Received 24 October 2017
Accepted 30 November 2017

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia

Keywords: crystal structure; flexible ligand; terephthalate; coordination polymer.

CCDC reference: 1588505
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \rightleftharpoons ACCESS

Crystal structure of a $\mathbf{Z n}$ complex with terephthalate and 1,6-bis(1,2,4-triazol-1-yl)hexane

Taisiya S. Sukhikh, ${ }^{\text {a,b }} *$ Evgeny Yu. Semitut ${ }^{\text {c,a }}$ and Andrei S. Potapov ${ }^{c}$

${ }^{\text {a Nikolaev Institute of Inorganic Chemistry, SB Russian Academy of Sciences, Akad. Lavrentiev prospekt 3, Novosibirsk }}$ 90, 630090, Russian Federation, ${ }^{\text {b }}$ Department of Natural Sciences, National Research University, Novosibirsk State University, Pirogova st. 2, Novosibirsk 90, 630090, Russian Federation, and ${ }^{\text {c }}$ Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic, University, 30 Lenin Ave., 634050, Tomsk, Russian Federation.
*Correspondence e-mail: sukhikh@niic.nsc.ru

A new zinc coordination polymer with rigid benzene-1,4-dicarboxylate (bdc) and flexible 1,6 -bis(1,2,4-triazol-1-yl)hexane (btrh), namely poly[[(μ_{2}-benzene-1,4-dicarboxylato)[μ_{2}-1,6-bis(1,2,4-triazol-1-yl)hexane]zinc] dimethylformamide monosolvate], $\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{6}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, was synthesized. According to the single-crystal XRD analysis, the product crystallizes in the $P \overline{1}$ space group and has a layered structure. Analysis of the layered structure reveals $\{\mathrm{Zn}(\mathrm{bdc})\}$ chains which are connected by pairs of btrh ligands. The layers are packed tightly perpendicular to the [1 $\overline{2} 2$] direction, separated by one nondisordered dimethylformamide solvent molecule per formula unit. According to thermogravimetric analysis, the product completely loses this solvent at 453 K ; the desolvated compound is stable up to 503 K . As a result of the lack of hydrogen-donor groups, hydrogen bonds are not observed in the structure of the complex; however, an intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ contact of $3.07 \AA$ occurs.

1. Chemical context

Coordination polymers with flexible bitopic ligands have attracted great interest as prospective materials for gas separation, sensing materials, electrochemical devices or catalysis (Pettinari et al., 2016). One of the favoured classes of bitopic ligands are bis(azol-1-yl) alkanes, which have been used for the preparation of various transition metals coordination polymers with different topologies (Alkorta et al., 2017; Pellei et al., 2017; Manzano et al., 2016; Liu et al., 2012). Bitopic bis(azol-1-yl)alkanes have two separated metalbinding sites that allow them to form a wide variety of polymeric structures. Thus, coordination compounds based on these ligands could be applied in the design of various functional materials with a wide range of potential applications. Recently, we have synthesized three new Zn coordination polymers based on bis(triazol-1-yl)propane and terephtalate anions (Semitut et al., 2017). By varying the conditions, it was possible to synthesize three different polymeric compounds, which have interesting luminescent properties. As part of our studies with the aim of preparing new coordination polymers with flexible bis(triazol-1-yl)alkane ligands, we report herein the synthesis and crystal structure of $[\mathrm{Zn}(\mathrm{bdc})(\mathrm{btrh})] \cdot \mathrm{DMF}$ (bdc = benzene-1,4-dicarboxylate, btrh $=1,6$-bis(1,2,4-triazol-1-yl)hexane, DMF = dimethylformamide).

The btrh ligand (Fig. 1) was prepared by the reaction of 1,2,4-triazole with 1,6-dibromohexane in a superbasic dimethyl sulfoxide-potassium hydroxide medium using our modified procedure reported for bis(triazolyl)propane (Semitut et al., 2017). Our proposed procedure does not require the use of toxic solvents and gives higher yields compared to the literature procedure (Liu et al., 2012). The title complex was prepared by the reaction of zinc nitrate, btrh and terephthalic acid under solvothermal conditions (368 K) in DMF. The product was formed after 48 h as a crystalline colourless solid of plate-like shape. The single crystal used for structure determination was collected from the filtered product. The polycrystalline compound was characterized by elemental (C, H, N) and powder XRD analysis (Fig. S1, Supporting information), indicating formation of this complex as a main phase.

2. Thermal stability

The thermal stability of the synthesized coordination polymer was studied in oxidative $\mathrm{O}_{2} / \operatorname{Ar}(21 \%)$ atmosphere. Thermogravimetric measurements were carried out on a NETZSCH thermobalance TG 209 F1 Iris. Open $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucibles were used (loads $7-10 \mathrm{mg}$, heating rate $10 \mathrm{~K} \mathrm{~min}^{-1}$). The thermal analysis of $[\mathrm{Zn}(\mathrm{btrh})(\mathrm{bdc})] \cdot n \mathrm{DMF}$ revealed that the synthesized compound has three thermolysis stages in an oxidative atmosphere (Fig. 2). The first stage of thermolysis is the process of the loss of solvate molecules that runs in the range of 373-453 K and has a well-defined step on the TG curve. The mass loss of solvate molecules corresponds to a composition with $n \simeq 1$, which is in good agreement with the crystal data. The desolvated compound is stable up to 503 K . The second and third stages run in the ranges $503-573$ and $633-773 \mathrm{~K}$, respectively. The second stage corresponds to partial degradation of btrh and terephtalate and third to further decomposition and the burning process of the formed carbon

Figure 1
Synthesis of 1,6-bis(1,2,4-triazol-1-yl)hexane.

Figure 2
Curves of thermal analysis for $[\mathrm{Zn}(\mathrm{btrh})(\mathrm{bdc})] \cdot \mathrm{DMF}$ in $\mathrm{O}_{2} / \mathrm{Ar}(21 \%)$ atmosphere; 1 TG, 2 DTG, 3 c-DTA.
products, resulting in the formation of ZnO according to powder XRD analysis.

3. Structural commentary

The structure is a 2 D coordination polymer crystallizing in space group $P \overline{1}$. The central Zn atom has a distorted tetrahedral environment comprising two oxygen and two nitrogen atoms. It is coordinated by two crystallographically independent (bdc) ${ }^{2-}$ ligands (halves), forming zigzag chains along the [210] direction, which are linked by btrh ligands (Fig. 3). Contrary to our recently reported Zn complexes with 1,3-bis(1,2,4-triazol-1-yl)propane containing a shorter alkyl bridge (Semitut et al., 2017), 1,3-bis(pyrazol-1-yl)propane (Potapov et al., 2012) and bis(imidazol-1-yl)alkanes (Barsukova, Samsonenko et al., 2016; Barsukova, Goncharova et al., 2016), the title compound is a 2 D polymer, because the Zn atoms are connected by btrh ligands in pairs, not in chains, thus preventing the formation of a 3D net. Each Zn atom is linked with three others via (1) the first bdc ${ }^{2-}$ ligand, (2) a second bdc $^{2-}$ ligand and (3) a pair of btrh ligands. The layers of the title compound are arranged perpendicular to the [1522] direction in such a way that the $\left\{\mathrm{Zn}_{2}(\mathrm{btrh})_{2}\right\}$ units lie between the hollows of neighboring layers (Figs. S2, S3).

4. Supramolecular features

Layers of the complex are packed tightly, revealing only one DMF solvent molecule per formula unit. Analysis of the residual electron-density map clearly indicates the presence of a not or very slightly disordered DMF molecule (Fig. S4). After refining DMF, only one peak of $0.60 \mathrm{e}^{\AA^{-3}}$ (attributed to a C atom of occupancy ca 0.15) is observed, while the densities of other peaks coincide with those of holes $\left(c a \pm 0.3\right.$ e $\left.\AA^{-3}\right)$. Thus, the DMF molecule is rather not disordered. Besides disorder, atomic displacement parameters that are larger than

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g$ is the centroid of the $\mathrm{C} 24-\mathrm{C} 26 / \mathrm{C} 24^{1}-\mathrm{C} 26^{\mathrm{i}}$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H}^{\cdots} A$
$\mathrm{C} 36^{\mathrm{ii}}-\mathrm{H} 36^{\mathrm{ii}} \cdots C g$	0.93	3.07	3.95	149

Symmetry codes: (i) $2-x, 1-y,-z$; (ii) $x+1, y+1, z$.
those for other atoms can be due to partial loss of the solvent during the experiment. DMF molecules are located in the channel voids, which occupy 26.4% of the structure (Fig. S5). As a result of the lack of H -donor groups, hydrogen bonds are not observed in the structure of the complex; however, intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts of $3.07 \AA$ (Table 1) occur between the aromatic rings of bdc ligands (Fig. S6). These contacts connect neighbouring layers.

5. Database survey

A database survey showed that the majority of the known structures of polymers with flexible bis(azol-1-yl)alkanes are compounds based on relatively short linkers (from methane to pentane) but that the number of polymers based on longer linkers (having a CH_{2}-chain higher than six) is relatively low. The lack of structural information on long flexible ligands can be due to the fact that it is more difficult to obtain single crystals of good quality for these compounds. Such ligands tend to form interpenetrated polymers with disorder and a variety of modifications. A search of the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al.,
2016) for compounds containing btrh and any metal gave 51 hits, of which only one contains both btrh and bdc ligands (refcode ETAKAM; Zhang et al., 2011). This Cd polymer also has a 2D structure, but the $\{\mathrm{Cd}(\mathrm{bdc})\}$ chains are linear and are intersected by $\{\mathrm{Cd}(\mathrm{b} t r \mathrm{~h})\}$ chains. Thus, contrary to our case, the two central metal atoms are connected by only one btrh ligand.

6. Synthesis and crystallization

Starting materials and experimental procedures

The starting reagents used for the synthesis of the coordination compound $-\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (chemical grade), dimethyl formamide (analytical grade) and terephthalic acid (analytical grade) - were used as received.

NMR spectra were recorded on a Bruker AV300 instrument operating at 300 MHz for ${ }^{1} \mathrm{H}$ and 75 MHz for ${ }^{13} \mathrm{C}$, solvent residual peaks were used as internal standard. Elemental analyses were carried out on a Eurovector EuroEA 3000 analyser. Infrared (IR) spectra of solid samples as KBr pellets were recorded on a FT-801 spectrometer ($4000-550 \mathrm{~cm}^{-1}$). The powder XRD data were collected with a DRON RM4 powder diffractometer equipped with a $\mathrm{Cu} K \alpha$ source ($\lambda=$ $1.5418 \AA$) and graphite monochromator for the diffracted beam.

Synthesis of compound [$\mathbf{Z n}(b \operatorname{btrh})(\mathrm{bdc})] \cdot \boldsymbol{n D M F}$

$35.2 \mathrm{mg}(0.16 \mathrm{mmol})$ of btrh ligand and 4.0 ml of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.04 \mathrm{M})$ were added to 0.4 ml of a DMF solution of $\mathrm{H}_{2} \mathrm{bdc}(0.4 \mathrm{M})$ in a glass vial. The resulting mixture was stirred for several minutes at room temperature for total ligand dissolution and placed into an oven at 368 K. After

Displacement ellipsoid plot of a single layer of the coordination polymer showing ellispoids drawn at the 50% probability level.

Table 2
Experimental details.

Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

```
[Zn(C)}\mp@subsup{\textrm{C}}{8}{}\mp@subsup{\textrm{H}}{4}{}\mp@subsup{\textrm{O}}{4}{})(\mp@subsup{\textrm{C}}{10}{}\mp@subsup{\textrm{H}}{16}{}\mp@subsup{\textrm{N}}{6}{})]\cdot\mp@subsup{\textrm{C}}{3}{}\mp@subsup{\textrm{H}}{7}{}\textrm{NO
522.86
Triclinic, P\overline{1}
298
9.7803 (6), 10.4481 (5), 13.3708 (8)
101.438 (2), 101.015 (2),
    109.073 (2)
1216.41 (12)
2
Mo K\alpha
1.06
0.1 }\times0.05\times0.0
```

Bruker APEXII CCD
Multi-scan (SADABS; Bruker,
2012)
$0.665,0.745$
12157, 4293, 2999
0.049
0.595
0.047, 0.118, 1.00
4293
309
H -atom parameters constrained
$0.60,-0.33$

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).
heating for 48 h , the vial was cooled to room temperature. Plate-like colourless crystals formed on the bottom of the vial; they where filtered and washed twice with 5 ml of DMF and dried in a vacuum. The yield was 39 mg (53%). IR bands, $\mathrm{cm}^{-1}: 3115,2948,2861,1680,1611,1530,1499,1437,1391$, $1345,1287,1217,1136,1098,1017,1001,947,905,878,828,750$, 743, 673, 642, 577. Elemental analysis: found, \%: C 48.5, H 5.9, N 18.9; calculated ([Zn(btrh)(bdc)]•DMF), \%: C 48.2, H 5.2, N 18.8.

Synthesis of 1,6-bis(1,2,4-triazol-1-yl)hexane (btrh)

A suspension of $2.76 \mathrm{~g}(40 \mathrm{mmol})$ of 1,2,4-triazole and $4.48 \mathrm{~g}(80 \mathrm{mmol})$ of powdered KOH in 15 ml of DMSO was stirred vigorously at 353 K for 30 min . The reaction flask was then immersed into a cold water bath and, after cooling to room temperature, $4.88 \mathrm{~g}(20 \mathrm{mmol})$ of 1,6 -dibromohexane in 10 ml of DMSO were added dropwise over 30 min . After the addition was complete, the reaction mixture was stirred overnight at 353 K . It was then quenched with 200 ml of water and extracted with 1-butanol ($5 \times 20 \mathrm{ml}$), the extract was then washed with water $(2 \times 10 \mathrm{ml})$. Evaporation of solvents from the extract on a rotary evaporator and recrystallization from isopropyl alcohol gave $3.83 \mathrm{~g}(87 \%)$ of the product as
colourless crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCI}_{3}\right), \delta$, ppm: $1.24(t, 4 \mathrm{H}, \gamma-$ $\left.\mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right), 1.79\left(q, 4 \mathrm{H}, \beta-\mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right), 4.06(t, 4 \mathrm{H}, \alpha-$ $\left.\mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right), 7.83\left(s, 2 \mathrm{H}, \mathrm{H}^{3}-\mathrm{Tr}\right), 8.08\left(s, 2 \mathrm{H}, \mathrm{H}^{5}-\mathrm{Tr}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCI}_{3}\right), \delta, \mathrm{ppm}: 25.6\left(\gamma-\mathrm{CH}_{2}\right), 29.3\left(\beta-\mathrm{CH}_{2}\right), 49.2(\alpha$ $-\mathrm{CH}_{2}$), $142.7\left(\mathrm{Tr}-\mathrm{C}^{3}\right), 151.6\left(\mathrm{Tr}-\mathrm{C}^{5}\right)$.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were refined as riding atoms $\left(\mathrm{C}-\mathrm{H}=0.97 \AA\right.$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $\mathrm{C}-\mathrm{H}=0.93 \AA 1.2 U_{\text {eq }}(\mathrm{C})$ for all others. Methyl H atoms were refined as rotating groups.

Funding information

This study was supported by the Russian Science Foundation, grant No. 15-13-10023 and the X-ray structure analysis was carried out with support from the Ministry of Education and Science of the Russian Federation (a project of the Joint Laboratories of the Siberian Branch of the Russian Academy of Sciences and the National Research Universities).

References

Alkorta, I., Claramunt, R. M., Díez-Barra, E., Elguero, J., de la Hoz, A. \& López, C. (2017). Coord. Chem. Rev. 339, 153-182.

Barsukova, M., Goncharova, T., Samsonenko, D., Dybtsev, D. \& Potapov, A. (2016). Crystals, 6, 132/1-132/15.
Barsukova, M. O., Samsonenko, D. G., Goncharova, T. V., Potapov, A. S., Sapchenko, S. A., Dybtsev, D. N. \& Fedin, V. P. (2016). Russ. Chem. Bull. 65, 2914-2919.
Bruker (2014). APEX2, SAINT and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Liu, Y.-Y., Li, J., Ma, J.-F., Ma, J.-C. \& Yang, J. (2012). CrystEngComm, 14, 169-177.
Manzano, B. R., Jalón, F. A., Carrión, M. C. \& Durá, G. (2016). Eur. J. Inorg. Chem. 2016, 2272-2295.
Pellei, M., Santini, C., Marinelli, M., Trasatti, A. \& Dias, H. V. R. (2017). Polyhedron, 125, 86-92.

Pettinari, C., Tăbăcaru, A. \& Galli, S. (2016). Coord. Chem. Rev. 307, 1-31.
Potapov, A. S., Domina, G. A., Petrenko, T. V. \& Khlebnikov, A. I. (2012). Polyhedron, 33, 150-157.

Semitut, E. Y., Sukhikh, T. S., Filatov, E. Y., Anosova, G. A., Ryadun, A. A., Kovalenko, K. A. \& Potapov, A. S. (2017). Cryst. Growth Des. 17, 5559-5567.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Zhang, P., Li, D.-S., Zhao, J., Wu, Y.-P., Li, C., Zou, K. \& Lu, J. Y. (2011). J. Coord. Chem. 64, 13, 2329-2341.

supporting information

Acta Cryst. (2018). E74, 6-9 [https://doi.org/10.1107/S2056989017017224]
Crystal structure of a Zn complex with terephthalate and 1,6-bis(1,2,4-triazol-1-yl)hexane

Taisiya S. Sukhikh, Evgeny Yu. Semitut and Andrei S. Potapov

Computing details

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[[(μ_{2}-benzene-1,4-dicarboxylato) $\left[\mu_{2}-1,6\right.$-bis(1,2,4-triazol-1-yl)hexane]zinc] dimethylformamide monosolvate]

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{6}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$M_{r}=522.86$
Triclinic, $P \overline{1}$
$a=9.7803$ (6) \AA
$b=10.4481$ (5) \AA
$c=13.3708(8) \AA$
$\alpha=101.438(2)^{\circ}$
$\beta=101.015(2)^{\circ}$
$\gamma=109.073(2)^{\circ}$
$V=1216.41(12) \AA^{3}$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
$T_{\text {min }}=0.665, T_{\text {max }}=0.745$
12157 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.118$
$S=1.00$
4293 reflections
309 parameters
0 restraints
$Z=2$
$F(000)=544$
$D_{\mathrm{x}}=1.428 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2516 reflections
$\theta=2.3-22.4^{\circ}$
$\mu=1.06 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Plate, colourless
$0.1 \times 0.05 \times 0.02 \mathrm{~mm}$

4293 independent reflections
2999 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 9$
$l=-15 \rightarrow 15$

Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.062 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.60$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.33$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Zn1	0.55113 (4)	0.42735 (4)	0.19802 (3)	0.04413 (17)
O21	0.6685 (3)	0.4028 (3)	0.0983 (2)	0.0588 (7)
O22	0.8610 (3)	0.5441 (3)	0.2351 (2)	0.0751 (9)
O31	0.3399 (3)	0.3182 (3)	0.1154 (3)	0.0745 (9)
O32	0.3836 (4)	0.1533 (3)	0.1758 (3)	0.0911 (11)
N111	0.6118 (3)	0.4320 (3)	0.3513 (2)	0.0476 (7)
N113	0.6160 (4)	0.3855 (4)	0.5075 (3)	0.0749 (11)
N114	0.7283 (4)	0.5081 (3)	0.5193 (3)	0.0586 (9)
N121	1.4483 (3)	1.3736 (3)	0.7898 (2)	0.0464 (7)
N123	1.4969 (4)	1.1793 (4)	0.7385 (3)	0.0701 (10)
N124	1.4569 (3)	1.1841 (3)	0.8295 (3)	0.0504 (8)
C23	0.8065 (4)	0.4779 (4)	0.1401 (3)	0.0486 (9)
C24	0.9064 (4)	0.4885 (3)	0.0678 (3)	0.0436 (9)
C25	1.0606 (4)	0.5593 (4)	0.1062 (3)	0.0654 (12)
H25	1.1032	0.6004	0.1788	0.078*
C26	1.1517 (4)	0.5703 (4)	0.0403 (3)	0.0637 (11)
H26	1.2551	0.6186	0.0688	0.076*
C33	0.3002 (4)	0.1957 (4)	0.1235 (3)	0.0540 (10)
C34	0.1434 (4)	0.0945 (4)	0.0602 (3)	0.0473 (9)
C35	0.0949 (4)	-0.0457 (4)	0.0597 (3)	0.0544 (10)
H35	0.1584	-0.0773	0.1002	0.065*
C36	-0.0471 (4)	-0.1389 (4)	-0.0003 (3)	0.0547 (10)
H36	-0.0781	-0.2331	-0.0003	0.066*
C112	0.5502 (5)	0.3442 (4)	0.4054 (4)	0.0674 (12)
H112	0.4670	0.2605	0.3729	0.081*
C115	0.7231 (5)	0.5337 (4)	0.4267 (3)	0.0596 (11)
H115	0.7894	0.6132	0.4158	0.071*
C122	1.4891 (5)	1.2946 (4)	0.7177 (3)	0.0658 (12)
H122	1.5100	1.3199	0.6577	0.079*
C125	1.4289 (4)	1.2994 (4)	0.8595 (3)	0.0496 (9)
H125	1.3999	1.3247	0.9204	0.060*
C131	0.8254 (6)	0.5943 (5)	0.6262 (3)	0.0807 (14)
H13A	0.8279	0.5326	0.6714	0.097*
H13B	0.7810	0.6584	0.6554	0.097*
C132	0.9823 (5)	0.6778 (4)	0.6292 (3)	0.0662 (12)
H13C	0.9812	0.7343	0.5797	0.079*
H13D	1.0317	0.6146	0.6076	0.079*
C133	1.0684 (5)	0.7730 (4)	0.7397 (3)	0.0656 (12)
H13E	1.0744	0.7146	0.7871	0.079*

H13F	1.0118	0.8284	0.7629	0.079^{*}
C134	$1.2262(5)$	$0.8728(4)$	$0.7510(3)$	$0.0628(11)$
H13G	1.2858	0.8186	0.7319	0.075^{*}
H13H	1.2222	0.9302	0.7025	0.075^{*}
C135	$1.3004(5)$	$0.9675(4)$	$0.8631(3)$	$0.0636(12)$
H13I	1.2358	1.0160	0.8823	0.076^{*}
H13J	1.3056	0.9083	0.9100	0.076^{*}
C136	$1.4545(5)$	$1.0756(4)$	$0.8842(3)$	$0.0654(12)$
H13K	1.4953	1.1204	0.9600	0.078^{*}
H13L	1.5191	1.0290	0.8617	0.078^{*}
O1S	$1.2093(8)$	$1.1555(6)$	$0.4821(6)$	$0.225(4)$
N3S	$1.1710(7)$	$0.9340(5)$	$0.4102(4)$	$0.1045(16)$
C2S	$1.2272(11)$	$1.0486(9)$	$0.4748(8)$	$0.179(4)$
H2S	1.3017	1.0532	0.5318	0.215^{*}
C4S	$1.1971(10)$	$0.8107(8)$	$0.4102(7)$	$0.175(4)$
H4SA	1.2829	0.8303	0.4680	0.263^{*}
H4SB	1.2159	0.7757	0.3443	0.263^{*}
H4SC	1.1104	0.7411	0.4181	0.263^{*}
C5S	$1.0403(15)$	$0.9099(11)$	$0.3279(8)$	$0.261(7)$
H5SA	0.9604	0.9146	0.3586	0.392^{*}
H5SB	1.0094	0.8183	0.2790	0.392^{*}
H5SC	1.0637	0.9807	0.2909	0.392^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	$0.0345(2)$	$0.0472(3)$	$0.0430(3)$	$0.00801(18)$	$0.01047(19)$	$0.00923(18)$
O21	$0.0449(16)$	$0.0665(17)$	$0.0534(18)$	$0.0082(13)$	$0.0217(14)$	$0.0061(13)$
O22	$0.0524(18)$	$0.100(2)$	$0.052(2)$	$0.0115(16)$	$0.0196(16)$	$0.0013(17)$
O31	$0.0462(17)$	$0.0557(18)$	$0.097(3)$	$0.0006(13)$	$0.0069(16)$	$0.0137(16)$
O32	$0.061(2)$	$0.070(2)$	$0.104(3)$	$0.0154(16)$	$-0.0199(19)$	$-0.0029(18)$
N111	$0.0452(18)$	$0.0493(17)$	$0.0420(19)$	$0.0111(14)$	$0.0116(16)$	$0.0114(15)$
N113	$0.070(3)$	$0.078(2)$	$0.053(3)$	$0.000(2)$	$0.008(2)$	$0.0255(19)$
N114	$0.055(2)$	$0.061(2)$	$0.045(2)$	$0.0058(17)$	$0.0104(17)$	$0.0148(16)$
N121	$0.0449(18)$	$0.0446(17)$	$0.0431(19)$	$0.0117(14)$	$0.018(15)$	$0.0077(15)$
N123	$0.093(3)$	$0.069(2)$	$0.063(3)$	$0.041(2)$	$0.037(2)$	$0.0171(19)$
N124	$0.0488(19)$	$0.0504(19)$	$0.046(2)$	$0.0174(15)$	$0.0054(16)$	$0.0093(15)$
C23	$0.045(2)$	$0.055(2)$	$0.051(3)$	$0.0197(19)$	$0.021(2)$	$0.016(2)$
C24	$0.038(2)$	$0.046(2)$	$0.043(2)$	$0.0121(16)$	$0.0134(18)$	$0.0102(17)$
C25	$0.042(2)$	$0.092(3)$	$0.040(3)$	$0.011(2)$	$0.008(2)$	$-0.001(2)$
C26	$0.032(2)$	$0.093(3)$	$0.048(3)$	$0.008(2)$	$0.010(2)$	$0.006(2)$
C33	$0.039(2)$	$0.056(3)$	$0.060(3)$	$0.017(2)$	$0.017(2)$	$0.002(2)$
C34	$0.036(2)$	$0.045(2)$	$0.054(3)$	$0.0101(16)$	$0.0138(18)$	$0.0059(17)$
C35	$0.041(2)$	$0.051(2)$	$0.065(3)$	$0.0149(18)$	$0.008(2)$	$0.0133(19)$
C36	$0.048(2)$	$0.042(2)$	$0.068(3)$	$0.0121(18)$	$0.014(2)$	$0.0144(19)$
C112	$0.061(3)$	$0.063(3)$	$0.058(3)$	$-0.001(2)$	$0.009(2)$	$0.022(2)$
C115	$0.061(3)$	$0.059(2)$	$0.048(3)$	$0.007(2)$	$0.017(2)$	$0.017(2)$
C122	$0.072(3)$	$0.071(3)$	$0.054(3)$	$0.024(2)$	$0.026(2)$	$0.015(2)$

C125	$0.044(2)$	$0.053(2)$	$0.047(2)$	$0.0171(18)$	$0.0098(18)$	$0.0097(19)$
C131	$0.087(4)$	$0.083(3)$	$0.044(3)$	$0.006(3)$	$0.008(3)$	$0.010(2)$
C132	$0.054(3)$	$0.074(3)$	$0.056(3)$	$0.022(2)$	$0.003(2)$	$0.001(2)$
C133	$0.071(3)$	$0.057(2)$	$0.052(3)$	$0.016(2)$	$0.002(2)$	$0.008(2)$
C134	$0.060(3)$	$0.065(3)$	$0.055(3)$	$0.026(2)$	$0.005(2)$	$0.006(2)$
C135	$0.076(3)$	$0.055(2)$	$0.049(3)$	$0.021(2)$	$0.001(2)$	$0.0133(19)$
C136	$0.077(3)$	$0.057(2)$	$0.054(3)$	$0.028(2)$	$-0.003(2)$	$0.012(2)$
O1S	$0.253(8)$	$0.094(4)$	$0.257(8)$	$0.083(4)$	$-0.056(6)$	$-0.012(4)$
N3S	$0.146(5)$	$0.079(3)$	$0.084(4)$	$0.049(3)$	$0.020(3)$	$0.013(3)$
C2S	$0.214(10)$	$0.096(6)$	$0.187(9)$	$0.047(6)$	$0.008(8)$	$0.017(6)$
C4S	$0.199(9)$	$0.149(7)$	$0.189(9)$	$0.099(7)$	$0.052(7)$	$0.017(6)$
C5S	$0.345(17)$	$0.179(10)$	$0.186(10)$	$0.104(10)$	$-0.075(12)$	$0.026(8)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

$\mathrm{Zn} 1-\mathrm{O} 21$	1.950 (3)	C36-H36	0.9300
Zn1-O31	1.969 (3)	C112-H112	0.9300
$\mathrm{Zn} 1-\mathrm{N} 111$	2.008 (3)	C115-H115	0.9300
$\mathrm{Zn} 1-\mathrm{N} 121^{\text {i }}$	2.052 (3)	C122-H122	0.9300
O21-C23	1.263 (4)	C125-H125	0.9300
O22-C23	1.236 (4)	C131-H13A	0.9700
O31-C33	1.244 (5)	C131-H13B	0.9700
O32-C33	1.222 (5)	C131-C132	1.485 (6)
N111-C112	1.340 (5)	C132-H13C	0.9700
N111-C115	1.315 (5)	C132-H13D	0.9700
N113-N114	1.344 (4)	C132-C133	1.509 (5)
N113-C112	1.309 (5)	C133-H13E	0.9700
N114-C115	1.314 (5)	C133-H13F	0.9700
N114-C131	1.472 (5)	C133-C134	1.513 (6)
N121-Zn1 ${ }^{\text {i }}$	2.052 (3)	C134-H13G	0.9700
N121-C122	1.348 (5)	C134-H13H	0.9700
N121-C125	1.327 (5)	C134-C135	1.510 (5)
N123-N124	1.343 (4)	C135-H13I	0.9700
N123-C122	1.311 (5)	C135-H13J	0.9700
N124-C125	1.324 (4)	C135-C136	1.492 (6)
N124-C136	1.462 (5)	C136-H13K	0.9700
C23-C24	1.495 (5)	C136-H13L	0.9700
C24-C25	1.382 (5)	O1S-C2S	1.174 (8)
C24-C26 ${ }^{\text {ii }}$	1.376 (5)	N3S-C2S	1.208 (9)
C25-H25	0.9300	N3S-C4S	1.393 (8)
C25-C26	1.363 (5)	N3S-C5S	1.432 (10)
C26-C24ii	1.376 (5)	C2S-H2S	0.9300
C26-H26	0.9300	C4S—H4SA	0.9600
C33-C34	1.508 (5)	C4S-H4SB	0.9600
C34-C35	1.383 (5)	C4S—H4SC	0.9600
C34-C36 ${ }^{\text {iii }}$	1.374 (5)	C5S—H5SA	0.9600
C35-H35	0.9300	C5S-H5SB	0.9600
C35-C36	1.379 (5)	C5S-H5SC	0.9600

$\mathrm{C} 36-\mathrm{C} 34{ }^{\text {iii }}$	1.374 (5)
O21-Zn1-O31	105.00 (12)
O21-Zn1-N111	124.42 (12)
$\mathrm{O} 21-\mathrm{Zn} 1-\mathrm{N} 121^{\text {i }}$	104.47 (12)
O31-Zn1-N111	118.44 (13)
$\mathrm{O} 31-\mathrm{Zn} 1-\mathrm{N} 121^{\text {i }}$	98.53 (12)
N111-Zn1-N121 ${ }^{\text {i }}$	101.66 (12)
C23-O21-Zn1	110.9 (2)
C33-O31-Zn1	110.0 (3)
C112-N111-Zn1	131.6 (3)
C115-N111-Zn1	126.1 (3)
C115-N111-C112	102.1 (3)
C112-N113-N114	102.6 (3)
N113-N114-C131	119.8 (3)
C115-N114-N113	109.4 (3)
C115-N114-C131	130.7 (4)
C122-N121-Zn1 ${ }^{\text {i }}$	128.6 (3)
C125-N121-Zn1 ${ }^{\text {i }}$	128.2 (3)
C125-N121-C122	102.5 (3)
C122-N123-N124	102.6 (3)
N123-N124-C136	121.4 (3)
C125-N124-N123	110.2 (3)
C125-N124-C136	128.4 (4)
$\mathrm{O} 21-\mathrm{C} 23-\mathrm{C} 24$	116.7 (3)
$\mathrm{O} 22-\mathrm{C} 23-\mathrm{O} 21$	123.9 (4)
$\mathrm{O} 22-\mathrm{C} 23-\mathrm{C} 24$	119.4 (3)
C25-C24-C23	121.5 (4)
$\mathrm{C} 26{ }^{\text {iii }} \mathrm{C} 24-\mathrm{C} 23$	121.3 (3)
$\mathrm{C} 26{ }^{\text {iii }} \mathrm{C} 24-\mathrm{C} 25$	117.1 (3)
C24-C25-H25	119.2
C26-C25-C24	121.7 (4)
C26-C25-H25	119.2
$\mathrm{C} 24{ }^{\text {ii }}-\mathrm{C} 26-\mathrm{H} 26$	119.4
C25-C26-C24 ${ }^{\text {ii }}$	121.2 (4)
C25-C26-H26	119.4
O31-C33-C34	117.3 (4)
O32-C33-O31	123.2 (4)
O32-C33-C34	119.4 (4)
C35-C34-C33	120.5 (3)
C36 ${ }^{\text {iii- }}$ - $34-\mathrm{C} 33$	120.8 (3)
C36 ${ }^{\text {iii }}$-C34-C35	118.7 (3)
C34-C35-H35	119.8
C36-C35-C34	120.4 (3)
C36-C35-H35	119.8
C34iii-C36-C35	120.8 (3)
C34 ${ }^{\text {iii }}$-C36-H36	119.6
C35-C36-H36	119.6

N124-C125-N121	110.0 (4)
N124-C125-H125	125.0
N114-C131-H13A	108.7
N114-C131-H13B	108.7
N114-C131-C132	114.2 (4)
H13A-C131-H13B	107.6
C132-C131-H13A	108.7
C132-C131-H13B	108.7
C131-C132-H13C	109.6
C131-C132-H13D	109.6
C131-C132-C133	110.3 (4)
H13C-C132-H13D	108.1
C133-C132-H13C	109.6
C133-C132-H13D	109.6
C132-C133-H13E	108.5
C132-C133-H13F	108.5
C132-C133-C134	115.3 (4)
H13E-C133-H13F	107.5
C134-C133-H13E	108.5
C134-C133-H13F	108.5
C133-C134-H13G	109.4
C133-C134-H13H	109.4
H13G-C134-H13H	108.0
C135-C134-C133	111.3 (4)
C135-C134-H13G	109.4
C135-C134-H13H	109.4
C134-C135-H13I	108.1
C134-C135-H13J	108.1
H13I-C135-H13J	107.3
C136-C135-C134	116.8 (4)
C136-C135-H13I	108.1
C136-C135-H13J	108.1
N124-C136-C135	113.0 (3)
N124-C136-H13K	109.0
N124-C136-H13L	109.0
C135-C136-H13K	109.0
C135-C136-H13L	109.0
H13K-C136-H13L	107.8
C2S-N3S-C4S	130.5 (8)
C2S-N3S-C5S	116.7 (7)
C4S-N3S-C5S	112.0 (6)
O1S-C2S-N3S	134.7 (10)
O1S-C2S-H2S	112.7
N3S-C2S-H2S	112.7
N3S-C4S-H4SA	109.5
N3S-C4S—H4SB	109.5

N111-C112-H112	122.6
N113-C112-N111	114.8 (4)
N113-C112-H112	122.6
N111-C115-H115	124.4
N114-C115-N111	111.1 (4)
N114-C115-H115	124.4
N121-C122-H122	122.6
N123-C122-N121	114.8 (4)
N123-C122-H122	122.6
N121-C125-H125	125.0
$\mathrm{Zn} 1-\mathrm{O} 21-\mathrm{C} 23-\mathrm{O} 22$	8.3 (5)
Zn1-O21-C23-C24	-170.1 (2)
Zn1-O31-C33-O32	-0.1 (5)
Zn1-O31-C33-C34	-176.8 (3)
$\mathrm{Zn} 1-\mathrm{N} 111-\mathrm{C} 112-\mathrm{N} 113$	-176.0 (3)
Zn1-N111-C115-N114	176.7 (3)
$\mathrm{Zn} 1{ }^{\mathrm{i}}$ - $\mathrm{N} 121-\mathrm{C} 122-\mathrm{N} 123$	170.8 (3)
$\mathrm{Zn1} \mathrm{C}^{\text {- N } 121-\mathrm{C} 125-\mathrm{N} 124}$	-171.3 (2)
O21-C23-C24-C25	-175.2 (3)
$\mathrm{O} 21-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 26^{\text {ii }}$	5.7 (5)
O22-C23-C24-C25	6.4 (5)
O22-C23-C24-C26 ${ }^{\text {ii }}$	-172.7 (4)
O31-C33-C34-C35	175.8 (4)
O31-C33-C34-C36 ${ }^{\text {iii }}$	-3.0 (6)
O32-C33-C34-C35	-1.0 (6)
O32-C33-C34-C36 ${ }^{\text {iii }}$	-179.8 (4)
N113-N114-C115-N111	-0.6 (5)
N113-N114-C131-C132	149.1 (4)
N114-N113-C112-N111	-0.4 (5)
N114-C131-C132-C133	174.5 (4)
N123-N124-C125-N121	0.4 (4)
N123-N124-C136-C135	-99.8 (5)
N124-N123-C122-N121	0.7 (5)
C23-C24-C25-C26	-179.3 (4)

N3S-C4S-H4SC	109.5
H4SA-C4S-H4SB	109.5
H4SA-C4S-H4SC	109.5
H4SB-C4S-H4SC	109.5
N3S-C5S-H5SA	109.5
N3S-C5S-H5SB	109.5
N3S-C5S-H5SC	109.5
H5SA-C5S-H5SB	109.5
H5SA-C5S-H5SC	109.5
H5SB-C5S-H5SC	109.5
C24-C25-C26-C24ii	0.1 (7)
C26 ${ }^{\text {iii }} \mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	-0.1(7)
C33-C34-C35-C36	-178.3 (4)
C34-C35-C36-C34 ${ }^{\text {iii }}$	-0.5 (7)
C36 ${ }^{\text {iii- }}$ - $34-\mathrm{C} 35-\mathrm{C} 36$	0.5 (7)
C112-N111-C115-N114	0.3 (5)
C112-N113-N114-C115	0.6 (5)
C112-N113-N114-C131	176.1 (4)
C115-N111-C112-N113	0.0 (5)
C115-N114-C131-C132	-36.4 (7)
C122-N121-C125-N124	0.1 (4)
C122-N123-N124-C125	-0.6 (4)
C122-N123-N124-C136	-178.1 (3)
C125-N121-C122-N123	-0.5 (5)
C125-N124-C136-C135	83.2 (5)
C131-N114-C115-N111	-175.5 (4)
C131-C132-C133-C134	-175.0 (4)
C132-C133-C134-C135	177.6 (3)
C133-C134-C135-C136	-177.4 (3)
C134-C135-C136-N124	66.5 (5)
C136-N124-C125-N121	177.7 (3)
C4S-N3S-C2S-O1S	-177.8 (11)
C5S-N3S-C2S-O1S	-9.0 (19)

Symmetry codes: (i) $-x+2,-y+2,-z+1$; (ii) $-x+2,-y+1,-z$; (iii) $-x,-y,-z$.

Hydrogen-bond geometry ($A,{ }^{o}$)
Cg is the centroid of the $\mathrm{C} 24-\mathrm{C} 26 / \mathrm{C} 24^{\mathrm{i}}-\mathrm{C} 26^{\mathrm{i}}$ ring.

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 36^{\mathrm{iv}} — \mathrm{H} 36^{\mathrm{iv} \cdots} C g$	0.93	3.07	3.95	149

Symmetry code: (iv) $x+1, y+1, z$.

