)	-0.0032 (9)	-0.0023 (8)	-0.0011 (9)
O6B	0.0180 (8)	0.0213 (8)	0.0174 (8)	-0.0063 (6)	-0.0033 (6)	0.0001 (7)
C6B	0.0202 (11)	0.0194 (11)	0.0200 (12)	-0.0037 (9)	-0.0045 (9)	-0.0029 (9)
O7B	0.0320 (10)	0.0188 (8)	0.0197 (9)	0.0081 (7)	0.0022 (7)	0.0017 (7)
C7B	0.0181 (11)	0.0168 (11)	0.0116 (10)	0.0008 (8)	-0.0008 (8)	-0.0003 (8)
O8B	0.0396 (12)	0.0237 (9)	0.0224 (10)	0.0062 (8)	0.0097 (8)	-0.0014 (7)
C8B	0.0178 (11)	0.0159 (10)	0.0176 (11)	0.0023 (9)	-0.0018 (9)	-0.0028 (9)
C9B	0.0194 (12)	0.0299 (13)	0.0225 (12)	0.0021 (10)	-0.0069 (9)	-0.0063 (10)
C10B	0.0266 (13)	0.0206 (12)	0.0173 (11)	0.0007 (10)	0.0018 (9)	0.0028 (9)

Geometric parameters (Å, °)

O2A—C2A	1.399 (3)	O3B—H3OB	0.86 (4)
O3A—C3A	1.431 (3)	C4A—H4A	1.0000
O4A—C4A	1.435 (3)	O4B—H4OB	0.84 (6)
O6A—C2A	1.415 (3)	C5A—H5A	1.0000
O6A—C6A	1.440 (3)	O5B—H5OB	0.83 (4)
O7A—C8A	1.250 (3)	C6A—H6A2	0.9900
O8A—C8A	1.259 (3)	C6A—H6A1	0.9900
N1A—C1A	1.492 (3)	С9А—Н9А3	0.9800
N1A—C7A	1.510(3)	C9A—H9A1	0.9800
O2A—H2OA	0.82 (4)	C9A—H9A2	0.9800
ОЗА—НЗОА	0.78 (4)	C10A—H10C	0.9800
O4A—H4OA	0.83 (4)	C10A—H10B	0.9800
05A—H5OA	0.76 (4)	C10A—H10A	0.9800
C1A—C2A	1.526 (3)	C1B—C2B	1.535 (3)

N1A—H1NA	0.87 (3)	N1B—H2NB	0.91 (3)
N1A—H2NA	0.98 (3)	N1B—H1NB	0.90 (4)
C2A—C3A	1.536 (3)	C2B—C3B	1.541 (3)
O2B—C2B	1.398 (3)	C3B—C4B	1.517 (3)
C3A—C4A	1.524 (3)	C4B—C5B	1.540 (3)
O3B—C3B	1.423 (3)	C5B—C6B	1.512 (4)
C4A—C5A	1.535 (3)	C7B—C10B	1.526 (3)
04B—C4B	1.427 (3)	C7B—C8B	1.551 (3)
C5A—C6A	1.519 (3)	C7B—C9B	1.535 (3)
O5B-C5B	1431(3)	C1B—H1B1	0.9900
06B-C2B	1.131(3) 1 418(3)	C1B—H1B2	0.9900
06B-C6B	1.437(3)	C3B—H3B	1 0000
C7A - C8A	1.137(3) 1 541(3)	C4B—H4B	1.0000
C7A - C10A	1.541 (5)	C5B-H5B	1.0000
C7A $C9A$	1.527(3) 1 531(3)	C6B H6B1	0.0000
C/A - C/A	1.331 (3)	C6P H6P2	0.9900
$O/D - C \delta D$	1.202(3)	C0D = H0D1	0.9900
	1.240 (3)		0.9800
CIA—HIAI	0.9900	C9B—H9B2	0.9800
CIA—HIA2	0.9900	C9B—H9B3	0.9800
NIB-CIB	1.500 (3)	Clob—HloD	0.9800
	1.517(3)	CI0B—HI0E	0.9800
O2B—H2OB	0.83 (3)	C10B—H10F	0.9800
СЗА—НЗА	1.0000		
C2A—O6A—C6A	112.33 (18)	C7A-C10A-H10C	109.00
C1A—N1A—C7A	115.41 (17)	C7A—C10A—H10A	110.00
C2A—O2A—H2OA	112 (2)	C7A—C10A—H10B	109.00
СЗА—ОЗА—НЗОА	104 (3)	H10A—C10A—H10B	109.00
C4A—O4A—H4OA	107 (3)	H10A—C10A—H10C	109.00
С5А—О5А—Н5ОА	107 (3)	H10B—C10A—H10C	109.00
C7A—N1A—H1NA	106 (2)	C7B—N1B—H2NB	107 (2)
C7A—N1A—H2NA	107.4 (19)	C7B—N1B—H1NB	111 (2)
H1NA—N1A—H2NA	115 (3)	H2NB—N1B—H1NB	112(3)
N1A—C1A—C2A	108 99 (18)	N1B—C1B—C2B	111 65 (18)
C1A - N1A - H1NA	108 (2)	C1B - N1B - H2NB	106 7 (19)
C1A - N1A - H2NA	105(2)	C1B—N1B—H1NB	106 (2)
$O^2A - C^2A - O^6A$	107.46 (18)	O^2B C^2B O^6B	100(2) 113 03 (17)
064 - C24 - C14	105 52 (16)	O6B-C2B-C1B	102 24 (17)
064 - C24 - C34	109.62 (16)	O6B-C2B-C1B	102.24(17) 108.88(17)
C_{1A} C_{2A} C_{3A}	109.02(10) 100.73(18)	C1B $C2B$ $C3B$	112.86 (16)
CIA = C2A = C3A	109.75(18) 110.00(17)	O^{2} O^{2	112.30 (10)
$O_2A = C_2A = C_1A$	110.90(17) 113.20(17)	O2B - C2B - C1B O2B - C2B - C1B	112.22 (18)
$O_2A = C_2A = C_3A$	113.29(17) 107.71(16)	O2D - C2D - C3D	107.01(18)
$O_{3A} = C_{3A} = C_{4A}$	107.71(10) 111.05(17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111.33 (18)
$C_{2A} = C_{2A} = C_{4A}$	111.03(17) 100 56 (19)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112.03(18) 110.22(14)
C_{A} C_{A} C_{A} C_{A}	107.00 (18)	$C_{2}D$ $C_{3}D$ $C_{4}D$ $C_{4}D$ $C_{4}D$ $C_{2}D$	110.23(10) 111.22(17)
$C_{A} = C_{A} = C_{A}$	107.02(10) 110.21(17)	$\begin{array}{cccc} \mathbf{C} \mathbf{T} \mathbf{D} & \mathbf{C} \mathbf{T} \mathbf{D} \\ \mathbf{C} \mathbf{T} \mathbf{D} & \mathbf{C} \mathbf{T} \mathbf{D} \\ \mathbf{C} \mathbf{T} \mathbf{D} & \mathbf{C} \mathbf{T} \mathbf{D} \\ \mathbf{C} \mathbf{T} \mathbf{D} & \mathbf{C} \mathbf{T} \mathbf{D} \end{array}$	111.32(17)
C_{A} C_{A} C_{A} C_{A}	110.21(17)	$C_{3}D - C_{4}D - C_{3}D$	110.08 (18)
U4A—U4A—UJA	112.33 (17)	U4B—U4B—U3B	108.48 (19)

O5A—C5A—C4A	112.39 (19)	O5B—C5B—C4B	110.2 (2)
O5A—C5A—C6A	108.72 (18)	O5B—C5B—C6B	108.56 (19)
C4A—C5A—C6A	109.36 (18)	C4B—C5B—C6B	109.76 (19)
Q6A—C6A—C5A	111.20 (19)	O6B—C6B—C5B	113.0 (2)
C2B—O6B—C6B	113.45 (17)	N1B—C7B—C8B	108.36 (17)
N1A—C7A—C8A	108.17 (16)	C8B—C7B—C9B	107.71 (18)
C8A - C7A - C10A	113 58 (19)	C8B-C7B-C10B	113 61 (19)
C9A - C7A - C10A	111 62 (18)	C9B-C7B-C10B	110.7(2)
N1A - C7A - C9A	107.01(18)	N1B-C7B-C9B	106.01(19)
N1A - C7A - C10A	108.96 (16)	N1B - C7B - C10B	11012(17)
C8A - C7A - C9A	107.24(18)	O8B - C8B - C7B	116.12(17) 116.38(19)
07A - C8A - 08A	1263(2)	07B-C8B-08B	1270(2)
074 - C84 - C74	120.5(2) 117 51 (19)	O7B C8B C7B	127.0(2)
084 - C84 - C74	116.13 (18)	N1B_C1B_H1B1	109.00
N1A C1A H1A2	110.00	NIB CIB HIB?	109.00
$C_{2A} = C_{1A} = H_{1A1}$	110.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.00
$C_{2A} = C_{1A} = H_{1A2}$	110.00	C_{2D} C_{1D} H_{1D}	109.00
	102.00		109.00
$\mathbf{M}_{\mathbf{A}} = \mathbf{C}_{\mathbf{A}} = \mathbf{M}_{\mathbf{A}}$	110.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.00
CID NID C7D	110.00 115.17(17)	C2D C2D LI2D	108.00
CID - NID - C/D	113.17(17) 110(2)	$C_{2}D - C_{3}D - H_{3}D$	108.00
$C_{2B} = O_{2B} = H_{2OB}$	110 (2)		108.00
$C_{AA} = C_{AA} = H_{AA}$	109.00	O4B - C4B - H4B	109.00
$C_{A} = C_{A} = H_{A}$	109.00	C5B C4B H4B	109.00
C_{2A} — C_{3A} — H_{3A}	110.00	C5B—C4B—H4B	109.00
C3B = O3B = H3OB	107 (3)	USB-CSB-HSB	109.00
O4A—C4A—H4A	109.00	C4B—C5B—H5B	109.00
C5A—C4A—H4A	109.00	C6B—C5B—H5B	109.00
C3A—C4A—H4A	109.00	06B—C6B—H6B1	109.00
C4B—O4B—H4OB	113 (3)	06B—C6B—H6B2	109.00
C4A—C5A—H5A	109.00	C5B—C6B—H6B1	109.00
OSA—CSA—HSA	109.00	C5B—C6B—H6B2	109.00
С6А—С5А—Н5А	109.00	H6B1—C6B—H6B2	108.00
C5B—O5B—H5OB	110 (3)	C7B—C9B—H9B1	109.00
С5А—С6А—Н6А2	109.00	C7B—C9B—H9B2	110.00
О6А—С6А—Н6А2	109.00	C7B—C9B—H9B3	109.00
O6A—C6A—H6A1	109.00	H9B1—C9B—H9B2	109.00
C5A—C6A—H6A1	109.00	H9B1—C9B—H9B3	109.00
Н6А1—С6А—Н6А2	108.00	H9B2—C9B—H9B3	110.00
С7А—С9А—Н9А2	109.00	C7B—C10B—H10D	109.00
C7A—C9A—H9A1	109.00	C7B—C10B—H10E	110.00
Н9А1—С9А—Н9А3	109.00	C7B—C10B—H10F	109.00
С7А—С9А—Н9А3	109.00	H10D—C10B—H10E	109.00
Н9А1—С9А—Н9А2	109.00	H10D—C10B—H10F	109.00
Н9А2—С9А—Н9А3	109.00	H10E—C10B—H10F	109.00
C6A—O6A—C2A—O2A	-61.2 (2)	C9A—C7A—C8A—O8A	89.4 (2)
C6A—O6A—C2A—C1A	-179.57 (18)	C10A—C7A—C8A—O7A	147.9 (2)
C6A—O6A—C2A—C3A	62.3 (2)	N1A-C7A-C8A-O7A	26.8 (3)

C2A—O6A—C6A—C5A	-61.7 (2)	N1A—C7A—C8A—O8A	-155.48 (19)
C1A—N1A—C7A—C10A	-53.2 (2)	C1B—N1B—C7B—C10B	56.0 (2)
C1A—N1A—C7A—C8A	70.7 (2)	C1B—N1B—C7B—C8B	-68.8 (2)
C1A—N1A—C7A—C9A	-174.04 (18)	C1B—N1B—C7B—C9B	175.78 (18)
C7A—N1A—C1A—C2A	-163.70 (16)	C7B—N1B—C1B—C2B	163.55 (16)
N1A—C1A—C2A—O6A	64.6 (2)	N1B-C1B-C2B-O6B	178.40 (16)
N1A—C1A—C2A—C3A	-177.35 (16)	N1B—C1B—C2B—C3B	-64.8 (2)
N1A—C1A—C2A—O2A	-51.4 (2)	N1B—C1B—C2B—O2B	57.0 (2)
O2A—C2A—C3A—O3A	-59.4 (2)	O2B—C2B—C3B—O3B	-61.3 (2)
O6A—C2A—C3A—O3A	-179.43 (17)	O6B—C2B—C3B—O3B	175.87 (17)
O6A—C2A—C3A—C4A	-58.5 (2)	O6B—C2B—C3B—C4B	-59.0 (2)
C1A—C2A—C3A—O3A	65.1 (2)	C1B—C2B—C3B—O3B	63.1 (2)
C1A—C2A—C3A—C4A	-173.98 (16)	C1B—C2B—C3B—C4B	-171.81 (19)
O2A—C2A—C3A—C4A	61.5 (2)	O2B—C2B—C3B—C4B	63.8 (2)
O3A—C3A—C4A—C5A	173.44 (18)	O3B—C3B—C4B—C5B	-179.66 (18)
C2A—C3A—C4A—O4A	177.02 (16)	C2B—C3B—C4B—O4B	175.84 (18)
O3A—C3A—C4A—O4A	-64.1 (2)	O3B—C3B—C4B—O4B	-59.3 (2)
C2A—C3A—C4A—C5A	54.6 (2)	C2B—C3B—C4B—C5B	55.5 (2)
O4A—C4A—C5A—C6A	-172.33 (18)	O4B—C4B—C5B—C6B	-173.64 (18)
C3A—C4A—C5A—O5A	67.8 (2)	C3B—C4B—C5B—O5B	67.9 (2)
O4A—C4A—C5A—O5A	-51.5 (2)	O4B—C4B—C5B—O5B	-54.1 (2)
C3A—C4A—C5A—C6A	-53.1 (2)	C3B—C4B—C5B—C6B	-51.6 (2)
O5A—C5A—C6A—O6A	-67.5 (2)	O5B—C5B—C6B—O6B	-68.2 (2)
C4A—C5A—C6A—O6A	55.5 (3)	C4B—C5B—C6B—O6B	52.4 (2)
C6B—O6B—C2B—C3B	60.3 (2)	N1B—C7B—C8B—O7B	-27.2 (3)
C2B—O6B—C6B—C5B	-58.7 (2)	N1B—C7B—C8B—O8B	155.3 (2)
C6B—O6B—C2B—O2B	-59.3 (2)	C9B—C7B—C8B—O7B	87.1 (2)
C6B—O6B—C2B—C1B	179.89 (18)	C9B—C7B—C8B—O8B	-90.4 (3)
C9A—C7A—C8A—O7A	-88.3 (2)	C10B—C7B—C8B—O7B	-149.9 (2)
C10A—C7A—C8A—O8A	-34.4 (3)	C10B—C7B—C8B—O8B	32.6 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	D—H…A
N1A—H1NA…O6A	0.86 (3)	2.40 (3)	2.813 (3)	110 (2)
N1 <i>A</i> —H1 <i>NA</i> ···O7 <i>A</i>	0.86 (3)	2.30 (3)	2.674 (2)	107 (2)
$O2B$ — $H2OB$ ···O $8A^{i}$	0.84 (3)	1.78 (3)	2.596 (3)	165 (3)
N1 <i>A</i> —H2 <i>NA</i> ···O7 <i>B</i>	0.98 (3)	1.78 (3)	2.743 (3)	169 (3)
O5 <i>A</i> —H5 <i>OA</i> ···O2 <i>B</i> ⁱⁱ	0.76 (4)	2.14 (4)	2.886 (3)	168 (4)
O5 <i>B</i> —H5 <i>OB</i> ···O3 <i>A</i> ⁱⁱⁱ	0.83 (4)	1.99 (4)	2.804 (3)	165 (3)
O2 <i>A</i> —H2 <i>OA</i> ···O3 <i>A</i>	0.82 (4)	2.62 (3)	2.847 (2)	97 (3)
$O3A$ — $H3OA$ ···O4 B^{iv}	0.78 (4)	2.08 (4)	2.785 (3)	149 (3)
$O4A$ — $H4OA$ ···O $8A^{v}$	0.84 (4)	2.00 (4)	2.822 (3)	170 (4)
O2 <i>A</i> —H2 <i>OA</i> ···O8 <i>B</i>	0.82 (4)	1.87 (4)	2.657 (3)	161 (4)
O4 <i>B</i> —H4 <i>OB</i> ···O3 <i>B</i>	0.84 (4)	2.51 (4)	2.886 (2)	108 (3)
$O4B$ —H4 OB ····O4 A^{vi}	0.84 (5)	2.14 (5)	2.864 (3)	145 (5)
N1B—H2NB····O7 A^{i}	0.90 (3)	1.91 (3)	2.795 (3)	168 (3)
N1 <i>B</i> —H1 <i>NB</i> ···O3 <i>B</i>	0.90 (4)	2.02 (4)	2.800 (3)	144 (3)

supporting information

N1 <i>B</i> —H1 <i>NB</i> ····O7 <i>B</i>	0.90 (4)	2.40 (3)	2.681 (3)	100 (2)
O3 <i>B</i> —H3 <i>OB</i> ···O5 <i>B</i> ^{vii}	0.86 (4)	1.92 (4)	2.717 (3)	154 (4)

Symmetry codes: (i) *x*+1, *y*-1, *z*; (ii) *x*-1, *y*+1, *z*+1; (iii) *x*, *y*, *z*-1; (iv) *x*-1, *y*, *z*+1; (v) *x*, *y*, *z*+1; (vi) *x*+1, *y*, *z*-1; (vii) *x*+1, *y*, *z*.

Table S1.	C13-NMR spectrum	and anomeric d	istribution of	f D-fructose-2	-aminoisobutyric d	acid in D2O	

carbon	α-pyranose	β-pyranose	α-furanose	β-furanose	
C1	51.55	51.72	49.81	51.35	
C2	99.08	98.33	104.65	101.85	
C3	73.12	72.21	85.26	80.64	
C4	74.85	72.39	78.69	77.17	
C5	68.74	71.79	85.32	83.78	
C6	65.80	66.68	63.63	64.76	
C7	n.r.	67.00	66.76	66.85	
C8	n.r.	179.35	179.37	179.46	
C9 or C10	24.55	24.66	24.64	24.64	
C9 or C10	24.16	24.47	24.36	24.43	
					References
% for FruAib	3.0	75.6	10.1	10.4	This work
% for <i>D</i> -Fru	2.1	68.6	5.7	23.0	Kaufmann <i>et al.</i> , 2016
% for FruGly	5	66	15	14	Mossine <i>et al.</i> , 1994
% for FruAla	5.1	71.5	10.8	11.6	Kaufmann <i>et al.</i> , 2016
% for FruPro	4.2	64.8	12.9	16.9	Kaufmann <i>et al.</i> , 2016