

Received 11 November 2017 Accepted 5 December 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; titanium; η^4 -ketimine complex; half-sandwich complex.

CCDC reference: 1589353

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

Crystal structure of the η^4 -ketimine titanium complex (diphenylamido- κN){3-methyl-6-[(4methylphenyl)(phenylazanidyl)methylidene]cyclohexa-2,4-dien-1-yl- $\kappa^2 N$, C^1 }(η^5 -pentamethylcyclopentadienyl)titanium(IV)

Malte Fischer, Marc Schmidtmann and Rüdiger Beckhaus*

Institut für Chemie, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany. *Correspondence e-mail: ruediger.beckhaus@uni-oldenburg.de

The molecular structure of the title titanium(IV) half-sandwich complex, $[Ti(\eta^5-C_{10}H_{15})(\eta^4-C_{21}H_{19}N)(C_{12}H_{10}N)]$, shows a three-legged piano-stool geometry at the central Ti^{IV} atom, comprising of one pentamethylcyclopentadienyl ligand, one bidentate ketimine ligand in an η^4 -coordination mode and one monodentate diphenylamide ligand. Except for van der Waals forces, there are no significant intermolecular interactions in the crystal.

1. Chemical context

In the course of our recent investigations with respect to the unusual η^4 -coordination mode of the ketimine PhN=C(ptolyl)2 ligand in the coordination sphere of titanium (Fischer et al., 2017; Loose et al., 2014), the bonding situation of the ketimine ligand has been of great interest. This ligand is bonded with the nitrogen atom and one of the ortho-carbon atoms of one *para*-tolyl moiety to the central titanium(IV) atom, forming five-membered ring structures. Structural details based on the results of X-ray diffraction and of density functional theory calculations at the M06-2X level support the formulation of these complexes as non-classical monoazabutadiene complexes. However, the follow-up chemistry with various multiple bond substrates of the complexes with formulae $[(\eta^5 - Cp^{\#})Ti(\eta^4 - C_{21}H_{19}N)(Cl)]$ (# = H₅, Me₅) shows a hidden η^2 -imine reactivity to five-membered titanacycles (Fischer et al., 2017), being of high interest due to the importance of η^2 -bound imine titanium complexes in industrially relevant hydroaminoalkylation reaction of alkenes (for a recent review on hydroaminoalkylation reactions, see: Chong et al., 2014). In contrast, classical monoazabutadiene complexes (Manssen et al., 2017b; Scholz et al. 1998, 2004) show ring-enlargement reactions to seven-membered titanacycles, using similar substrates (Manssen et al., 2017a; Scholz et al., 1998). Moreover, the ligand framework of the non-classical monoazabutadiene complexes mentioned above is important for their unexpected reactivities. By derivatization of $[(\eta^5-Cp^*)Ti(\eta^4-C_{21}H_{19}N)(Cl)]$ with the dialkyl-substituted lithium amide LiN(Me)Cy, the formation of a titanadihydropyrrole is observed as a result of the 1,3-H-shift in the five-membered ring system in addition to the salt metathesis reaction (Fischer et al., 2017).

Here we report the synthesis and crystal structure of the title compound $(\eta^5-C_{10}H_{15})Ti(\eta^4-C_{21}H_{19}N)(C_{12}H_{10}N)$, **1**, synthesized by the reaction of $[(\eta^5-Cp^*)Ti(\eta^4-C_{21}H_{19}N)(Cl)]$ with the diaryl-substituted lithium amide LiNPh₂. Compound **1** maintains the η^4 -coordination mode of the ketimine ligand.

2. Structural commentary

Fig. 1 shows the molecular structure of complex 1 for which the η^4 -coordination mode of the ketimine ligand is clearly confirmed. The N1–C17 bond length [1.383 (3) Å] is significantly elongated compared to the free ketimine [1.283 (1) Å; Loose et al., 2014] and nearly identical to that of the starting complex $[(\eta^5 - Cp^*)Ti(\eta^4 - C_{21}H_{19}N)(Cl)]$ [1.393 (2) Å; (Loose et al., 2014], indicating single-bond character (March, 2007). The C17–C25 bond length [1.414 (4) Å] is significantly shortened in comparison to the free ketimine [1.497 (1) Å; Loose et al., 2014]. The sum of angles around C17 {N1-C17-C18 $[122.0 (2)^{\circ}] + N1 - C17 - C25 [117.0 (2)^{\circ}] + C18 - C17 - C25$ $[120.8 (2)^{\circ}] = 359.8^{\circ}$ indicates sp^2 -hybridization of this atom. Furthermore, localized C=C double bonds are found in the C25-C30 aromatic ring [C26-C27 = 1.356 (4), C28-C29 =1.355 (4) Å] in contrast to the well-balanced C--C distances in the C18–C23 aromatic ring system ($\simeq 1.39$ Å). The central titanium(IV) atom is fourfold coordinated in a considerably distorted tetrahedral coordination environment, with N1-Ti1-N2 and N1-Ti1-C30 bond angles of 110.42 (9) and 84.23 (9)°, respectively. The Ti1-N1 bond length [1.963 (2) Å] is shorter than the Ti1-N2 bond length [2.009 (2) Å] and indicates weak $p_{\pi}-d_{\pi}$ electron donor interactions. The Ti1-C30 bond length [2.259 (3) Å] as well as the fold angle of the central five-membered ring system (60.6°) are similar to those in other reported monoazabutadiene complexes (Manssen et al., 2017b; Scholz et al., 1998, 2004). The influence of the η^4 -bonding mode of the ketimine ligand can be analysed by the difference $\Delta = [(Ti1-C17 + Ti1-$ C25)/2 - (Ti1 - N1 + Ti1 - C30)/2] = 0.386 Å (Scholz et al.,)1998). This value is in good agreement with the starting

The molecular structure of 1, with displacement ellipsoids at the 50% probability level. H atoms and phenyl groups of the diphenyl amido moiety have been omitted for clarity.

material (0.326 Å; Loose *et al.*, 2014) and other related complexes. The terms *prone* and *supine* are employed to describe the mode of the monoazadiene orientation in the envelope structure of $\mathbf{1}$, as summarized by Nakamura *et al.* (2001). Generally, for monoazabutadiene complexes *prone* and *supine* isomers are known. The molecular structure of $\mathbf{1}$ shows the *supine* isomer.

3. Supramolecular features

There are no significant supramolecular features in the crystal structure of **1**. The crystal packing, shown in Fig. 2, appears to be dominated by van der Waals interactions only.

research communications

Figure 2

A view along the c axis, showing the packing of the molecules in the crystal structure of complex 1. No significant supramolecular features can be observed. Colour code: C grey, H colourless, N blue and Ti turquoise spheres.

4. Synthesis and crystallization

All operations were carried out under a dry nitrogen atmosphere using Schlenk techniques or in a glove box. The η^4 ketimine complex $[(\eta^5-Cp^*)Ti(\eta^4-C_{21}H_{19}N)(Cl)]$ and lithium diphenyl amide were prepared according to published procedures (Fischer et al., 2017; Hatakeyama et al., 2012). Solvents were dried according to standard procedures over Na/K alloy with benzophenone as indicator and distilled under a nitrogen atmosphere.

 $[(\eta^5-Cp^*)Ti(\eta^4-C_{21}H_{19}N)(Cl)]$ (0.500 g, 0.992 mmol) and lithium diphenyl amide (0.174 g, 0.992 mmol) were dissolved in 12 ml of tetrahydrofuran. After stirring the reaction mixture for 16 h at room temperature, the solvent was evaporated in a vacuum. The residue was dissolved in 12 ml of toluene, filtered, and the precipitate of LiCl was washed with toluene $(2 \times 10 \text{ ml})$. The combined filtrates were evaporated in a vacuum and the residue was recrystallized from *n*-hexane to yield complex 1 as dark-red prisms in 15% crystalline yield.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Hydrogen atoms bonded to carbon atoms, with the exception of H30 bonded to the ortho-carbon atom that is bonded to titanium, were located from difference-Fourier maps but were subsequently fixed in idealized positions using appropriate riding models. Atom H30 was refined freely. The absolute structure was determined (Parsons et al., 2013) by using 3640 quotients.

Crystal data	
Chemical formula	$[Ti(C_{10}H_{15})(C_{21}H_{19}N)(C_{12}H_{10}N)]$
$M_{ m r}$	636.70
Crystal system, space group	Tetragonal, $P\overline{4}2_1c$
Temperature (K)	100
a, c (Å)	20.0633 (4), 16.8156 (4)
$V(Å^3)$	6768.9 (3)
Z	8
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.29
Crystal size (mm)	$0.40 \times 0.14 \times 0.14$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.832, 1.000
No. of measured, independent and	152032, 9906, 8703
observed $[I > 2\sigma(I)]$ reflections	· · ·
Rint	0.093
$(\sin \theta / \lambda)_{max} (\dot{A}^{-1})$	0.704
(chi chi)max (c c)	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.110, 1.07
No. of reflections	9906
No. of parameters	426
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.65, -0.53
Absolute structure	Flack x determined using 3640
	quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$
	(Parsons et al., 2013)

Absolute structure parameter

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT (Sheldrick. 2015a). SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2006) and publCIF (Westrip, 2010).

0.003(8)

References

Table 1

Experimental details.

- Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chong, E., Garcia, P. & Schafer, L. L. (2014). Synthesis, pp. 305-306.
- Fischer, M., Schmidtmann, M. & Beckhaus, R. (2017). Organometallics, doi: 10.1021/acs. organomet. 7b00673.
- Hatakeyama, T., Imayoshi, R., Yoshimoto, Y., Ghorai, S. K., Jin, M., Takaya, H., Norisuye, K., Sohrin, Y. & Nakamura, M. (2012). J. Am. Chem. Soc. 134, 20262-20265.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Loose, F., Plettenberg, I., Haase, D., Saak, W., Schmidtmann, M., Schäfer, A., Müller, T. & Beckhaus, R. (2014). Organometallics, 33, 6785-6795
- Manssen, M., Kahrs, C., Töben, I., Bölte, J.-H., Schmidtmann, M. & Beckhaus, R. (2017a). Chem. Eur. J. 23, 15827-15833.
- Manssen, M., Töben, I., Kahrs, C., Bölte, J.-H., Schmidtmann, M. & Beckhaus, R. (2017b). Organometallics, 36, 2973-2981.
- March, J. (2007). Advanced Organic Chemistry, 6th ed., p. 43. New York: John Wiley & Sons.
- Nakamura, A. & Mashima, K. (2001). J. Organomet. Chem. 621, 224-230.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.

- Scholz, J., Kahlert, S. & Görls, H. (1998). Organometallics, 17, 2876–2884.
- Scholz, J., Kahlert, S. & Görls, H. (2004). Organometallics, 23, 1594– 1603.

Sheldrick, G. M. (2015*a*). *Acta Cryst.* A**71**, 3–8. Sheldrick, G. M. (2015*b*). *Acta Cryst.* C**71**, 3–8. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.

Acta Cryst. (2018). E74, 34-37 [https://doi.org/10.1107/S2056989017017455]

Crystal structure of the η^4 -ketimine titanium complex (diphenylamido- κN){3methyl-6-[(4-methylphenyl)(phenylazanidyl)methylidene]cyclohexa-2,4-dien-1yl- $\kappa^2 N$, C^1 }(η^5 -pentamethylcyclopentadienyl)titanium(IV)

Malte Fischer, Marc Schmidtmann and Rüdiger Beckhaus

Computing details

Data collection: *APEX2* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2015); data reduction: *SAINT* (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $(Diphenylamido-\kappa N){3-methyl-6-[(4-methylphenyl)(phenylazanidyl)methylidene]cyclohexa-2,4-dien-1-yl-\kappa^2 N, C^1}{(\eta^5-pentamethylcyclopentadienyl)titanium(IV)}$

Crystal data

$[Ti(C_{10}H_{15})(C_{21}H_{19}N)(C_{12}H_{10}N)]$
$M_r = 636.70$
Tetragonal, $P\overline{4}2_1c$
a = 20.0633 (4) Å
c = 16.8156 (4) Å
V = 6768.9 (3) Å ³
Z = 8
F(000) = 2704

Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed tube φ and ω scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.832$, $T_{\max} = 1.000$ 152032 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.110$ S = 1.079906 reflections 426 parameters 0 restraints $D_x = 1.250 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9899 reflections $\theta = 2.3-27.7^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 100 KTetragonal prism, dark red $0.40 \times 0.14 \times 0.14 \text{ mm}$

9906 independent reflections 8703 reflections with $I > 2\sigma(I)$ $R_{int} = 0.093$ $\theta_{max} = 30.0^{\circ}, \ \theta_{min} = 1.4^{\circ}$ $h = -28 \rightarrow 28$ $k = -28 \rightarrow 28$ $l = -23 \rightarrow 23$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map

H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_o^2) + (0.060P)^2 + 2.P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.65 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.53 \text{ e } \text{Å}^{-3}$

Special details

Absolute structure: Flack *x* determined using 3640 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.003 (8)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ti1	0.25521 (2)	0.77115 (2)	0.52922 (3)	0.01349 (10)	
N1	0.33928 (10)	0.74376 (11)	0.57924 (12)	0.0165 (4)	
N2	0.26913 (11)	0.85300 (10)	0.46239 (13)	0.0165 (4)	
C1	0.24245 (13)	0.67486 (13)	0.44812 (15)	0.0183 (5)	
C2	0.19622 (13)	0.72333 (13)	0.41991 (16)	0.0191 (5)	
C3	0.14749 (12)	0.73412 (12)	0.47990 (15)	0.0173 (5)	
C4	0.16372 (13)	0.69257 (13)	0.54563 (15)	0.0175 (5)	
C5	0.22181 (12)	0.65600 (12)	0.52647 (16)	0.0178 (5)	
C6	0.29283 (15)	0.63923 (15)	0.39780 (19)	0.0265 (6)	
H6A	0.3143	0.6711	0.3619	0.040*	
H6B	0.2705	0.6046	0.3665	0.040*	
H6C	0.3266	0.6187	0.4321	0.040*	
C7	0.19600 (15)	0.75307 (16)	0.33785 (16)	0.0257 (6)	
H7A	0.1748	0.7971	0.3395	0.039*	
H7B	0.1711	0.7239	0.3018	0.039*	
H7C	0.2420	0.7576	0.3189	0.039*	
C8	0.08424 (13)	0.77324 (14)	0.47078 (19)	0.0244 (5)	
H8A	0.0732	0.7948	0.5214	0.037*	
H8B	0.0480	0.7432	0.4554	0.037*	
H8C	0.0902	0.8073	0.4296	0.037*	
C9	0.12056 (15)	0.68160 (15)	0.61720 (18)	0.0249 (6)	
H9A	0.1486	0.6780	0.6647	0.037*	
H9B	0.0950	0.6404	0.6104	0.037*	
H9C	0.0899	0.7192	0.6233	0.037*	
C10	0.25101 (16)	0.60119 (14)	0.57619 (18)	0.0255 (6)	
H10A	0.2971	0.5929	0.5595	0.038*	
H10B	0.2246	0.5605	0.5693	0.038*	
H10C	0.2504	0.6144	0.6323	0.038*	
C11	0.38873 (12)	0.69317 (13)	0.58313 (16)	0.0160 (5)	
C12	0.40136 (14)	0.66049 (14)	0.65474 (17)	0.0212 (5)	
H12	0.3775	0.6728	0.7013	0.025*	
C13	0.44865 (15)	0.61008 (15)	0.65820 (19)	0.0255 (6)	
H13	0.4564	0.5873	0.7068	0.031*	
C14	0.48470 (14)	0.59293 (14)	0.5909 (2)	0.0259 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H14	0.5173	0.5587	0.5934	0.031*
C15	0.47305 (14)	0.62589 (14)	0.51979 (19)	0.0236 (6)
H15	0.4982	0.6146	0.4739	0.028*
C16	0.42487 (13)	0.67536 (13)	0.51536 (16)	0.0196 (5)
H16	0.4164	0.6971	0.4662	0.024*
C17	0.34882 (13)	0.80236 (13)	0.62103 (16)	0.0184 (5)
C18	0.41617 (13)	0.83181 (13)	0.63272 (16)	0.0167 (5)
C19	0.46455 (13)	0.83115 (13)	0.57330 (15)	0.0188 (5)
H19	0.4554	0.8096	0.5242	0.023*
C20	0.52607 (14)	0.86168 (14)	0.58502 (17)	0.0216 (5)
H20	0.5584	0.8606	0.5437	0.026*
C21	0.54113 (14)	0.89386 (14)	0.65630 (17)	0.0214 (5)
C22	0.49367 (14)	0.89274 (15)	0.71652 (17)	0.0227 (6)
H22	0.5033	0.9132	0.7661	0.027*
C23	0.43237 (14)	0.86209 (14)	0.70517 (17)	0.0207 (5)
H23	0.4009	0.8617	0.7473	0.025*
C24	0.60631 (16)	0.93054 (18)	0.6678 (2)	0.0332 (7)
H24A	0.6385	0.9155	0.6278	0.050*
H24B	0.6237	0.9213	0.7211	0.050*
H24C	0.5989	0.9786	0.6618	0.050*
C25	0.29109 (13)	0.83635 (13)	0.64712 (15)	0.0166 (5)
C26	0.29111 (14)	0.90781 (13)	0.65934 (16)	0.0194 (5)
H26	0.3302	0.9327	0.6480	0.023*
C27	0.23609 (15)	0.93964 (14)	0.68677 (17)	0.0236 (6)
H27	0.2377	0.9866	0.6940	0.028*
C28	0.17566 (14)	0.90498 (16)	0.70515 (17)	0.0238 (6)
C29	0.17200 (14)	0.83910 (16)	0.68804 (16)	0.0220 (5)
H29	0.1320	0.8156	0.6993	0.026*
C30	0.22712 (13)	0.80375 (14)	0.65334 (17)	0.0203 (5)
H30	0.2255 (16)	0.7539 (16)	0.6633 (19)	0.018 (8)*
C31	0.11923 (16)	0.94261 (18)	0.7438 (2)	0.0341 (7)
H31A	0.1344	0.9613	0.7945	0.051*
H31B	0.0819	0.9122	0.7534	0.051*
H31C	0.1047	0.9788	0.7086	0.051*
C32	0.33448 (13)	0.86856 (13)	0.43620 (16)	0.0181 (5)
C33	0.37170 (14)	0.82304 (15)	0.39128 (15)	0.0206 (5)
H33	0.3531	0.7811	0.3774	0.025*
C34	0.43614 (14)	0.83944 (17)	0.36691 (17)	0.0259 (6)
H34	0.4613	0.8082	0.3368	0.031*
C35	0.46377 (15)	0.90029 (17)	0.38585 (19)	0.0284 (6)
H35	0.5076	0.9112	0.3687	0.034*
C36	0.42683 (15)	0.94556 (16)	0.4303 (2)	0.0280 (6)
H36	0.4457	0.9875	0.4438	0.034*
C37	0.36303 (14)	0.93018 (14)	0.45505 (18)	0.0229 (6)
H37	0.3383	0.9617	0.4851	0.028*
C38	0.22008 (13)	0.89928 (12)	0.43968 (15)	0.0159 (5)
C39	0.16483 (13)	0.91041 (13)	0.48870 (16)	0.0192 (5)
Н39	0.1619	0.8885	0.5386	0.023*

C40	0.11412 (14)	0.95335 (14)	0.46488 (19)	0.0234 (5)
H40	0.0763	0.9595	0.4981	0.028*
C41	0.11815 (15)	0.98732 (15)	0.39313 (18)	0.0244 (6)
H41	0.0833	1.0164	0.3770	0.029*
C42	0.17374 (15)	0.97823 (14)	0.34527 (17)	0.0229 (5)
H42	0.1774	1.0023	0.2968	0.027*
C43	0.22390 (14)	0.93457 (13)	0.36723 (16)	0.0198 (5)
H43	0.2612	0.9283	0.3332	0.024*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ti1	0.0154 (2)	0.01400 (19)	0.01109 (17)	-0.00003 (14)	-0.00026 (16)	0.00082 (16)
N1	0.0164 (9)	0.0204 (10)	0.0127 (9)	0.0021 (8)	0.0002 (8)	-0.0009 (8)
N2	0.0169 (9)	0.0170 (9)	0.0156 (10)	-0.0011 (8)	-0.0004 (8)	0.0026 (8)
C1	0.0196 (12)	0.0190 (11)	0.0165 (11)	-0.0002 (9)	0.0006 (9)	-0.0032 (9)
C2	0.0232 (12)	0.0206 (12)	0.0135 (11)	-0.0013 (10)	-0.0028 (10)	-0.0017 (10)
C3	0.0177 (11)	0.0177 (11)	0.0164 (11)	-0.0027 (9)	-0.0017 (9)	-0.0027 (9)
C4	0.0192 (11)	0.0173 (11)	0.0160 (12)	-0.0052 (9)	0.0008 (9)	-0.0005 (9)
C5	0.0205 (11)	0.0149 (10)	0.0179 (11)	-0.0033 (9)	-0.0027 (10)	-0.0004 (10)
C6	0.0247 (14)	0.0273 (14)	0.0274 (15)	0.0012 (11)	0.0028 (11)	-0.0112 (12)
C7	0.0323 (15)	0.0313 (15)	0.0136 (12)	-0.0039 (12)	-0.0032 (11)	0.0005 (11)
C8	0.0197 (12)	0.0237 (12)	0.0296 (14)	0.0013 (10)	-0.0030 (12)	-0.0043 (12)
C9	0.0267 (14)	0.0287 (14)	0.0194 (13)	-0.0088 (11)	0.0063 (11)	-0.0003 (11)
C10	0.0305 (14)	0.0181 (12)	0.0279 (14)	-0.0017 (11)	-0.0062 (12)	0.0037 (11)
C11	0.0151 (11)	0.0166 (11)	0.0161 (11)	-0.0006 (9)	-0.0016 (9)	-0.0023 (9)
C12	0.0219 (13)	0.0221 (13)	0.0196 (12)	0.0003 (10)	-0.0024 (10)	0.0001 (10)
C13	0.0254 (14)	0.0212 (13)	0.0300 (15)	0.0004 (11)	-0.0085 (12)	0.0039 (11)
C14	0.0198 (13)	0.0180 (12)	0.0399 (17)	0.0018 (10)	-0.0038 (12)	-0.0043 (12)
C15	0.0212 (12)	0.0221 (12)	0.0276 (15)	-0.0021 (10)	0.0033 (11)	-0.0081 (11)
C16	0.0204 (12)	0.0218 (12)	0.0167 (13)	0.0004 (9)	0.0004 (10)	-0.0040 (10)
C17	0.0166 (11)	0.0199 (12)	0.0188 (12)	-0.0003 (9)	-0.0004 (10)	-0.0005 (10)
C18	0.0168 (11)	0.0162 (11)	0.0170 (12)	0.0001 (9)	0.0013 (9)	0.0000 (9)
C19	0.0219 (12)	0.0215 (12)	0.0131 (11)	0.0005 (10)	0.0007 (10)	-0.0008 (10)
C20	0.0206 (12)	0.0253 (13)	0.0188 (12)	-0.0009 (10)	0.0056 (10)	-0.0014 (11)
C21	0.0190 (12)	0.0220 (12)	0.0231 (13)	-0.0008 (10)	0.0026 (11)	-0.0042 (11)
C22	0.0227 (13)	0.0279 (14)	0.0176 (12)	-0.0010 (11)	0.0009 (11)	-0.0067 (11)
C23	0.0206 (13)	0.0238 (13)	0.0175 (13)	0.0003 (10)	0.0026 (10)	-0.0028 (10)
C24	0.0207 (14)	0.0389 (18)	0.0401 (19)	-0.0081 (12)	0.0040 (13)	-0.0120 (15)
C25	0.0182 (11)	0.0198 (12)	0.0120 (11)	-0.0008 (9)	0.0000 (9)	0.0007 (9)
C26	0.0208 (12)	0.0193 (12)	0.0179 (12)	-0.0009 (9)	-0.0010 (10)	0.0001 (10)
C27	0.0260 (14)	0.0214 (12)	0.0235 (13)	0.0049 (11)	-0.0050 (11)	-0.0060 (10)
C28	0.0216 (13)	0.0356 (16)	0.0142 (12)	0.0077 (11)	-0.0013 (10)	-0.0070 (11)
C29	0.0173 (12)	0.0330 (15)	0.0156 (12)	0.0003 (10)	0.0015 (10)	-0.0011 (11)
C30	0.0185 (11)	0.0215 (12)	0.0210 (13)	-0.0004 (10)	0.0003 (10)	0.0007 (10)
C31	0.0248 (15)	0.0434 (19)	0.0342 (17)	0.0030 (13)	0.0025 (13)	-0.0174 (15)
C32	0.0177 (12)	0.0214 (12)	0.0154 (12)	0.0002 (9)	-0.0008 (9)	0.0051 (10)
C33	0.0231 (13)	0.0270 (13)	0.0119 (11)	0.0014 (10)	-0.0018 (10)	0.0019 (10)

C34	0.0209 (13)	0.0418 (17)	0.0150 (12)	0.0050 (12)	0.0000 (10)	0.0056 (12)
C35	0.0194 (13)	0.0415 (17)	0.0243 (14)	-0.0005 (12)	0.0009 (11)	0.0130 (13)
C36	0.0224 (13)	0.0272 (15)	0.0345 (17)	-0.0062 (11)	-0.0035 (12)	0.0108 (13)
C37	0.0208 (12)	0.0207 (12)	0.0272 (15)	0.0009 (10)	-0.0002 (11)	0.0029 (11)
C38	0.0180 (11)	0.0143 (10)	0.0154 (11)	-0.0016 (9)	-0.0013 (9)	0.0003 (9)
C39	0.0205 (12)	0.0179 (12)	0.0192 (13)	-0.0010 (9)	0.0029 (10)	0.0034 (9)
C40	0.0212 (12)	0.0230 (12)	0.0259 (14)	0.0009 (10)	0.0029 (11)	0.0020 (12)
C41	0.0234 (13)	0.0237 (13)	0.0262 (14)	0.0048 (11)	-0.0050 (11)	0.0014 (11)
C42	0.0302 (14)	0.0221 (13)	0.0164 (12)	0.0018 (11)	-0.0020 (11)	0.0018 (10)
C43	0.0239 (13)	0.0203 (12)	0.0152 (12)	0.0008 (10)	0.0005 (10)	0.0008 (9)

Geometric parameters (Å, °)

Ti1—N1	1.963 (2)	C17—C18	1.488 (4)	
Ti1—N2	2.009 (2)	C18—C19	1.393 (4)	
Ti1-C30	2.259 (3)	C18—C23	1.400 (4)	
Til—C1	2.379 (3)	C19—C20	1.392 (4)	
Ti1—C2	2.387 (3)	C19—H19	0.9500	
Til—C5	2.406 (2)	C20—C21	1.394 (4)	
Til—C3	2.431 (2)	C20—H20	0.9500	
Til—C4	2.435 (3)	C21—C22	1.390 (4)	
Til—C25	2.482 (3)	C21—C24	1.513 (4)	
Til—C17	2.511 (3)	C22—C23	1.388 (4)	
N1-C17	1.383 (3)	C22—H22	0.9500	
N1-C11	1.421 (3)	С23—Н23	0.9500	
N2-C38	1.406 (3)	C24—H24A	0.9800	
N2-C32	1.418 (3)	C24—H24B	0.9800	
C1—C2	1.425 (4)	C24—H24C	0.9800	
C1—C5	1.432 (4)	C25—C30	1.444 (4)	
C1—C6	1.500 (4)	C25—C26	1.448 (4)	
С2—С3	1.421 (4)	C26—C27	1.356 (4)	
С2—С7	1.503 (4)	C26—H26	0.9500	
C3—C4	1.422 (4)	C27—C28	1.432 (4)	
С3—С8	1.500 (4)	C27—H27	0.9500	
C4—C5	1.414 (4)	C28—C29	1.355 (4)	
С4—С9	1.499 (4)	C28—C31	1.508 (4)	
C5—C10	1.501 (4)	C29—C30	1.438 (4)	
С6—Н6А	0.9800	C29—H29	0.9500	
С6—Н6В	0.9800	C30—H30	1.01 (3)	
С6—Н6С	0.9800	C31—H31A	0.9800	
C7—H7A	0.9800	C31—H31B	0.9800	
С7—Н7В	0.9800	C31—H31C	0.9800	
C7—H7C	0.9800	C32—C37	1.399 (4)	
C8—H8A	0.9800	C32—C33	1.401 (4)	
C8—H8B	0.9800	C33—C34	1.396 (4)	
C8—H8C	0.9800	С33—Н33	0.9500	
С9—Н9А	0.9800	C34—C35	1.378 (5)	
С9—Н9В	0.9800	C34—H34	0.9500	

С9—Н9С	0.9800	C35—C36	1.390 (5)
C10—H10A	0.9800	C35—H35	0.9500
C10—H10B	0.9800	C36—C37	1.381 (4)
C10—H10C	0.9800	C36—H36	0.9500
C11—C12	1.394 (4)	С37—Н37	0.9500
C11—C16	1.397 (4)	C38—C39	1.399 (4)
C12—C13	1.388 (4)	C38—C43	1.411 (4)
С12—Н12	0.9500	C39—C40	1 392 (4)
C_{13} C_{14}	1 387 (5)	C39—H39	0.9500
С13—Н13	0.9500	C40-C41	1 388 (4)
C_{14}	1 386 (5)	C40-H40	0.9500
C14—H14	0.9500	C41 - C42	1.387(4)
C15 C16	1.387(4)	$C_{41} = C_{42}$	0.9500
C15 H15	1.387 (4)	C41—1141 C42— $C43$	1.384(4)
С15—1115	0.9500	C42 - C43	0.0500
C10 - H10	0.9300	$C42 - \Pi 42$	0.9300
C17—C25	1.414 (4)	С43—н43	0.9500
N1 T1 N2	110 42 (0)	C16 C11 N1	120.5(2)
$\frac{1}{1} \frac{1}{1} \frac{1}$	84.22 (0)	C10 $C12$ $C11$	120.3(2) 120.2(2)
N1 - 111 - C30	108.25(9)	C13 - C12 - C11	120.2 (3)
$N_2 - \Pi_1 - C_3 U$	108.53(9)	C13 - C12 - H12	119.9
NI - III - CI	90.30 (9)		119.9
$N_2 - I_1 - C_1$	110.98 (9)	C14-C13-C12	120.2 (3)
	137.58 (10)	C14—C13—H13	119.9
NI—III—C2	130.03 (9)	C12—C13—H13	119.9
N2—Ti1—C2	88.09 (9)	C15—C14—C13	119.9 (3)
C30—Ti1—C2	134.76 (10)	C15—C14—H14	120.1
C1—Ti1—C2	34.80 (9)	C13—C14—H14	120.1
N1—Ti1—C5	88.78 (9)	C14—C15—C16	120.3 (3)
N2—Ti1—C5	144.36 (9)	C14—C15—H15	119.8
C30—Ti1—C5	103.08 (10)	C16—C15—H15	119.8
C1—Ti1—C5	34.82 (9)	C15—C16—C11	120.0 (3)
C2—Ti1—C5	57.40 (9)	C15—C16—H16	120.0
N1—Ti1—C3	145.52 (9)	C11—C16—H16	120.0
N2—Ti1—C3	100.51 (9)	N1—C17—C25	117.0 (2)
C30—Ti1—C3	100.49 (9)	N1—C17—C18	122.0 (2)
C1—Ti1—C3	57.35 (9)	C25—C17—C18	120.8 (2)
C2—Ti1—C3	34.29 (9)	N1—C17—Ti1	51.10 (12)
C5—Ti1—C3	56.80 (9)	C25—C17—Ti1	72.43 (15)
N1—Ti1—C4	114.69 (9)	C18—C17—Ti1	149.29 (19)
N2—Ti1—C4	134.20 (9)	C19—C18—C23	117.8 (2)
C30-Ti1-C4	83 96 (9)	C19—C18—C17	122.3(2)
C1-Ti1-C4	57 18 (9)	C^{23} C^{18} C^{17}	1122.3(2) 119.9(2)
C_2 —Ti1—C4	56.87 (9)	C_{20} C_{19} C_{18}	120.8(2)
C_{5} Ti1 C_{4}	33.96 (8)	$C_{20} - C_{19} - H_{19}$	119.6
C_3 _Ti1_ C_4	33,00 (0)	C18 $C10$ $H10$	110.6
$N1_{Ti1_{C25}}$	63 65 (0)	C10 - C20 - C21	117.0
$N_{1} = 111 = 0.25$	88 61 (0)	$C_{19} = C_{20} = C_{21}$	121.2(2)
$N_2 - 111 - 0.25$	00.01(9)	$C_{19} - C_{20} - \Pi_{20}$	119.4
C30—111—C23	33.07 (9)	UZI-UZU-HZU	119.4

C1—Ti1—C25	156.53 (9)	C22—C21—C20	118.1 (3)
C2—Ti1—C25	166.07 (9)	C22—C21—C24	120.5 (3)
C5—Ti1—C25	127.03 (9)	C20—C21—C24	121.5 (3)
C3—Ti1—C25	133.74 (9)	C23—C22—C21	120.9 (3)
C4—Ti1—C25	117.99 (8)	С23—С22—Н22	119.5
N1—Ti1—C17	33.24 (9)	C21—C22—H22	119.5
N2—Ti1—C17	92.07 (9)	C22—C23—C18	121.2 (3)
C30—Ti1—C17	63.01 (9)	C22—C23—H23	119.4
C1—Ti1—C17	129.47 (9)	C18—C23—H23	119.4
C2—Ti1—C17	160.82 (9)	C21—C24—H24A	109.5
C5—Ti1—C17	117 37 (9)	C21—C24—H24B	109.5
C3—Ti1—C17	162.00 (9)	H24A—C24—H24B	109.5
C4—Ti1—C17	130.97 (9)	C_{21} C_{24} H_{24} H_{24} C_{24} H_{24} H	109.5
C_{25} Ti1-C17	32.90 (8)	$H_{24} - C_{24} - H_{24}C$	109.5
C17 - N1 - C11	119 2 (2)	$H_2H_1 = C_2 + H_2 + C_2$	109.5
C17 - N1 - Til	95 66 (16)	C_{17} C_{25} C_{30}	109.5 122.1(2)
C11—N1—Ti1	145.04 (18)	$C_{17} = C_{25} = C_{26}$	122.1(2) 121.4(2)
C_{38} N2 C_{32}	114.7(2)	C_{30} C_{25} C_{20} C_{20}	121.4(2) 1160(2)
$C_{38} N_{2} T_{11}$	114.7(2) 126 47 (17)	$C_{20} = C_{20} = C_{20}$	74 67 (15)
C_{32} N2 Til	120.47(17) 118.83(16)	C_{30} C_{25} T_{11}	63 98 (14)
$C_{2} = C_{1} = C_{5}$	107.4(2)	C_{26} C_{25} T_{11}	129 43 (18)
$C_2 - C_1 - C_6$	107.4(2) 125.2(2)	$C_{20} = C_{20} = C_{20}$	129.43(10) 120.9(3)
$C_{2} - C_{1} - C_{0}$	125.2(2) 126.0(2)	$C_{27} = C_{20} = C_{23}$	120.9 (3)
$C_2 = C_1 = C_0$	72.04(15)	$C_{27} = C_{20} = H_{20}$	119.5
$C_2 = C_1 = T_1$	72.94(13)	$C_{25} = C_{20} = M_{20}$	119.3 122.3(3)
C_{5}	120 66 (10)	$C_{20} = C_{27} = C_{28}$	122.3 (3)
C_{0}	129.00(19) 108.4(2)	$C_{20} = C_{27} = H_{27}$	118.9
$C_3 = C_2 = C_1$	106.4(2) 126.1(2)	$C_{20} = C_{27} = M_{27}$	110.9
$C_{3} = C_{2} = C_{7}$	120.1(2) 125.2(2)	$C_{29} = C_{28} = C_{27}$	110.5(3)
$C_1 = C_2 = C_1^2$	123.3(3) 74.52(15)	$C_{29} = C_{20} = C_{31}$	122.0(3)
$C_3 = C_2 = T_1^{-1}$	74.55 (15)	$C_{27} = C_{20} = C_{31}$	119.1(3)
C1 = C2 = T11	72.20(13)	$C_{28} = C_{29} = C_{30}$	121.7 (5)
C^{2}	123.27(19)	C28—C29—H29	119.1
$C_2 = C_3 = C_4$	107.7(2)	C30—C29—H29	119.1
$C_2 = C_3 = C_8$	120.1(2)	$C_{29} = C_{30} = C_{23}$	119.3 (2)
$C_4 - C_3 - C_8$	125.4(2)	$C_{29} = C_{30} = T_{11}$	135.2(2)
$C_2 = C_3 = T_1^{-1}$	/1.1/(14)	$C_{25} = C_{30} = 111$	80.95 (16)
C4 - C3 - 111	/3.1/(14)	C29—C30—H30	113.2 (19)
$C_8 = C_3 = 111$	128.83 (18)	C25—C30—H30	119.2 (19)
$C_{3} = C_{4} = C_{3}$	108.4 (2)	H11 - C30 - H30	82.8 (19)
C5—C4—C9	125.6 (2)	C28—C31—H31A	109.5
C3—C4—C9	125.3 (2)	C28—C31—H31B	109.5
C5—C4—Ti1	71.88 (14)	H31A—C31—H31B	109.5
C3-C4-Til	72.85 (14)	C28—C31—H31C	109.5
C9—C4—T11	128.42 (18)	H31A—C31—H31C	109.5
C4—C5—C1	108.1 (2)	H31B—C31—H31C	109.5
C4—C5—C10	125.1 (3)	C37/	118.7 (3)
C1—C5—C10	126.4 (2)	C37—C32—N2	120.2 (2)
C4—C5—Ti1	74.15 (14)	C33—C32—N2	121.1 (2)

C1—C5—Ti1	71.54 (14)	C34—C33—C32	119.9 (3)
C10—C5—Ti1	125.75 (18)	С34—С33—Н33	120.1
С1—С6—Н6А	109.5	С32—С33—Н33	120.1
C1—C6—H6B	109.5	C35—C34—C33	120.9 (3)
H6A—C6—H6B	109.5	С35—С34—Н34	119.5
C1—C6—H6C	109.5	С33—С34—Н34	119.5
H6A—C6—H6C	109.5	C34—C35—C36	119.2 (3)
H6B—C6—H6C	109.5	C34—C35—H35	120.4
C2-C7-H7A	109.5	C36—C35—H35	120.4
$C_2 - C_7 - H_7B$	109.5	C_{37} $-C_{36}$ $-C_{35}$	120.7(3)
H7A - C7 - H7B	109.5	C_{37} C_{36} H_{36}	110 7
$C_2 C_7 H_7C$	109.5	C_{35} C_{36} H_{36}	110.7
	109.5	$C_{35} = C_{30} = 1150$	119.7 120.6(3)
H/A - C / - H/C	109.5	$C_{30} - C_{37} - C_{32}$	120.0 (3)
H/B - C/ - H/C	109.5	$C_{30} = C_{37} = H_{37}$	119.7
$C_3 = C_8 = H_8 A$	109.5	$C_{32} = C_{37} = H_{37}$	119.7
	109.5	$C_{39} = C_{38} = N_2$	120.0 (2)
H8A—C8—H8B	109.5	039-038-043	118.1 (2)
C3—C8—H8C	109.5	N2-C38-C43	121.9 (2)
H8A—C8—H8C	109.5	C40—C39—C38	120.5 (2)
H8B—C8—H8C	109.5	С40—С39—Н39	119.7
С4—С9—Н9А	109.5	С38—С39—Н39	119.7
С4—С9—Н9В	109.5	C41—C40—C39	120.8 (3)
H9A—C9—H9B	109.5	C41—C40—H40	119.6
С4—С9—Н9С	109.5	C39—C40—H40	119.6
Н9А—С9—Н9С	109.5	C42—C41—C40	119.1 (3)
Н9В—С9—Н9С	109.5	C42—C41—H41	120.4
C5-C10-H10A	109.5	C40—C41—H41	120.4
C5-C10-H10B	109.5	C43—C42—C41	120.9 (3)
H10A—C10—H10B	109.5	C43—C42—H42	119.6
C5-C10-H10C	109.5	C41—C42—H42	119.6
H10A—C10—H10C	109.5	C42—C43—C38	120.6 (3)
H10B-C10-H10C	109.5	C42—C43—H43	119.7
C12-C11-C16	119 3 (2)	C_{38} — C_{43} —H43	119.7
C12 - C11 - N1	1202(2)		117.7
	120.2 (2)		
C_{5} C_{1} C_{2} C_{3}	-0.2(3)	N1 C17 C18 C23	-142.0(3)
$C_{5} - C_{1} - C_{2} - C_{3}$	166.8(3)	$C_{25} = C_{17} = C_{18} = C_{23}$	142.0(3)
$C_0 - C_1 - C_2 - C_3$	-66.24(18)	$C_{23} = C_{17} = C_{18} = C_{23}$	43.1(4)
111 - C1 - C2 - C3	-175.2(2)	111 - C17 - C18 - C23	-21(4)
$C_{3} = C_{1} = C_{2} = C_{7}$	-1/3.2(2)	C_{23} C_{10} C_{19} C_{20} C_{17} C_{18} C_{10} C_{20}	-2.1(4)
	-8.3(4)	C17 - C18 - C19 - C20	1/7.2 (3)
111 - C1 - C2 - C/	118.0(3)	C18 - C19 - C20 - C21	-0.1(4)
$C_{2} = C_{1} = C_{2} = 111$	00.13 (17)	C19 - C20 - C21 - C22	2.1 (4)
$C_0 - C_1 - C_2 - T_{11}$	-126.9(3)	C19 - C20 - C21 - C24	-176.4 (3)
C1—C2—C3—C4	0.3 (3)	C20—C21—C22—C23	-1.8 (4)
C7—C2—C3—C4	175.3 (2)	C24—C21—C22—C23	176.7 (3)
Til—C2—C3—C4	-64.51 (17)	C21—C22—C23—C18	-0.5 (4)
C1—C2—C3—C8	-170.3 (2)	C19—C18—C23—C22	2.4 (4)
C7—C2—C3—C8	4.7 (4)	C17—C18—C23—C22	-176.9 (3)

Ti1—C2—C3—C8	124.8 (3)	N1-C17-C25-C30	19.1 (4)
C1—C2—C3—Ti1	64.84 (18)	C18—C17—C25—C30	-165.8 (2)
C7—C2—C3—Ti1	-120.2 (3)	Ti1—C17—C25—C30	44.8 (2)
C2—C3—C4—C5	-0.3 (3)	N1-C17-C25-C26	-152.9 (2)
C8—C3—C4—C5	170.4 (2)	C18—C17—C25—C26	22.3 (4)
Ti1—C3—C4—C5	-63.53 (17)	Ti1—C17—C25—C26	-127.2 (2)
C2—C3—C4—C9	-171.5 (2)	N1—C17—C25—Ti1	-25.7 (2)
C8—C3—C4—C9	-0.7 (4)	C18—C17—C25—Til	149.4 (2)
Ti1—C3—C4—C9	125.3 (3)	C17—C25—C26—C27	-177.9 (3)
C2—C3—C4—Ti1	63.20 (18)	C30—C25—C26—C27	9.6 (4)
C8—C3—C4—Ti1	-126.1 (2)	Ti1—C25—C26—C27	86.3 (3)
C3—C4—C5—C1	0.2 (3)	C25—C26—C27—C28	0.1 (4)
C9—C4—C5—C1	171.3 (2)	C26—C27—C28—C29	-5.7 (4)
Ti1—C4—C5—C1	-63.95 (17)	C26—C27—C28—C31	173.3 (3)
C3-C4-C5-C10	-173.0 (2)	C27—C28—C29—C30	0.9 (4)
C9—C4—C5—C10	-1.9 (4)	C31—C28—C29—C30	-178.1 (3)
Ti1—C4—C5—C10	122.9 (3)	C28—C29—C30—C25	9.2 (4)
C3—C4—C5—Ti1	64.16 (17)	C28-C29-C30-Til	-98.8 (3)
C9—C4—C5—Ti1	-124.8 (3)	C17—C25—C30—C29	173.6 (2)
C2-C1-C5-C4	0.0 (3)	C26—C25—C30—C29	-14.1 (4)
C6-C1-C5-C4	-166.8 (3)	Ti1—C25—C30—C29	-137.3 (3)
Ti1—C1—C5—C4	65.66 (17)	C17—C25—C30—Ti1	-49.1 (2)
C2-C1-C5-C10	173.1 (2)	C26—C25—C30—Ti1	123.2 (2)
C6-C1-C5-C10	6.2 (4)	C38—N2—C32—C37	55.4 (3)
Ti1—C1—C5—C10	-121.3 (3)	Ti1—N2—C32—C37	-122.8 (2)
C2—C1—C5—Ti1	-65.66 (18)	C38—N2—C32—C33	-124.6 (3)
C6—C1—C5—Ti1	127.5 (3)	Ti1—N2—C32—C33	57.2 (3)
C17—N1—C11—C12	65.8 (3)	C37—C32—C33—C34	0.6 (4)
Ti1—N1—C11—C12	-119.8 (3)	N2-C32-C33-C34	-179.4 (2)
C17—N1—C11—C16	-114.5 (3)	C32—C33—C34—C35	-0.5 (4)
Ti1—N1—C11—C16	59.9 (4)	C33—C34—C35—C36	0.4 (4)
C16—C11—C12—C13	-1.0 (4)	C34—C35—C36—C37	-0.3 (5)
N1-C11-C12-C13	178.6 (2)	C35—C36—C37—C32	0.3 (5)
C11—C12—C13—C14	1.5 (4)	C33—C32—C37—C36	-0.5 (4)
C12—C13—C14—C15	-0.5 (4)	N2-C32-C37-C36	179.5 (3)
C13—C14—C15—C16	-0.9 (4)	C32—N2—C38—C39	-148.6 (2)
C14—C15—C16—C11	1.3 (4)	Ti1—N2—C38—C39	29.5 (3)
C12—C11—C16—C15	-0.4 (4)	C32—N2—C38—C43	32.7 (3)
N1—C11—C16—C15	180.0 (2)	Ti1—N2—C38—C43	-149.2 (2)
C11—N1—C17—C25	-151.1 (2)	N2-C38-C39-C40	-176.5 (2)
Ti1—N1—C17—C25	32.1 (2)	C43—C38—C39—C40	2.3 (4)
C11—N1—C17—C18	33.8 (4)	C38—C39—C40—C41	-1.7 (4)
Ti1—N1—C17—C18	-143.0 (2)	C39—C40—C41—C42	-0.3 (4)
C11—N1—C17—Ti1	176.8 (3)	C40—C41—C42—C43	1.8 (4)
N1-C17-C18-C19	38.7 (4)	C41—C42—C43—C38	-1.2 (4)
C25—C17—C18—C19	-136.2 (3)	C39—C38—C43—C42	-0.8 (4)
Ti1—C17—C18—C19	-27.9 (5)	N2-C38-C43-C42	177.9 (2)