

Received 3 October 2017 Accepted 7 December 2017

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; two-dimensional coordination polymers; Zn^{II}; one-dimensional coordination polymers; Cd^{II}; MOFs.

CCDC references: 1589668; 1589667

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

Assembly of Zn^{II} and Cd^{II} coordination polymers with different dimensionalities based on the semiflexible 3-(1*H*-benzimidazol-2-yl)propanoic acid ligand

Xiao-Yan Li, Yong-Qiong Peng, Juan Li, Wei-Wei Fu,* Yang Liu and Yu-Ming Li

Key Laboratory of Functional Organometallic Materials of General Colleges and Universities in Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China. *Correspondence e-mail: w.w.fu@hynu.edu.cn

Two new coordination polymers, namely, poly[[μ_3 -3-(1*H*-benzimidazol-2-yl)propionato]zinc(II)], [Zn(C₁₀H₈N₂O₂)]_n, (**1**), and poly[bis[μ_2 -3-(1*H*-benzimidazol-2-yl)propionato]cadmium(II)], [Cd(C₁₀H₈N₂O₂)₂]_n, (**2**) have been synthesized from 3-(1*H*-benzoimidazol-2-yl)propanoic acid ligands through a mixedligand synthetic strategy under a solvothermal environment, and studied by single-crystal X-ray diffraction. Complex **1** crystallizes in the orthorhombic space group *Pbca* and features a two-dimensional structure formed by a binuclear Zn₂O₄ core. Complex **2**, however, crystallizes in the monoclinic space group *P2*₁/*c* and forms a one-dimensional chain structure. The Zn^{II} and Cd^{II} ions have different coordination numbers and the 3-(1*H*-benzoimidazol-2-yl)propanoate ligands display different coordination modes. The structures reported here show the importance of the selection of metal ions and suitable ligands.

1. Chemical context

The structures of coordination polymers are strongly influenced by the organic ligands and metal ions and it is important to choose suitable ligands and metal ions under appropriate synthetic conditions to synthesize coordination complexes with interesting structures. The exploration of metal-organic frameworks (MOFs) have received much attention because of their intriguing architectures and wide range of potential applications in different fields (Castellanos et al., 2016; Zhang et al., 2016; Kumar et al., 2015; Liu et al., 2016; Müller-Buschbaum et al., 2015; Duerinck & Denayer, 2015; Mohan et al., 2015). The assembly of Zn^{II} (Jurcic et al., 2015; Karmakar et al., 2016a,b; Liang et al., 2016; Wannapaiboon et al., 2015; Ying et al., 2015) and Cd^{II} (Xiao et al., 2015, Wu et al., 2011, Hu et al., 2015, Cao et al., 2014, Zhang et al., 2015) ions with multidentate nitrogen-containing ligands has produced various MOFs with fascinating structures and luminescent properties. The selection of chelating or bridging organic linkers often favors a structure-specific assembly and the factors that govern the formation of such complexes are complicated and include not only the nature of the Zn^{II} and Cd^{II} ions and ligand structure but also anion-directed interactions as well as reaction conditions. In order to explore the coordination chemistry of this type of ligand, 3-(1H-benzimidazol-2-yl) propanoic acid (H₂BIP) was chosen in the present study to construct new coordination polymers. A two-

dimensional Zn^{II} polymer and a one-dimensional Cd^{II} coordination polymer have been obtained.

2. Structural commentary

Complex 1 crystallizes in the orthorhombic crystal system in the centrosymmetric space group *Pbca*. The 3-(1*H*-benzoimdazol-2-yl)propanonic acid ligand deprotonates completely when bonding to Zn^{II} ions. The asymmetric unit of 1 consists of one Zn^{II} ion and one 3-(1 λ^2 -benzoimidazol-2-yl)propanoate anion. Geometric parameters are given in Table 1. As shown in Fig. 1, the Zn^{II} ion has a tetrahedral ZnO₂N₂ environment completed by N2 from one 3-(1 λ^2 -benzoimidazol-2-yl)propanoate anion, O2($-x + \frac{3}{2}, y + \frac{1}{2}, z$) and N1($-x + \frac{3}{2}, y + \frac{1}{2}, z$) from the second 3-(1 λ^2 -benzoimidazol-2-yl)propanoate anion and O1($x - \frac{1}{2}, -y + \frac{1}{2}, -z$) from the third

Table 1

Selected geometric parameters (A, \circ) for 1 .						
$Zn1-O1^{i}$	1.9563 (16)	Zn1-N2	1.9661 (16)			
$Zn1-N1^{ii}$	1.9624 (18)	Zn1-O2 ⁱⁱ	2.0208 (17)			
01^{i} -Zn1-N1 ⁱⁱ	118.50 (7)	$O1^{i}-Zn1-O2^{ii}$	105.15 (6)			
01^{i} -Zn1-N2	106.84 (7)	$N1^{ii}-Zn1-O2^{ii}$	99.22 (6)			
$N1^{ii}$ -Zn1-N2	120.28 (7)	$N2-Zn1-O2^{ii}$	104.42 (6)			

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) $-x + \frac{3}{2}, y + \frac{1}{2}, z$.

Figure 1

The asymmetric unit of **1**, with additional symmetry-related atoms. The displacement ellipsoids are drawn at the 30% probability level [symmetry codes: (A) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z; (B) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, -z)].

3- $(1\lambda^2$ -benzoimidazol-2-yl)propanoate anion. All the Zn-N/ O bond distances [Zn-O: 1.9563 (16)–2.0208 (17) and Zn-N: 1.9624 (18)–1.9661 (16) Å] and the bond angles around Zn1 [99.22 (6)–120.28 (7)°] fall into the normal range. Each 3- $(1\lambda^2$ -benzoimidazol-2-yl)propanoate anion shows a tridentate chelating mode bridging three Zn^{II} ions with the Zn···Zn distances of 4.066 (1), 5.870 (2) and 6.965 (2) Å. Zn1 and the symmetry-related Zn1 forming the shortest distance are bridged by O1 and O2 to form a binuclear Zn₂ cluster. Adjacent clusters are connected by a Zn-N bond of 1.9661 (16) Å to generate 2D square-grid (4,4) layers (Fig. 2).

Figure 2 A perspective view of the 4-connected nodes in 1.

research communications

Figure 3 View of the three-dimensional framework of **1** formed by twodimensional undulating sheets and van der Waals forces.

As there are no classical hydrogen bonds in **1**, these layers are packed by normal van der Waals forces into an extended 3D framework (Fig. 3).

Complex 2 crystallizes in the monoclinic crystal system in the centrosymmetic space group $P2_1/c$. The 3-(1H-benzoimidazol-2-yl)propanonic acid ligands do not deprotonate completely when bonding to Cd^{II} ions. Geometric parameters are given in Table 2. As shown in Fig. 4, the Cd^{II} ion is fivecoordinated by N3 from one 3-(1H-benzoimidazol-2-yl)propanoate anion, N1(x, y - 1, z) from the second 3-(1Hbenzoimidazol-2-yl)propanoate anion, O1 from the third and O3(-x, -y, -z + 1) and O4(-x, -y, -z + 1) from the fourth. All the Cd-N/O bond distances [Cd-O: 2.285 (2)-2.362 (2) and Cd-N: 2.262 (3)-2.271 (3) Å] and the bond angles around Cd1 [55.44 (9)–146.52 (9) $^{\circ}$] fall into the normal range. A distance of 2.667 (2) Å between Cd1 and O2 indicates the existence of a weak interaction between them. Two HBIPanions connects two Cd^{II} ions with one bidentate carboxylate and one N atom forming end-to-end binuclear Cd₂ cluster with

Figure 4

The asymmetric unit of **2**, with additional symmetry-related atoms. The displacement ellipsoids are drawn at the 30% probability level [symmetry codes: (A) -x, -y, -z + 1; (B) x, y - 1, z].

Table 2	
Selected geometric paramet	ters (Å, °) for 2 .

Cd1-N1 ⁱ	2.262 (3)	Cd1-O3 ⁱⁱ	2.293 (2)
Cd1-N3	2.271 (3)	Cd1-O4 ⁱⁱ	2.362 (2)
Cd1-O1	2.285 (2)		
N1 ⁱ -Cd1-N3	103.73 (10)	O1-Cd1-O3 ⁱⁱ	144.01 (9)
N1 ⁱ -Cd1-O1	106.08 (9)	$N1^i$ -Cd1-O4 ⁱⁱ	146.52 (9)
N3-Cd1-O1	93.38 (9)	N3-Cd1-O4 ⁱⁱ	104.51 (10)
$N1^{i}$ -Cd1-O3 ⁱⁱ	100.41 (9)	$O1-Cd1-O4^{ii}$	89.85 (8)
N3-Cd1-O3 ⁱⁱ	103.63 (10)	$O3^{ii}$ -Cd1-O4 ⁱⁱ	55.44 (9)

Symmetry codes: (i) x, y - 1, z; (ii) -x, -y, -z + 1.

Table 3

Hydrogen-bond geometry (Å, °) for 2.

$N2 - H2A \cdots O2^{iii}$ 0.86 2.10 2.823 (4) 141	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N4 - \Pi 4A \cdots O1$ 0.80 2.05 2.802 (4) 101	$N2-H2A\cdotsO2^{iii}$ $N4-H4A\cdotsO1^{iv}$	0.86 0.86	2.10 2.03	2.823 (4) 2.862 (4)	141 161

Symmetry codes: (iii) -x + 1, -y + 1, -z + 1; (iv) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

a distance of 7.274 (1) Å. The other two HBIP⁻ anions act as bridges to join two neighboring binuclear Cd₂ clusters with one monodentate carboxylate and one N atom to generate 1D ladders along the *b*-axis direction (Fig. 5). In the crystal, N– $H \cdots O$ hydrogen bonds (Table 3) and $\pi - \pi$ interactions involving the imidazole rings and benzimidazole ring systems with centroid–centroid distances of 3.569 (2) and 3.838 (2) Å connect the 1D ladders along *a*- and *c*-axis directions into an extended 3D framework (Fig. 6). Although there are large potential voids within the 1D ladders (7.274 × 8.025 Å based on the distances of the Cd^{II} ions), they are interblocked by adjacent ladders.

3. Supramolecular features

The structures and the coordination modes of complexes **1** and **2** are quite different, which may be ascribed to a diverse metal coordination habit. The crystal structure of a Zn^{II} complex based on H₂BIP is reported for the first time. In a comparison with its counterparts based on similar benzoimidazole carboxylic acids ligands, benzimidazole-2-butanoic acid (H₂BIB) and 2-(1*H*-benzimidazol-2-ylthio)acetic acid (H₂BITA), the

Figure 5 A view of the one-dimensional ladders in 2.

Figure 6

A perspective view of the three-dimensional frameworks in 2 formed by one-dimensional ladders and N-H. O hydrogen bonds (Table 3). The hydrogen bonds are shown as dashed lines.

same coordination modes are found for **1** (μ_3 - κN ,O: κO ': kN'mode, μ_3 -BIP²⁻) and [Zn(BIB)]_n (μ_3 - κN ,O: κO ': kN' mode, μ_3 -BIB²⁻; Zhang *et al.*, 2015) and different coordination modes are found for 1 and $[Zn_2(HBITA)_4] \cdot (DMF)_2 \cdot (H_2O)_2$ (μ_2 - κN : κO mode, μ_2 -HBITA⁻ and μ_1 - κN , O mode, μ_1 -HBITA⁻; Yu et al., 2010), $[Zn_2(HBITA)_4]_n (\mu_2 - \kappa N: \kappa O \text{ mode},$ μ_2 -HBITA⁻; Yu *et al.*, 2010). Different dimensionalities, like 2D for 1, 3D for $[Zn(BIB)]_n$, 0D for $[Zn_2(HBITA)_4]$. $(DMF)_2 \cdot (H_2O)_2$ and 2D for $[Zn_2(HBITA)_4]_n$ are also found. Cd^{II} complexes based on H₂BIP have already been observed with the appropriate Et₃N reagent in a EtOH/H₂O mixed solvent. By selection of the EtOH/H2O mixed solvent without any basic reagent, complex 2 was obtained with a relatively simple coordination mode (μ_2 - κN : κO , O' mode, μ_2 -HBIP⁻) in comparison with diverse modes in {[Cd5Cl2(HBIP)4(-BIP)₂]·4DMF}_n (μ_2 - κN ,O: κO ,O' mode, μ_2 -HBIP⁻, μ_3 - κN ,O: $\kappa O, O': \kappa N' \text{ mode}, \mu_3\text{-BIP}^{2-}, \mu_3 - \kappa N, O: \kappa O, O': \kappa O' \text{ mode}, \mu_3$ -HBIP⁻; Zheng et al., 2012) and $[Cd_3(HBIP)_2(BIP)_2]_n (\mu_3$ - $\kappa N, O: \kappa O, O': \kappa O' \text{ mode}, \mu_3 \text{-BIP}^{2-}, \mu_4 \text{-} \kappa N, O: \kappa O: \kappa O': \kappa O'$ mode, μ_4 -HBIP⁻; Zheng et al., 2012). In comparison with its counterpart based on similar benzoimidazole carboxylic acids, H₂BIB, the same coordination modes are found for 2 and $[Cd(HBIB)_2]_n \cdot (H_2O)_n \quad (\mu_2 \cdot \kappa N: \kappa O, O' \text{ mode}, \mu_2 \cdot HBIB^-;$ Zhang et al., 2015). Different dimensionalities, such as 1D for **2**, 2D for $\{[Cd_5Cl_2(HBIP)_4(BIP)_2] \cdot 4DMF\}_n$, 1D for $[Cd_3(HBIP)_2 (BIP)_2]_n$ and 2D for $[Cd(HBIB)_2]_n \cdot (H_2O)_n$ were also found. The different coordination modes and dimensionalities show the important roles of spacer lengths and flexibilities of ligands. The crystal structures reported here and before show that ligands containing both flexible carboxylic and benzimidazole groups are suitable for the construction of coordination polymers with interesting structures, adopting diverse coordination modes. The significant effect of metal ions, spacer length and flexibility of ligands on the structural assemblies of such crystalline materials is critical to the assemblies of MOFs in some particular systems.

4. Database Survey

Complexes with benzimidazole-based carboxylic acid, for example, 1*H*-benzimidazole-2-carboxylic acid (Xia *et al.*, 2013; Qiao *et al.*, 2013; Małecki & Maroń, 2012; Machura *et al.*, 2014; Fernández *et al.*, 2016) and 3-(1*H*-benzimidazole-2-yl) propanoic acid (Liu *et al.*, 2015) have been reported. A limited number of coordination polymers constructed from 3-(1*H*-benzimidazol-2-yl) propanoic acid (H₂BIP) have been reported including $[Cd_3(HBIP)_2(BIP)_2]_n$ and $[Cd_5Cl_2(BIP)_4$ (BIP)₂]_n (Zheng *et al.*, 2012). $[Cd_3(HBIP)_2(BIP)_2]_n$ presents a fascinating one-dimensional structure with helical character, made of four helical chains weaving together in two reverse orientations. $[Cd_5Cl_2(BIP)_4(BIP)_2]$ exhibits a distinct (4,4) network and infinite pentanuclear secondary building units.

research communications

Table 4Experimental details.

	1	2
Crystal data		
Chemical formula	$[Zn(C_{10}H_8N_2O_2)]$	$[Cd(C_{10}H_8N_2O_2)_2]$
M_r	253.55	490.79
Crystal system, space group	Orthorhombic, Pbca	Monoclinic, $P2_1/c$
Temperature (K)	296	293
a, b, c (Å)	8.956 (4), 10.697 (5), 20.331 (9)	13.6708 (6), 8.0253 (3), 17.3834 (7)
α, β, γ (°)	90, 90, 90	90, 100.972 (4), 90
$V(\dot{A}^3)$	1947.8 (15)	1872.31 (13)
Ζ	8	4
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	2.50	1.20
Crystal size (mm)	$0.28 \times 0.25 \times 0.21$	$0.28 \times 0.25 \times 0.19$
Data collection		
Diffractometer	Bruker SMART CCD area-detector	Bruker SMART CCD area-detector
Absorption correction	Multi-scan (SADABS; Bruker, 2012)	Multi-scan (SADABS; Bruker, 2012)
T_{\min}, T_{\max}	0.541, 0.622	0.923, 1.000
No. of measured, independent and	9832, 1725, 1525	6654, 3289, 2685
observed $[I > 2\sigma(I)]$ reflections		
R _{int}	0.046	0.029
$(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$	0.595	0.595
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.063, 1.03	0.031, 0.064, 1.06
No. of reflections	1725	3289
No. of parameters	136	262
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.29, -0.56	0.33, -0.48

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

5. Synthesis and crystallization

3-(1H-Benzimidazol-2-yl)propanoic acid (H₂BIP) was prepared by a literature method (Delval *et al.*, 2008). Other reagents and solvents used in the reactions were purchased from Aladdin-Chemical and used without purification.

5.1. Preparation of 1

H₂BIP (0.02 mmol, 0.038 g) and $Zn(NO_3)_2 \cdot 6H_2O$ (0.2 mmol, 0.060 g) were dissolved in EtOH/H₂O (1:1 ν/ν , 8 ml) mixed solvent. The mixture was sealed in a closed vessel and heated at 413 K for 72 h; the mixture was then cooled slowly to room temperature at a rate of 2 K h⁻¹. Many paleyellow block-shaped crystals were collected.

5.2. Preparation of 2

H₂BIP (0.02 mmol, 0.038 g), Cd(CH₃COO)₂·2H₂O (0.2mmol, 0.053 g) were dissolved in EtOH/H₂O (1:1 ν/ν , 8 ml) mixed solvent. The mixture was sealed in a closed vessel and heated at 413 K for 72 h; the mixture was then cooled slowly to room temperature at a rate of 2 K h⁻¹. Many brown prismatic crystals were collected.

5.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms on N atoms were found in the difference-Fourier map and were refined isotropically while restraining the N–H distances to 0.86 Å. Other H atoms were generated geometrically and were allowed to ride on their parent atoms in the riding-model approximation, with C–H = 0.93 Å, $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})({\rm aromatic})$ and C–H = 0.97 Å, $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})$ for methyl hydrogen atoms.

Funding information

Financial support by the Key Discipline Project of Hunan Province, the Open Fund of Key Laboratory of Functional Organometallic Materials of Hunan Province College, Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province and the Scientific Research Fund of Hunan Provincial Education Department (**16B037**) and Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education (CHCL16002) are gratefully acknowledged.

References

- Brandenburg, K. (2008). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2012). APEX2, SADABS, SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.
- Cao, T. T., Peng, Y. Q., Liu, T., Wang, S. N., Dou, J. M., Li, Y. W., Zhou, C. H., Li, D. C. & Bai, J. F. (2014). *CrystEngComm*, 16, 10658– 10673.

- Castellanos, S., Goulet-Hanssens, A., Zhao, F. L., Dikhtiarenko, A., Pustovarenko, A., Hecht, S., Gascon, J., Kapteijn, F. & Bléger, D. (2016). *Chem. Eur. J.* 22, 746–752.
- Delval, F., Spyratou, A., Verdan, S., Bernardinelli, G. & Williams, A. F. (2008). *New J. Chem.* **32**, 1394–1402.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Duerinck, T. & Denayer, J. F. M. (2015). Chem. Eng. Sci. 124, 179-187.
- Fernández, B., Gómez-Vílchez, A., Sánchez-González, C., Bayón, J., San Sebastián, E., Gómez-Ruiz, S., López-Chaves, C., Aranda, P., Llopis, J. & Rodríguez-Diéguez, A. (2016). New J. Chem. 40, 5387– 5393.
- Hu, Y. J., Yang, J., Liu, Y. Y., Song, S. Y. & Ma, J. F. (2015). Cryst. Growth Des. 15, 3822–3831.
- Jurcic, M., Peveler, W. J., Savory, C. N., Scanlon, D. O., Kenyon, A. J. & Parkin, I. P. (2015). J. Mater. Chem. A, 3, 6351–6359.
- Karmakar, A., Martins, L., Hazra, S., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016a). Cryst. Growth Des. 16, 1837–1849.
- Karmakar, A., Rúbio, G., Guedes da Silva, M. F. C., Ribeiro, A. P. C. & Pombeiro, A. J. L. (2016b). RSC Adv. 6, 89007–89018.
- Kumar, P., Deep, A. & Kim, K. H. (2015). *TrAC Trends Anal. Chem.* **73**, 39–53.
- Liang, F.-L., Ma, D.-Y. & Qin, L. (2016). Acta Cryst. C72, 373-378.
- Liu, X. B., Lin, H., Xiao, Z. Y., Fan, W. D., Huang, A., Wang, R. M., Zhang, L. L. & Sun, D. F. (2016). *Dalton Trans.* **45**, 3743–3749.
- Liu, Z., Zheng, S. & Feng, S. (2015). Acta Cryst. E71, m5-m6.
- Machura, B., Wolff, M., Benoist, E., Schachner, J. A., Mösch-Zanetti, N. C., Takao, K. & Ikeda, Y. (2014). *Polyhedron*, **69**, 205–218.

- Małecki, J. G. & Maroń, A. (2012). Polyhedron, 40, 125-133.
- Mohan, B., Yoon, C., Jang, S. & Park, K. H. (2015). *ChemCatChem*, 7, 405–412.
- Müller-Buschbaum, K., Beuerle, F. & Feldmann, C. (2015). Microporous Mesoporous Mater. 216, 171–199.
- Qiao, C. F., Xia, Z. Q., Wei, Q., Zhou, C. S., Zhang, G. C., Chen, S. P. & Gao, S. L. (2013). J. Coord. Chem. 66, 1202–1210.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wannapaiboon, S., Tu, M., Sumida, K., Khaletskaya, K., Furukawa, S., Kitagawa, S. & Fischer, R. A. (2015). J. Mater. Chem. A, 3, 23385– 23394.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, H., Liu, H. Y., Yang, J., Liu, B., Ma, J. F., Liu, Y. Y. & Liu, Y. Y. (2011). Cryst. Growth Des. 11, 2317–2324.
- Xia, Z. Q., Wei, Q., Yang, Q., Qiao, C. F., Chen, S. P., Xie, G., Zhang, G. C., Zhou, C. S. & Gao, S. L. (2013). *CrystEngComm*, **15**, 86– 99.
- Xiao, Y. J., Liu, F. H., Zhao, L. & Su, Z. M. (2015). Inorg. Chem. Commun. 59, 32–35.
- Ying, S.-M., Ru, J.-J. & Luo, W.-K. (2015). Acta Cryst. C71, 618-622.
- Yu, Q., Zeng, Y.-F., Zhao, J.-P., Yang, Q. & Bu, X.-H. (2010). Cryst. Growth Des. 10, 1878–1884.
- Zhang, Y., Du, Z. & Luo, X. (2015). Z. Anorg. Allg. Chem. 641, 2637– 2640.
- Zhang, Z. Y., Yoshikawa, H. & Awaga, K. (2016). Chem. Mater. 28, 1298–1303.
- Zheng, S. R., Cai, S. L., Tan, J. B., Fan, J. & Zhang, W.-G. (2012). Inorg. Chem. Commun. 21, 100–103.

supporting information

Acta Cryst. (2018). E74, 28-33 [https://doi.org/10.1107/S2056989017017534]

Assembly of Zn^{II} and Cd^{II} coordination polymers with different dimensionalities based on the semi-flexible 3-(1*H*-benzimidazol-2-yl)propanoic acid ligand

Xiao-Yan Li, Yong-Qiong Peng, Juan Li, Wei-Wei Fu, Yang Liu and Yu-Ming Li

Computing details

For both structures, data collection: *APEX2* (Bruker, 2012). Cell refinement: *SAINT* (Bruker, 2012) for (1); *SMART* (Bruker, 2012) for (2). For both structures, data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: *SHELXL2014* (Sheldrick, 2015) and *OLEX2* (Dolomanov *et al.*, 2009); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015) and *OLEX2* (Dolomanov *et al.*, 2009); molecular graphics: *DIAMOND* (Brandenburg, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010) and *PLATON* (Spek, 2009).

Poly[[μ_3 -3-(1*H*-benzimidazol-2-yl)propionato]zinc(II)] (1)

Crystal data

$[Zn(C_{10}H_8N_2O_2)]$
$M_r = 253.55$
Orthorhombic, Pbca
<i>a</i> = 8.956 (4) Å
<i>b</i> = 10.697 (5) Å
c = 20.331 (9) Å
$V = 1947.8 (15) \text{ Å}^3$
Z = 8
F(000) = 1024

Data collection

Bruker SMART CCD area-detector diffractometer phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2012) $T_{\min} = 0.541, T_{\max} = 0.622$ 9832 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.063$ S = 1.031725 reflections 136 parameters 0 restraints Primary atom site location: structure-invariant direct methods $D_x = 1.729 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5004 reflections $\theta = 3.0-27.6^{\circ}$ $\mu = 2.50 \text{ mm}^{-1}$ T = 296 KBlock, yellow $0.28 \times 0.25 \times 0.21 \text{ mm}$

1725 independent reflections 1525 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -10 \rightarrow 10$ $k = -12 \rightarrow 11$ $l = -24 \rightarrow 24$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0338P)^2 + 0.8648P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29$ e Å⁻³ $\Delta\rho_{min} = -0.56$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.61499 (3)	0.44565 (2)	0.08133 (2)	0.02929 (11)
C1	0.8742 (2)	0.31428 (19)	0.14864 (9)	0.0272 (4)
C2	0.9402 (3)	0.4128 (2)	0.18261 (10)	0.0361 (5)
H2	0.8972	0.4919	0.1832	0.043*
C3	1.0712 (3)	0.3886 (2)	0.21531 (12)	0.0487 (6)
Н3	1.1175	0.4528	0.2384	0.058*
C4	1.1366 (3)	0.2704 (3)	0.21484 (13)	0.0512 (6)
H4	1.2268	0.2584	0.2366	0.061*
C5	1.0711 (3)	0.1710 (2)	0.18305 (11)	0.0402 (5)
Н5	1.1136	0.0917	0.1837	0.048*
C6	0.9381 (2)	0.19494 (18)	0.14985 (9)	0.0278 (4)
C7	0.7378 (2)	0.18898 (16)	0.08956 (9)	0.0273 (4)
C8	0.6243 (2)	0.1407 (2)	0.04189 (11)	0.0326 (5)
H8A	0.5329	0.1886	0.0464	0.039*
H8B	0.6018	0.0542	0.0523	0.039*
C9	0.6791 (2)	0.14918 (19)	-0.02923 (10)	0.0347 (5)
H9A	0.6001	0.1208	-0.0582	0.042*
H9B	0.6992	0.2361	-0.0396	0.042*
C10	0.8184 (2)	0.07312 (18)	-0.04282 (10)	0.0296 (4)
N1	0.84880 (17)	0.11670 (14)	0.11236 (9)	0.0289 (4)
N2	0.74575 (17)	0.30823 (13)	0.10974 (8)	0.0268 (4)
O1	0.91054 (16)	0.11866 (15)	-0.08295 (7)	0.0373 (4)
O2	0.83644 (16)	-0.03094 (12)	-0.01494 (7)	0.0332 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.03268 (17)	0.01695 (16)	0.03822 (18)	0.00017 (8)	0.00399 (10)	0.00205 (9)
C1	0.0323 (10)	0.0252 (10)	0.0240 (10)	-0.0034 (8)	0.0028 (8)	0.0001 (8)
C2	0.0459 (12)	0.0284 (11)	0.0341 (12)	-0.0065 (9)	0.0030 (10)	-0.0084 (9)
C3	0.0548 (14)	0.0475 (14)	0.0437 (13)	-0.0116 (12)	-0.0098 (12)	-0.0148 (12)
C4	0.0507 (14)	0.0570 (16)	0.0460 (14)	-0.0032 (12)	-0.0209 (11)	-0.0069 (13)
C5	0.0438 (12)	0.0384 (12)	0.0382 (12)	0.0045 (10)	-0.0119 (10)	-0.0008 (10)
C6	0.0329 (10)	0.0256 (10)	0.0250 (9)	-0.0030 (8)	-0.0006 (8)	0.0009 (8)
C7	0.0290 (10)	0.0207 (10)	0.0323 (10)	-0.0013 (8)	-0.0003 (8)	0.0000 (8)
C8	0.0283 (10)	0.0235 (10)	0.0459 (13)	0.0017 (8)	-0.0070 (9)	-0.0045 (9)
C9	0.0337 (11)	0.0287 (11)	0.0416 (12)	0.0044 (8)	-0.0113 (9)	-0.0002 (9)
C10	0.0326 (11)	0.0226 (10)	0.0336 (11)	-0.0011 (8)	-0.0119 (9)	-0.0037 (8)
N1	0.0332 (9)	0.0177 (8)	0.0360 (9)	0.0000 (7)	-0.0054 (7)	-0.0009(7)

supporting information

N2	0.0294 (9)	0.0193 (8)	0.0317 (9)	-0.0009(7)	0.0013 (7)	-0.0006 (7)
01	0.0330 (8)	0.0327 (9)	0.0461 (9)	0.0019 (6)	-0.0032 (6)	0.0111 (7)
O2	0.0423 (8)	0.0211 (7)	0.0360 (8)	0.0020 (6)	-0.0053 (6)	0.0013 (6)

Geometric parameters (A,)	Geometric	parameters	(Å,	<i>°</i>)
----------------------------	-----------	------------	-----	------------

Zn1—O1 ⁱ	1.9563 (16)	C6—N1	1.386 (3)	
Zn1—N1 ⁱⁱ	1.9624 (18)	C7—N2	1.342 (2)	
Zn1—N2	1.9661 (16)	C7—N1	1.342 (2)	
Zn1—O2 ⁱⁱ	2.0208 (17)	C7—C8	1.496 (3)	
C1—C2	1.392 (3)	C8—C9	1.530 (3)	
C1—N2	1.398 (2)	C8—H8A	0.9700	
C1—C6	1.399 (3)	C8—H8B	0.9700	
C2—C3	1.374 (3)	C9—C10	1.515 (3)	
C2—H2	0.9300	С9—Н9А	0.9700	
C3—C4	1.393 (4)	С9—Н9В	0.9700	
С3—Н3	0.9300	C10—O1	1.259 (3)	
C4—C5	1.375 (3)	C10—O2	1.260 (2)	
C4—H4	0.9300	N1—Zn1 ⁱⁱⁱ	1.9624 (18)	
C5—C6	1.393 (3)	O1—Zn1 ^{iv}	1.9563 (16)	
С5—Н5	0.9300	O2—Zn1 ⁱⁱⁱ	2.0207 (17)	
O1 ⁱ —Zn1—N1 ⁱⁱ	118.50 (7)	N2—C7—C8	124.22 (17)	
O1 ⁱ —Zn1—N2	106.84 (7)	N1—C7—C8	121.86 (16)	
N1 ⁱⁱ —Zn1—N2	120.28 (7)	C7—C8—C9	111.96 (17)	
O1 ⁱ —Zn1—O2 ⁱⁱ	105.15 (6)	С7—С8—Н8А	109.2	
N1 ⁱⁱ —Zn1—O2 ⁱⁱ	99.22 (6)	C9—C8—H8A	109.2	
N2—Zn1—O2 ⁱⁱ	104.42 (6)	C7—C8—H8B	109.2	
C2C1N2	131.70 (19)	C9—C8—H8B	109.2	
C2-C1-C6	120.56 (19)	H8A—C8—H8B	107.9	
N2—C1—C6	107.74 (16)	С10—С9—С8	113.88 (16)	
C3—C2—C1	117.4 (2)	С10—С9—Н9А	108.8	
С3—С2—Н2	121.3	С8—С9—Н9А	108.8	
C1—C2—H2	121.3	С10—С9—Н9В	108.8	
C2—C3—C4	121.8 (2)	С8—С9—Н9В	108.8	
С2—С3—Н3	119.1	H9A—C9—H9B	107.7	
С4—С3—Н3	119.1	O1—C10—O2	123.33 (19)	
C5—C4—C3	121.7 (2)	O1—C10—C9	116.77 (18)	
C5—C4—H4	119.1	O2—C10—C9	119.89 (19)	
C3—C4—H4	119.1	C7—N1—C6	105.65 (16)	
C4—C5—C6	116.7 (2)	C7—N1—Zn1 ⁱⁱⁱ	123.27 (13)	
С4—С5—Н5	121.6	C6—N1—Zn1 ⁱⁱⁱ	130.11 (13)	
С6—С5—Н5	121.6	C7—N2—C1	105.11 (15)	
N1-C6-C5	130.48 (19)	C7—N2—Zn1	126.10 (13)	
N1-C6-C1	107.75 (17)	C1—N2—Zn1	128.46 (13)	
C5—C6—C1	121.75 (18)	C10—O1—Zn1 ^{iv}	117.83 (13)	
N2	113.75 (17)	C10—O2—Zn1 ⁱⁱⁱ	124.96 (13)	

N2—C1—C2—C3	-178.1(2)	N2—C7—N1—Zn1 ⁱⁱⁱ	-170.56 (13)
C6—C1—C2—C3	1.8 (3)	C8—C7—N1—Zn1 ⁱⁱⁱ	4.9 (3)
C1—C2—C3—C4	0.0 (4)	C5—C6—N1—C7	-177.4 (2)
C2—C3—C4—C5	-1.8 (4)	C1—C6—N1—C7	0.7 (2)
C3—C4—C5—C6	1.6 (4)	C5-C6-N1-Zn1 ⁱⁱⁱ	-8.6 (3)
C4—C5—C6—N1	178.1 (2)	C1—C6—N1—Zn1 ⁱⁱⁱ	169.47 (14)
C4—C5—C6—C1	0.2 (3)	N1—C7—N2—C1	0.6 (2)
C2-C1-C6-N1	179.73 (18)	C8—C7—N2—C1	-174.75 (18)
N2-C1-C6-N1	-0.4 (2)	N1—C7—N2—Zn1	174.49 (13)
C2-C1-C6-C5	-2.0 (3)	C8—C7—N2—Zn1	-0.8 (3)
N2-C1-C6-C5	177.93 (18)	C2-C1-N2-C7	179.8 (2)
N2—C7—C8—C9	90.4 (2)	C6—C1—N2—C7	-0.1 (2)
N1—C7—C8—C9	-84.6 (2)	C2-C1-N2-Zn1	6.1 (3)
C7—C8—C9—C10	61.3 (2)	C6—C1—N2—Zn1	-173.81 (13)
C8—C9—C10—O1	-144.39 (18)	O2—C10—O1—Zn1 ^{iv}	-19.8 (3)
C8—C9—C10—O2	36.4 (3)	C9—C10—O1—Zn1 ^{iv}	160.95 (13)
N2—C7—N1—C6	-0.8 (2)	O1—C10—O2—Zn1 ⁱⁱⁱ	108.7 (2)
C8—C7—N1—C6	174.63 (18)	C9—C10—O2—Zn1 ⁱⁱⁱ	-72.1 (2)

Symmetry codes: (i) x-1/2, -y+1/2, -z; (ii) -x+3/2, y+1/2, z; (iii) -x+3/2, y-1/2, z; (iv) x+1/2, -y+1/2, -z.

Poly[bis[μ_2 -3-(1*H*-benzimidazol-2-yl)propionato]cadmium(II)] (2)

Crystal data

 $\begin{bmatrix} Cd(C_{10}H_8N_2O_2)_2 \end{bmatrix} \\ M_r = 490.79 \\ Monoclinic, P2_1/c \\ a = 13.6708 (6) Å \\ b = 8.0253 (3) Å \\ c = 17.3834 (7) Å \\ \beta = 100.972 (4)^\circ \\ V = 1872.31 (13) Å^3 \\ Z = 4 \end{bmatrix}$

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2012) $T_{\min} = 0.923, T_{\max} = 1.000$ 6654 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.064$ S = 1.063289 reflections 262 parameters 0 restraints F(000) = 984 $D_x = 1.741 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2660 reflections $\theta = 3.0-27.4^{\circ}$ $\mu = 1.20 \text{ mm}^{-1}$ T = 293 KPrism, brown $0.28 \times 0.25 \times 0.19 \text{ mm}$

3289 independent reflections 2685 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -16 \rightarrow 15$ $k = -9 \rightarrow 6$ $l = -20 \rightarrow 14$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0234P)^2]$	$\Delta ho_{ m max} = 0.33$ e Å ⁻³
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$
$(\Lambda/r) < 0.001$	

$(\Delta/\sigma)_{\rm max} < 0.001$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cd1	0.22103 (2)	0.06562 (3)	0.41588 (2)	0.02433 (9)	
C1	0.4463 (3)	1.0429 (4)	0.37316 (19)	0.0254 (8)	
C2	0.4459 (3)	1.1926 (4)	0.33279 (19)	0.0343 (9)	
H2	0.3890	1.2587	0.3224	0.041*	
C3	0.5321 (3)	1.2403 (5)	0.3087 (2)	0.0442 (11)	
H3	0.5337	1.3410	0.2825	0.053*	
C4	0.6164 (3)	1.1402 (5)	0.3229 (2)	0.0503 (11)	
H4	0.6734	1.1750	0.3056	0.060*	
C5	0.6179 (3)	0.9902 (5)	0.3622 (2)	0.0444 (10)	
Н5	0.6740	0.9224	0.3710	0.053*	
C6	0.5323 (3)	0.9465 (4)	0.3874 (2)	0.0298 (8)	
C7	0.4118 (3)	0.8209 (4)	0.43435 (18)	0.0263 (8)	
C8	0.3603 (3)	0.6815 (4)	0.46664 (19)	0.0305 (8)	
H8A	0.3197	0.7255	0.5020	0.037*	
H8B	0.4094	0.6069	0.4962	0.037*	
C9	0.2949 (3)	0.5857 (4)	0.4010 (2)	0.0404 (10)	
H9A	0.3250	0.5925	0.3548	0.048*	
H9B	0.2308	0.6413	0.3886	0.048*	
C10	0.2768 (3)	0.4031 (4)	0.4167 (2)	0.0261 (8)	
C11	0.0502 (3)	-0.0701 (4)	0.18100 (19)	0.0274 (8)	
C12	0.0484 (3)	-0.0730 (4)	0.1006 (2)	0.0373 (9)	
H12	-0.0082	-0.1041	0.0648	0.045*	
C13	0.1354 (3)	-0.0273 (4)	0.0773 (2)	0.0390 (10)	
H13	0.1371	-0.0271	0.0241	0.047*	
C14	0.2200 (3)	0.0185 (5)	0.1299 (2)	0.0397 (10)	
H14	0.2769	0.0493	0.1113	0.048*	
C15	0.2218 (3)	0.0193 (4)	0.2096 (2)	0.0336 (9)	
H15	0.2790	0.0490	0.2452	0.040*	
C16	0.1354 (3)	-0.0256 (4)	0.23458 (19)	0.0237 (8)	
C17	0.0228 (3)	-0.0925 (4)	0.30217 (19)	0.0272 (8)	
C18	-0.0301 (3)	-0.1297 (4)	0.3673 (2)	0.0333 (9)	
H18A	0.0190	-0.1575	0.4136	0.040*	
H18B	-0.0717	-0.2271	0.3534	0.040*	
C19	-0.0936 (3)	0.0092 (5)	0.3873 (2)	0.0433 (10)	
H19A	-0.1486	0.0260	0.3436	0.052*	
H19B	-0.0544	0.1107	0.3937	0.052*	

C20	-0.1353 (3)	-0.0190 (5)	0.4602 (2)	0.0317 (9)
01	0.21406 (17)	0.3287 (3)	0.36487 (13)	0.0316 (6)
O2	0.32390 (18)	0.3331 (3)	0.47586 (13)	0.0309 (6)
03	-0.1888 (2)	0.0912 (3)	0.48158 (15)	0.0504 (8)
O4	-0.1163 (2)	-0.1496 (3)	0.49775 (14)	0.0448 (7)
N1	0.3712 (2)	0.9617 (3)	0.40401 (15)	0.0242 (7)
N2	0.5075 (2)	0.8066 (3)	0.42631 (16)	0.0313 (7)
H2A	0.5466	0.7247	0.4426	0.038*
N3	0.1154 (2)	-0.0401 (3)	0.31043 (16)	0.0277 (7)
N4	-0.0197 (2)	-0.1100 (3)	0.22566 (16)	0.0323 (7)
H4A	-0.0800	-0.1408	0.2079	0.039*
H4A	-0.0800	-0.1408	0.2079	0.039*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.02465 (15)	0.02141 (14)	0.02708 (15)	0.00049 (12)	0.00527 (10)	0.00198 (12)
C1	0.026 (2)	0.0254 (19)	0.0239 (17)	-0.0039 (16)	0.0022 (15)	-0.0025 (17)
C2	0.037 (2)	0.029 (2)	0.037 (2)	-0.0006 (18)	0.0046 (17)	0.0021 (19)
C3	0.051 (3)	0.040 (2)	0.042 (2)	-0.015 (2)	0.010 (2)	0.009 (2)
C4	0.039 (3)	0.061 (3)	0.054 (3)	-0.016 (2)	0.015 (2)	0.002 (3)
C5	0.026 (2)	0.048 (2)	0.059 (3)	-0.005 (2)	0.005 (2)	-0.005 (2)
C6	0.027 (2)	0.032 (2)	0.0278 (19)	-0.0043 (17)	-0.0002 (16)	-0.0042 (18)
C7	0.029 (2)	0.0229 (18)	0.0250 (18)	0.0007 (16)	0.0010 (15)	-0.0038 (16)
C8	0.035 (2)	0.0219 (18)	0.034 (2)	0.0000 (17)	0.0061 (17)	0.0028 (17)
C9	0.044 (3)	0.0257 (19)	0.045 (2)	-0.0080 (18)	-0.0073 (19)	0.009 (2)
C10	0.022 (2)	0.0234 (18)	0.035 (2)	0.0023 (16)	0.0105 (16)	0.0010 (18)
C11	0.031 (2)	0.0212 (18)	0.0298 (19)	-0.0004 (17)	0.0061 (16)	-0.0025 (17)
C12	0.051 (3)	0.030 (2)	0.027 (2)	0.0007 (19)	-0.0016 (18)	-0.0008 (18)
C13	0.052 (3)	0.040 (2)	0.027 (2)	0.010 (2)	0.0142 (19)	0.0035 (19)
C14	0.037 (2)	0.045 (2)	0.042 (2)	0.005 (2)	0.0196 (19)	0.002 (2)
C15	0.027 (2)	0.040 (2)	0.034 (2)	0.0014 (18)	0.0064 (17)	0.0027 (19)
C16	0.025 (2)	0.0212 (18)	0.0250 (18)	0.0012 (15)	0.0043 (15)	-0.0018 (16)
C17	0.033 (2)	0.0193 (18)	0.0300 (19)	-0.0023 (16)	0.0080 (16)	-0.0010 (16)
C18	0.032 (2)	0.0331 (19)	0.038 (2)	-0.0099 (18)	0.0142 (17)	-0.0029 (19)
C19	0.047 (3)	0.047 (2)	0.039 (2)	0.013 (2)	0.016 (2)	0.015 (2)
C20	0.024 (2)	0.038 (2)	0.033 (2)	-0.0041 (18)	0.0044 (17)	-0.003 (2)
01	0.0296 (15)	0.0226 (12)	0.0384 (14)	-0.0051 (11)	-0.0042 (11)	0.0023 (12)
O2	0.0314 (15)	0.0244 (13)	0.0347 (13)	0.0038 (11)	0.0008 (11)	0.0087 (12)
O3	0.055 (2)	0.0548 (17)	0.0489 (16)	0.0248 (15)	0.0285 (15)	0.0199 (15)
O4	0.063 (2)	0.0349 (15)	0.0430 (16)	0.0055 (14)	0.0273 (14)	0.0078 (14)
N1	0.0207 (16)	0.0187 (14)	0.0324 (16)	-0.0001 (12)	0.0034 (12)	0.0043 (13)
N2	0.0227 (17)	0.0265 (15)	0.0426 (17)	0.0053 (14)	0.0004 (14)	0.0050 (15)
N3	0.0290 (18)	0.0281 (16)	0.0269 (16)	-0.0065 (14)	0.0073 (13)	-0.0028 (14)
N4	0.0273 (18)	0.0346 (17)	0.0331 (17)	-0.0078 (14)	0.0012 (14)	-0.0014 (16)

Geometric parameters (Å, °)

Cd1—N1 ⁱ	2.262 (3)	C10—O1	1.269 (4)
Cd1—N3	2.271 (3)	C11—N4	1.378 (4)
Cd101	2.285 (2)	C11—C12	1.393 (5)
Cd1—O3 ⁱⁱ	2.293 (2)	C11—C16	1.393 (4)
Cd1—O4 ⁱⁱ	2.362 (2)	C12—C13	1.377 (5)
Cd1—O2	2.667 (2)	C12—H12	0.9300
Cd1—C20 ⁱⁱ	2.667 (4)	C13—C14	1.382 (5)
Cd1-C10	2.813 (3)	C13—H13	0.9300
C1—C6	1.389 (5)	C14—C15	1.382 (5)
C1—C2	1.391 (4)	C14—H14	0.9300
C1—N1	1.406 (4)	C15—C16	1.382 (5)
C2—C3	1.377 (5)	C15—H15	0.9300
С2—Н2	0.9300	C16—N3	1.401 (4)
C3—C4	1.389 (5)	C17—N3	1.316 (4)
С3—Н3	0.9300	C17—N4	1.354 (4)
C4—C5	1.382 (5)	C17—C18	1.485 (4)
C4—H4	0.9300	C18—C19	1.495 (5)
C5—C6	1.371 (5)	C18—H18A	0.9700
С5—Н5	0.9300	C18—H18B	0.9700
C6—N2	1.386 (4)	C19—C20	1.503 (5)
C7—N1	1.323 (4)	C19—H19A	0.9700
C7—N2	1.346 (4)	C19—H19B	0.9700
С7—С8	1.487 (4)	C20—O4	1.236 (4)
С8—С9	1.518 (4)	C20—O3	1.249 (4)
C8—H8A	0.9700	C20—Cd1 ⁱⁱ	2.667 (4)
C8—H8B	0.9700	O3—Cd1 ⁱⁱ	2.293 (2)
C9—C10	1.520 (4)	O4—Cd1 ⁱⁱ	2.362 (2)
С9—Н9А	0.9700	N1—Cd1 ⁱⁱⁱ	2.262 (3)
С9—Н9В	0.9700	N2—H2A	0.8600
C10—O2	1.239 (4)	N4—H4A	0.8600
N1 ⁱ —Cd1—N3	103.73 (10)	O2—C10—O1	123.4 (3)
N1 ⁱ -Cd1-01	106.08 (9)	O2—C10—C9	120.6 (3)
N3—Cd1—O1	93.38 (9)	O1—C10—C9	115.9 (3)
N1 ⁱ —Cd1—O3 ⁱⁱ	100.41 (9)	O2—C10—Cd1	70.45 (18)
N3—Cd1—O3 ⁱⁱ	103.63 (10)	O1—C10—Cd1	52.94 (15)
O1-Cd1-O3 ⁱⁱ	144.01 (9)	C9—C10—Cd1	168.8 (2)
N1 ⁱ —Cd1—O4 ⁱⁱ	146.52 (9)	N4—C11—C12	132.8 (3)
N3—Cd1—O4 ⁱⁱ	104.51 (10)	N4—C11—C16	105.3 (3)
01-Cd1-04 ⁱⁱ	89.85 (8)	C12—C11—C16	121.8 (3)
O3 ⁱⁱ —Cd1—O4 ⁱⁱ	55.44 (9)	C13—C12—C11	116.2 (4)
N1 ⁱ —Cd1—O2	84.96 (8)	C13—C12—H12	121.9
N3—Cd1—O2	145.40 (8)	C11—C12—H12	121.9
O1—Cd1—O2	52.26 (7)	C12—C13—C14	122.5 (4)
O3 ⁱⁱ —Cd1—O2	107.64 (9)	C12—C13—H13	118.8
O4 ⁱⁱ —Cd1—O2	81.96 (8)	C14—C13—H13	118.8

N1 ⁱ —Cd1—C20 ⁱⁱ	124.62 (11)	C15—C14—C13	121.2 (4)
N3—Cd1—C20 ⁱⁱ	106.84 (10)	C15—C14—H14	119.4
O1-Cd1-C20 ⁱⁱ	116.79 (10)	C13—C14—H14	119.4
O3 ⁱⁱ —Cd1—C20 ⁱⁱ	27.87 (10)	C16—C15—C14	117.4 (4)
O4 ⁱⁱ —Cd1—C20 ⁱⁱ	27.60 (9)	C16—C15—H15	121.3
O2-Cd1-C20 ⁱⁱ	94.44 (9)	C14—C15—H15	121.3
N1 ⁱ —Cd1—C10	96.06 (9)	C15—C16—C11	120.9 (3)
N3—Cd1—C10	119.59 (10)	C15—C16—N3	130.4 (3)
O1—Cd1—C10	26.30 (8)	C11—C16—N3	108.6 (3)
O3 ⁱⁱ —Cd1—C10	128.08 (10)	N3—C17—N4	111.4 (3)
O4 ⁱⁱ —Cd1—C10	85.33 (9)	N3—C17—C18	125.4 (3)
O2—Cd1—C10	25.96 (8)	N4—C17—C18	123.3 (3)
C20 ⁱⁱ —Cd1—C10	106.94 (11)	C17—C18—C19	114.6 (3)
C6—C1—C2	119.6 (3)	C17—C18—H18A	108.6
C6—C1—N1	109.1 (3)	C19—C18—H18A	108.6
C2—C1—N1	131.3 (3)	C17—C18—H18B	108.6
C3—C2—C1	118.2 (4)	C19—C18—H18B	108.6
C3—C2—H2	120.9	H18A—C18—H18B	107.6
C1—C2—H2	120.9	C18—C19—C20	114.4 (3)
C2—C3—C4	120.9 (4)	C18—C19—H19A	108.7
С2—С3—Н3	119.5	C20—C19—H19A	108.7
C4—C3—H3	119.5	C18—C19—H19B	108.7
C5—C4—C3	121.7 (4)	C20—C19—H19B	108.7
C5—C4—H4	119.2	H19A—C19—H19B	107.6
C3—C4—H4	119.2	O4—C20—O3	121.3 (3)
C6—C5—C4	116.6 (4)	O4—C20—C19	119.9 (3)
С6—С5—Н5	121.7	O3—C20—C19	118.8 (3)
C4—C5—H5	121.7	O4—C20—Cd1 ⁱⁱ	62.30 (19)
C5—C6—N2	131.8 (4)	O3—C20—Cd1 ⁱⁱ	59.13 (18)
C5—C6—C1	123.0 (4)	C19—C20—Cd1 ⁱⁱ	176.2 (3)
N2—C6—C1	105.2 (3)	C10—O1—Cd1	100.76 (19)
N1—C7—N2	111.9 (3)	C10—O2—Cd1	83.59 (19)
N1—C7—C8	126.8 (3)	C20—O3—Cd1 ⁱⁱ	93.0 (2)
N2-C7-C8	120.9 (3)	C20—O4—Cd1 ⁱⁱ	90.1 (2)
C7—C8—C9	110.5 (3)	C7-N1-C1	105.5 (3)
C7—C8—H8A	109.5	$C7-N1-Cd1^{iii}$	126.7(2)
C9—C8—H8A	109.5	C1-N1-Cd1 ⁱⁱⁱ	127.2(2)
C7—C8—H8B	109.5	C7 - N2 - C6	108.3(3)
C9—C8—H8B	109.5	C7-N2-H2A	125.9
H8A - C8 - H8B	108.1	C6 - N2 - H2A	125.9
C8-C9-C10	116.5 (3)	C17 - N3 - C16	106.3 (3)
C8—C9—H9A	108.2	C17 - N3 - Cd1	1312(2)
C10—C9—H9A	108.2	C16-N3-Cd1	121.2(2)
C8—C9—H9B	108.2	C17 - N4 - C11	1084(3)
C10—C9—H9B	108.2	C17—N4—H4A	125.8
H9A - C9 - H9B	107.3	C_{11} N_{4} H_{4A}	125.8
117/1-07-117D	107.5		120.0

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) –*x*, –*y*, –*z*+1; (iii) *x*, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A···O2 ^{iv}	0.86	2.10	2.823 (4)	141
N4—H4 A ···O1 ^v	0.86	2.03	2.862 (4)	161

Symmetry codes: (iv) -x+1, -y+1, -z+1; (v) -x, y-1/2, -z+1/2.