CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 3 October 2017
Accepted 8 November 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: orthoarsenate; tetrameric units; layered framework stucture; bond-valence sum calculations; crystal structure.

CCDC reference: 1584656

Supporting information: this article has supporting information at journals.iucr.org/e


OPEN $\odot$ ACCESS

# Crystal structure of $\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ containing discrete $\left[\mathrm{Mn}_{4} \mathrm{O}_{18}\right]^{28-}$ units 

Salvador Alcantar, Hollis R. Ledbetter and Kulugammana G. S. Ranmohotti*

Division of Science, Mathematics and Technology, Governors State University, 1 University Parkway, University Park, IL 60484-0975, USA. *Correspondence e-mail: kranmohotti@govst.edu

In our attempt to search for mixed alkaline-earth and transition metal arsenates, the title compound, barium dimanganese(II) bis(arsenate), has been synthesized by employing a high-temperature RbCl flux. The crystal structure of $\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ is made up of $\mathrm{MnO}_{6}$ octahedra and $\mathrm{AsO}_{4}$ tetrahedra assembled by sharing corners and edges into infinite slabs with composition $\left[\mathrm{Mn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}\right]^{2-}$ that extend parallel to the $a b$ plane. The barium cations reside between parallel slabs maintaining the interslab connectivity through coordination to eight oxygen anions. The layered anionic framework comprises weakly interacting $\left[\mathrm{Mn}_{4} \mathrm{O}_{18}\right]^{28-}$ tetrameric units. In each tetramer, the manganese(II) cations are in a planar arrangement related by a center of inversion. Within the slabs, the tetrameric units are separated from each other by 6.614 (2) $\AA$ ( $\mathrm{Mn} \cdots \mathrm{Mn}$ distances). The title compound has isostructural analogues amongst synthetic $\operatorname{Sr} M_{2}\left(\mathrm{XO}_{4}\right)_{2}$ compounds with $M=\mathrm{Ni}, \mathrm{Co}$, and $X=\mathrm{As}, \mathrm{P}$.

## 1. Chemical context

Compounds of vanadates, phosphates, and arsenates with the general formula $A M_{2}\left(X \mathrm{O}_{4}\right)_{2}$, where $A=\mathrm{Pb}$ or an alkaline earth metal, $M=\mathrm{Mg}$ or a divalent first row transition metal, and $X=\mathrm{V}$, P or As, can adopt different structure types. They have attracted much attention in solid-state physics due to magnetic ordering at low temperatures and the occurrence of (multiple) phase transitions. For $A M_{2}\left(\mathrm{XO}_{4}\right)_{2}$ compounds with Pb or an alkaline earth metal ion on the $A^{2+}$ site and a transition metal with partially filled $3 d$ orbitals on the $M^{2+}$ site, one-dimensional magnetic properties with high anisotropy and weak interchain interactions have been reported (Bera et al., 2013). The crystal structures of some of these compounds comprise screw-chains made up of $\mathrm{MO}_{6}$ octahedra, separated by non-magnetic $\mathrm{VO}_{4}\left(\mathrm{~V}^{5+} ; 3 d^{0}\right)$ tetrahedra, resulting in a quasi one-dimensional structure. Five representatives of this family have been characterized crystallographically, viz. $\mathrm{BaMg}_{2}\left(\mathrm{VO}_{4}\right)_{2}$ (Velikodnyi et al., 1982), $\mathrm{BaCo}_{2}\left(\mathrm{VO}_{4}\right)_{2}$ (Wichmann \& Müller-Buschbaum, 1986a), $\mathrm{BaMn}_{2}\left(\mathrm{VO}_{4}\right)_{2}$, $\mathrm{BaMgZn}\left(\mathrm{VO}_{4}\right)_{2}$ and $\mathrm{Ba}_{1 / 2} \mathrm{Sr}_{1 / 2} \mathrm{Ni}_{2}\left(\mathrm{VO}_{4}\right)_{2}$ (Von Postel \& Müller-Buschbaum, 1992). They crystallize in the tetragonal crystal system in space group $I 4_{1} / \operatorname{acd}$ (No. 142). For the related compounds $\mathrm{SrMn}_{2}\left(\mathrm{VO}_{4}\right)_{2}$ (Niesen et al., 2011), $\mathrm{SrCo}_{2}\left(\mathrm{VO}_{4}\right)_{2}$ (Osterloh \& Müller-Buschbaum, 1994a), $\mathrm{PbCo}_{2}\left(\mathrm{VO}_{4}\right)_{2}$ (He et al., 2007) and $\mathrm{PbNi}_{2}\left(\mathrm{VO}_{4}\right)_{2}$ (Uchiyama et al., 1999), it was found that they adopt the $\mathrm{SrNi}_{2}\left(\mathrm{VO}_{4}\right)_{2}$ structure type (Wichmann \& Müller-Buschbaum, 1986b), crystallizing in space group $I 4_{1} c d$ (No.110), a subgroup of the latter. The only copper(II) vanadate compound with an $A M_{2}\left(\mathrm{XO}_{4}\right)_{2}$ composition is $\mathrm{BaCu}_{2}\left(\mathrm{VO}_{4}\right)_{2}$ (Vogt \& Müller-Buschbaum, 1990). The
crystal structure is also tetragonal but belongs to space group $\bar{I} 2 d$ (No. 122), another subgroup of $I 4_{1} /$ acd. $\mathrm{BaNi}_{2}\left(\mathrm{VO}_{4}\right)_{2}$ (Rogado et al., 2002) adopts a different structure type as it belongs to the rhombohedral space group $R \overline{3}$ (No. 148) and represents the only quasi-two-dimensional system within the above-mentioned vanadates.

Phosphates containing transition metals have been widely investigated because of their variety of potential applications. They can adopt a plethora of different structure types and show various magnetic properties. With respect to the $A M_{2}\left(\mathrm{XO}_{4}\right)_{2}$ family of compounds, the phosphates $\mathrm{BaCu}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Moqine et al., 1993), $\alpha-\mathrm{SrCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (El Bali et al., 1993a), $\beta$ - $\mathrm{SrCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Yang et al., 2016), $\mathrm{SrNi}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{El}$ Bali et al., 1993b), $\operatorname{SrNiZn}\left(\mathrm{PO}_{4}\right)_{2}$ (El Bali et al., 2004) and $\mathrm{SrMn}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (El Bali et al., 2000) crystallize in space group $P \overline{1}$ (No. 2). $\mathrm{SrCu}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Belik et al., 2005) and $\mathrm{PbCu}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Belik et al., 2006) are isotypic and crystallize in the orthorhombic crystal system [space group Pccn (No. 56)]. The crystal structures of $\mathrm{BaNi}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Čabrić et al., 1982), and $\mathrm{BaFe}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Kabbour et al., 2012) possess trigonal symmetry in space group $R \overline{3}$ (No. 148). $\mathrm{BaCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$, in particular, can exist in several polymorphs such as the rhombohedral $\gamma$-phase [(R̄̄3 (No. 148); Bircsak \& Harrison, 1998], the monoclinic $\alpha$-phase $\left[P 2_{1} / a\right.$ (No. 14)] and the trigonal $\beta$-phase $[P \overline{3}$ (No. 147); David et al., 2013], depending on the synthetic conditions
and thermal history. It has been reported that $\alpha-\mathrm{SrZn}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Hemon \& Courbion, 1990) and $\mathrm{SrFe}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Belik et al., 2001) adopt different structure types and crystallize in the monoclinic space group $P 2_{1} / c$ (No. 14).

Thus far, compared to vanadates and phosphates, only a few arsenates of the $A M_{2}\left(X \mathrm{O}_{4}\right)_{2}$ family have been studied, viz. $\mathrm{BaNi}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ (Eymond et al., 1969a), $\mathrm{BaMg}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ and $\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ (Eymond et al., 1969b) in space group $R \overline{3}$, and $\mathrm{SrCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ (Osterloh \& Müller-Buschbaum, 1994a) and $\mathrm{BaCu}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ (Osterloh \& Müller-Buschbaum, 1994b) in space groups $P \overline{1}$ and $P 2_{1} / n$, respectively. To extend our knowledge of the $A M_{2}\left(\mathrm{XO}_{4}\right)_{2}$ system, we have undertaken an investigation of the $\mathrm{BaO} / \mathrm{MnO} / \mathrm{As}_{2} \mathrm{O}_{5}$ phase diagram and employed a flux method for crystal growth. The present work deals with the determination of the crystal structure of a new mixed-metal orthoarsenate, $\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$.

## 2. Structural commentary

Besides $\mathrm{Ba}_{2} \mathrm{Mn}\left(\mathrm{AsO}_{4}\right)_{2}$ (Adams et al., 1996), $\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ represents the second compound to be structurally characterized in the system $\mathrm{BaO} / \mathrm{MnO} / \mathrm{As}_{2} \mathrm{O}_{5} . \mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ is isotypic with $\beta-\mathrm{SrCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Yang et al., 2016), $\mathrm{SrCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ (Osterloh \& Müller-Buschbaum, 1994a) and $\mathrm{SrNi}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{El}$ Bali et al., 1993b) (for numerical data for these structures, see


Figure 1
(a)

(b)

(c)
(a) Perspective view of the crystal structure of $\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ viewed along the $a$ axis. The quasi-two-dimensional lattice is characterized by $\left[\mathrm{Mn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}\right]^{2-}$ slabs, which are highlighted by dark- and light-colored lines representing the $\mathrm{Mn}-\mathrm{O}$ and $\mathrm{As}-\mathrm{O}$ bonds, respectively. The wavy and dotted lines (right) indicate the zigzag arrays of barium cations. Only one barium cation with bonds is drawn for clarity, demonstrating the function of $\mathrm{Ba}-\mathrm{O}$ bonds with regard to holding neighboring $\left[\mathrm{Mn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}\right]^{2-}$ slabs. (b) Part of the crystal structure showing corner- and edge-sharing MnO ${ }_{6}$ octahedra and $\mathrm{AsO}_{4}$ tetrahedra. In each tetramer, the manganese(II) atoms are in a planar configuration related by a center of inversion. (c) Polyhedral representation showing the alternating arrangement of isolated arsenate units. Only two bonds (dotted lines) around barium are shown for clarity.


Figure 2
(a) Quasi-two-dimensional structure of $\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ shown by polyhedral and ball-and-stick drawing viewed along the $b$ axis. (b) Ball-and-stick drawing of a portion of the manganese oxide network formed by interconnected tetrameric units. Dashed lines represent long Mn-O bonds.

Supplementary Table 1 in the Supporting information). The crystal structure of $\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ can be described as a three-dimensional framework containing slabs of composition $\left[\mathrm{Mn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}\right]^{2-}$ that are built up from two different $\mathrm{MnO}_{6}$ and two different $\mathrm{AsO}_{4}$ polyhedra (Fig. 1) and extend parallel to the $a b$ plane (Fig. 2). Mn1 possesses a distorted octahedral coordination environment and exhibits five normal $\mathrm{Mn}-\mathrm{O}$ bonds and one long $\mathrm{Mn}-\mathrm{O}$ bond. Mn 2 is also six-coordinated and has two long $\mathrm{Mn}-\mathrm{O}$ bonds, again forming a distorted $\mathrm{MnO}_{6}$ octahedron (Table1, Fig. 3a). Similar distortions in $\mathrm{MnO}_{6}$ octahedra have been observed previously (Adams et al., 1996; Weil \& Kremer, 2017). The two arsenic atoms are part of $\mathrm{AsO}_{4}$ tetrahedra (Fig. 3b), with $\mathrm{As}-\mathrm{O}$ bond lengths ranging from 1.663 (5)-1.710 (4) $\AA$ (Table 1) and $\mathrm{O}-\mathrm{As}-\mathrm{O}$ bond angles from $99.8(2)-114.6(2)^{\circ}$. The average As-O bond length $(1.688 \AA)$ in the title compound is identical to those of previously reported arsenates (Ulutagay-Kartin et al., 2003). The bond lengths are also consistent with the sum of the Shannon crystal radii (Shannon, 1976), $1.68 \AA$, of four-coordinate $\mathrm{As}^{5+}(0.475 \AA)$ and two-coordinate $\mathrm{O}^{2-}(1.21 \AA)$. The

(a) Part of the crystal structure showing ${\mathrm{Mn} 1 \mathrm{O}_{6}}$ and $\mathrm{Mn}_{2} \mathrm{O}_{6}$ octahedra sharing corners (polyhedral drawing). To distinguish the two types of bonds (short and long), one is highlighted with solid $\mathrm{Mn}-\mathrm{O}$ bonds (short) and the other in dotted bonds (long). (b) The polyhedral units represent arsenic-centered oxygen tetrahedra. (c) The barium cation resides in a $\mathrm{BaO}_{8}$ environment. Displacement ellipsoids represent the 95\% probability level.
barium cations reside between parallel slabs and maintain the interslab connectivity through coordination to eight oxygen anions (Fig. 3c). The average $\mathrm{Ba}-\mathrm{O}$ bond length, $2.83 \AA$, matches closely with $2.77 \AA$, the sum of the Shannon radii for eight-coordinate $\mathrm{Ba}^{2+}(1.56 \AA)$ and two-coordinated $\mathrm{O}^{2-}$ $(1.21 \AA)$ ions, and is in agreement with those of other barium arsenates (Weil, 2016).

Fig. $4 a$ shows two $\mathrm{Mn}^{2} \mathrm{O}_{6}$ octahedra sharing a common edge, $\mathrm{O}^{\mathrm{v}}-\mathrm{O} 1^{\text {vii }}$ (symmetry codes refer to Table 1) to form a $\mathrm{Mn}_{2} \mathrm{O}_{10}$ unit with an $\mathrm{Mn} 1 \cdots \mathrm{Mn} 1$ separation of 3.1854 (17) $\AA$ and an $\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{Mn} 1$ angle of $93.34(18)^{\circ} . \mathrm{Mn}_{2} \mathrm{O}_{6}$ octahedra share corners with the $\mathrm{Mn}_{2} \mathrm{O}_{10}$ unit through O 3 and O 4 , resulting in a tetrameric $\left[\mathrm{Mn}_{4} \mathrm{O}_{18}\right]^{28-}$ unit (Fig. 4b). These $\left[\mathrm{Mn}_{4} \mathrm{O}_{18}\right]^{28-}$ units are interlinked through $\mathrm{AsO}_{4}$ tetrahedra to give slabs with overall composition $\left[\mathrm{Mn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}\right]^{2-}$. Each $\left[\mathrm{Mn}_{4} \mathrm{O}_{18}\right]^{28-}$ unit interacts weakly by sharing oxygen vertices with six other units, whereby the tetrameric units are separated from each other along the $b$ axis by 4.2616 (19) $\AA$ $[\mathrm{Mn} 1 \cdots \mathrm{Mn} 2(1-x,-y, 2-z)]$ and along the $a$ axis by 3.490 (18) $\AA[\operatorname{Mn} 1 \cdots \operatorname{Mn} 2(x,-1+y,-1+\mathrm{z})]$. The distance between the Mn atoms of adjacent slabs $[\mathrm{Mn} 2 \cdots \mathrm{Mn} 2(-x$, $1-y,-z)]$ is 6.614 (2) $\AA$ (Fig. 1a).

Table 1
Selected bond lengths ( $\AA$ ).

| $\mathrm{Mn} 1-\mathrm{O} 4^{\mathrm{i}}$ | $2.052(5)$ | $\mathrm{Mn} 2-\mathrm{O} 7$ | $2.518(5)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Mn} 1-\mathrm{O} 2^{\text {ii }}$ | $2.108(5)$ | $\mathrm{Mn} 2-\mathrm{O} 5^{\text {vi }}$ | $2.526(5)$ |
| $\mathrm{Mn} 1-\mathrm{O} 1^{\text {iii }}$ | $2.179(4)$ | $\mathrm{As} 1-\mathrm{O} 6$ | $1.663(5)$ |
| $\mathrm{Mn} 1-\mathrm{O} 1^{\text {iv }}$ | $2.200(5)$ | $\mathrm{As} 1-\mathrm{O} 1$ | $1.697(5)$ |
| $\mathrm{Mn} 1-\mathrm{O} 3$ | $2.202(5)$ | $\mathrm{As} 1-\mathrm{O} 5$ | $1.709(5)$ |
| $\mathrm{Mn} 1-\mathrm{O} 5$ | $2.491(5)$ | $\mathrm{As} 1-\mathrm{O} 3$ | $1.710(4)$ |
| $\mathrm{Mn} 2-\mathrm{O} 8^{\mathrm{v}}$ | $2.094(5)$ | $\mathrm{As} 2-\mathrm{O} 7$ | $1.669(5)$ |
| $\mathrm{Mn} 2-\mathrm{O} 4$ | $2.136(5)$ | $\mathrm{As} 2-\mathrm{O} 2$ | $1.677(5)$ |
| $\mathrm{Mn} 2-\mathrm{O} 5^{\text {iv }}$ | $2.152(5)$ | $\mathrm{As} 2-\mathrm{O} 8$ | $1.677(4)$ |
| $\mathrm{Mn} 2-\mathrm{O} 3$ | $2.178(5)$ | $\mathrm{As} 2-\mathrm{O} 4$ | $1.698(5)$ |

[^0]

Figure 4
(a) The ball-and-stick and polyhedral composite representation showing parts of the $\mathrm{Mn}-\mathrm{As}-\mathrm{O}$ framework. The polyhedral units represent $\mathrm{AsO}_{4}$ tetrahedra. One of the $\left[\mathrm{Mn}_{4} \mathrm{O}_{18}\right]^{28-}$ units is located in the area outlined by a dotted ellipsoid. The only unshared oxygen atom, O 6 of the $\mathrm{As} 1 \mathrm{O}_{4}$
 octahedra. (c) Three $\left[\mathrm{Mn}_{4} \mathrm{O}_{18}\right]^{28-}$ units showing the intertetramer interaction through long $\mathrm{Mn} 1-\mathrm{O} 5$ and $\mathrm{Mn} 2-\mathrm{O} 5$ bonds (dotted lines).

As shown in Fig. 4a, the roles of the two arsenate groups are different. As1O $\mathrm{H}_{4}$ tetrahedra share oxygen atoms O 1 with $\mathrm{Mn1O}_{6}$ octahedra, and O3 and O5 atoms with $\mathrm{Mn1O}_{6}$ and $\mathrm{Mn} 2 \mathrm{O}_{6}$ octahedra while oxygen atom O 6 points towards neighboring slabs to form a bond with a $\mathrm{Ba}^{2+}$ cation (Fig. 4a). $\mathrm{As} 2 \mathrm{O}_{4}$ tetrahedra, on the other hand, share an edge (O4-O7) with $\mathrm{Mn} 2 \mathrm{O}_{6}$ octahedra of one tetrameric unit and share two
 two other neighboring tetrameric units. Thus ${\mathrm{As} 1 \mathrm{O}_{4}}^{0}$ and As2 $\mathrm{O}_{4}$ tetrahedra interlink two and three neighboring tetrameric units, respectively. As shown in Fig. $1 c,{\mathrm{As} 1 \mathrm{O}_{4}}$ and As2 $\mathrm{O}_{4}$ tetrahedra alternate along the $b$ axis, and this templatelike arrangement allows the barium cations to propagate in a zigzag fashion to maintain the distance between the $\left[\mathrm{Mn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}\right]^{2-}$ slabs.

Bond-valence sum (BVS) calculations (Brese \& O'Keefe, 1991) for $\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ result in values of 2.19, 1.84, 4.87, 5.05 and 1.98 valence units for Mn1, Mn2, As1, As2 and Ba1, respectively, which in each case is close to the expected values of 2 for $\mathrm{Mn}, 5$ for As and 2 for Ba.

It is important to note that the barium cations reside in the gaps between adjacent $\left[\mathrm{Mn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}\right]^{2-}$ slabs. The large interslab separation [6.614 (2) A ] leads us to believe that magnetic interactions that occur between these slabs are expected to be extremely weak, and the dominant magnetic exchange is expected to appear between $\mathrm{Mn}^{2+}$ ions in the tetrameric units within a slab. Judging from the reported magnetic properties for related $\mathrm{Ba} M_{2}\left(\mathrm{O}_{4}\right)_{2}(M=\mathrm{Co}, \mathrm{Ni} ; X=\mathrm{As}, \mathrm{P})$ compounds with the magnetic ions sitting on a honeycomb lattice (Martin et al., 2012), or those of $\beta-\mathrm{SrCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Yang et al., 2016) and


Figure 5
Single crystals of $\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ obtained from a RbCl flux.
$\mathrm{SrNi}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (He et al., 2008), we also expect interesting magnetic phenomena for $\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$.

## 3. Synthesis and crystallization

Light-pink crystals of $\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ were grown by employing an RbCl flux in a fused silica ampoule under vacuum. MnO ( $3.81 \mathrm{mmol}, 99.999+\%$, Alfa), $\mathrm{BaO}(1.90 \mathrm{mmol}$, $99.99+\%$, Aldrich ) and $\mathrm{As}_{2} \mathrm{O}_{5}$ ( $1.90 \mathrm{mmol}, 99.9+\%$, Strem) were mixed and ground with RbCl (1:3 by weight) in a nitrogen-blanketed drybox. The resulting mixture was heated to 818 K at $1 \mathrm{~K} \mathrm{~min}^{-1}$, isothermed for two days, heated to 1023 K at $1 \mathrm{~K} \mathrm{~min}^{-1}$, isothermed for another four days, then slowly cooled to 673 K at $0.1 \mathrm{~K} \mathrm{~min}^{-1}$, followed by furnacecooling to room temperature. Prismatic crystals of $\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ (Fig. 5) were retrieved upon washing off recrystallized RbCl with deionized water.

## 4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The final Fourier difference synthesis showed the maximum residual electron density $0.96 \AA$ from Ba 1 and the minimum $0.83 \AA$ from the same site.

## Acknowledgements

The Division of Science, Mathematics and Technology at Governors State University and the University Research Grant (URG) are gratefully acknowledged for their continuous support. Special thanks are due to Dr Liurukara D. Sanjeewa at Clemson University for X-ray crystallography expertise.

Table 2
Experimental details.
Crystal data
Chemical formula
$M_{\mathrm{r}}$
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
$0.039,0.097,1.14$
$\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$
525.06

Triclinic, $P \overline{1}$
293
5.7981 (12), 7.0938 (14), 9.817 (2)
109.75 (3), 100.42 (3), 98.40 (3)
364.26 (15)

2
Mo $K \alpha$
17.78
$0.20 \times 0.10 \times 0.06$

Rigaku AFC8S
Multi-scan (REQAB; Rigaku, 1998)
0.808, 1.000

3149, 1330, 1254
0.035
0.606

1330
119
3.25, -2.93

Computer programs: CrystalClear (Rigaku, 2006), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

## References

Adams, R., Layland, R. \& Payen, C. (1996). Polyhedron, 15, 12351239.

Belik, A. A., Azuma, M., Matsuo, A., Kaji, T., Okubo, S., Ohta, H., Kindo, K. \& Takano, M. (2006). Phys. Rev. B, 73, 024429-1-0244297.

Belik, A. A., Azuma, M., Matsuo, A., Whangbo, M., Koo, H. J., Kikuchi, J., Kaji, T., Okubo, S., Ohta, H., Kindo, K. \& Takano, M. (2005). Inorg. Chem. 44, 6632-6640.

Belik, A. A., Lazoryak, B. I., Pokholok, K. V., Terekhina, T. P., Leonidov, I. A., Mitberg, E. B., Karelina, V. V. \& Kellerman, D. G. (2001). J. Solid State Chem. 162, 113-121.

Bera, A. K., Lake, B., Islam, A. T. M. N., Klemke, B., Faulhaber, E. \& Law, J. M. (2013). Phys. Rev. B, 87, 224423-1-224423-10.
Bircsak, Z. \& Harrison, W. T. A. (1998). Acta Cryst. C54, 1554-1556.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Čabrić, B., Žižić, B. \& Napijalo, M. L. (1982). J. Cryst. Growth, 60, 169-171.
David, R., Kabbour, H., Pautrat, A. \& Mentré, O. (2013). Inorg. Chem. 52, 8732-8737.
El Bali, B., Boukhari, A., Aride, J. \& Abraham, F. (1993b). J. Solid State Chem. 104, 453-459.
El Bali, B., Boukhari, A., Glaum, R., Gerk, M. \& Maass, K. (2000). Z. Anorg. Allg. Chem. 626, 2557-2562.
El Bali, B., Boukhari, A.., Holt, E. M. \& Aride, J. (1993a). J. Crystallogr. Spectrosc. Res. 23, 1001-1004.
El Bali, B., Lachkar, M., Allouchi, H. \& Narymbetov, B. (2004). Phosphorus Res. Bull. 15, 125-130.
Eymond, S., Martin, M. \& Durif, A. (1969a). C. R. Acad. Sci. Ser. C, 286, 1694-1696.
Eymond, S., Martin, M. \& Durif, A. (1969b). Mater. Res. Bull. 4, 595599.

He, Z. Z., Chen, S. C., Lue, C. S., Cheng, W. D. \& Ueda, Y. (2008). Phys. Rev. B, 78, 212410-1-212410-4.
He, Z., Ueda, Y. \& Itoh, M. (2007). J. Solid State Chem. 180, 17701774.

Hemon, A. \& Courbion, G. (1990). J. Solid State Chem. 85, 164168.

Kabbour, H., David, R., Pautrat, A., Koo, H. J., Whangbo, M. H., André, G. \& Mentré, O. (2012). Angew. Chem. Int. Ed. 51, 1174511749.

Martin, N., Regnault, L. P. \& Klimko, S. (2012). J. Phys. Conf. Ser. 340, 012012-1-012012-9.
Moqine, A., Boukhari, A. \& Darriet, J. (1993). J. Solid State Chem. 107, 362-367.
Niesen, S. K., Heyer, O., Lorenz, T. \& Valldor, M. (2011). J. Magn. Magn. Mater. 323, 2575-2578.
Osterloh, D. \& Müller-Buschbaum, H. (1994a). Z. Naturforsch. Teil B, 49, 923-926.
Osterloh, D. \& Müller-Buschbaum, H. (1994b). Z. Anorg. Allg. Chem. 620, 651-654.
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
Rigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rogado, N., Huang, Q., Lynn, J., Ramirez, A. P., Huse, D. \& Cava, R. J. (2002). Phys. Rev. B, 65, 144443-1-144443-7.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Uchiyama, Y., Sasago, Y., Tsukada, I., Uchinokura, K., Zheludev, A., Hayashi, T., Miura, N. \& Böni, P. (1999). Phys. Rev. Lett. 83, 632635.

Ulutagay-Kartin, M., Hwu, S.-J. \& Clayhold, J. A. (2003). Inorg. Chem. 42, 2405-2409.
Velikodnyi, Y. A., Trunov, V. K., Zhuravlev, V. D. \& Makarevich, L. G. (1982). Sov. Phys. Crystallogr. 27, 226-229.

Vogt, R. \& Müller-Buschbaum, H. (1990). Z. Anorg. Allg. Chem. 591, 167-173.
Von Postel, M. \& Müller-Buschbaum, H. (1992). Z. Anorg. Allg. Chem. 615, 97-100.
Weil, M. (2016). Cryst. Growth Des. 16, 908-921.
Weil, M. \& Kremer, R. K. (2017). J. Solid State Chem. 245, 115-126.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wichmann, R. \& Müller-Buschbaum, H. (1986a). Z. Anorg. Allg. Chem. 534, 153-158.
Wichmann, R. \& Müller-Buschbaum, Hk. (1986b). Rev. Chim. Miner. 23, 1-7.
Yang, M., Zhang, S. Y., Guo, W. B. \& He, Z. Z. (2016). Solid State Sci. 52, 72-77.

## supporting information

Acta Cryst. (2017). E73, 1855-1860 [https://doi.org/10.1107/S2056989017016152]

## Crystal structure of $\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ containing discrete $\left[\mathrm{Mn}_{4} \mathrm{O}_{18}\right]^{28-}$ units

Salvador Alcantar, Hollis R. Ledbetter and Kulugammana G. S. Ranmohotti

## Computing details

Data collection: CrystalClear (Rigaku, 2006); cell refinement: CrystalClear (Rigaku, 2006); data reduction: CrystalClear (Rigaku, 2006); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Barium dimanganese(II) bis(arsenate)

## Crystal data

$\mathrm{BaMn}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$
$M_{r}=525.06$
Triclinic, $P \overline{1}$
$a=5.7981$ (12) $\AA$
$b=7.0938(14) \AA$
$c=9.817(2) \AA$
$\alpha=109.75$ (3) ${ }^{\circ}$
$\beta=100.42(3)^{\circ}$
$\gamma=98.40(3)^{\circ}$
$V=364.26(15) \AA^{3}$

## Data collection

Rigaku AFC8S
diffractometer
Radiation source: fine-focus sealed tube
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
$T_{\min }=0.808, T_{\text {max }}=1.000$
3149 measured reflections

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.097$
$S=1.14$
1330 reflections
119 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
Z=2
$$

$$
F(000)=472
$$

$$
D_{\mathrm{x}}=4.787 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA
$$

Cell parameters from 3100 reflections
$\theta=2.3-25.2^{\circ}$
$\mu=17.78 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Column, light pink
$0.20 \times 0.10 \times 0.06 \mathrm{~mm}$

> 1330 independent reflections
> 1254 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.035$
> $\theta_{\max }=25.5^{\circ}, \theta_{\min }=2.3^{\circ}$
> $h=-6 \rightarrow 7$
> $k=-8 \rightarrow 8$
> $l=-11 \rightarrow 11$
> 1 standard reflections every 1 reflections

Secondary atom site location: difference Fourier
map
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0674 P)^{2}+0.2802 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=3.25$ e $\AA^{-3}$
$\Delta \rho_{\text {min }}=-2.93$ e $\AA^{-3}$
Extinction correction: SHELXL2014
(Sheldrick, 2015a),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.076 (3)

## Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Ba1 | $0.24355(7)$ | $0.79849(6)$ | $0.05371(4)$ | $0.0100(2)$ |
| Mn1 | $0.36901(17)$ | $1.15237(15)$ | $0.44407(11)$ | $0.0091(3)$ |
| Mn2 | $0.00727(18)$ | $0.59526(15)$ | $0.35472(12)$ | $0.0105(3)$ |
| As1 | $-0.15775(11)$ | $1.02502(10)$ | $0.30239(7)$ | $0.0061(3)$ |
| As2 | $0.40017(11)$ | $0.42782(10)$ | $0.24010(7)$ | $0.0062(3)$ |
| O1 | $-0.3934(8)$ | $0.9502(7)$ | $0.3669(5)$ | $0.0092(10)$ |
| O2 | $0.3546(8)$ | $0.1879(7)$ | $0.2382(5)$ | $0.0124(10)$ |
| O3 | $0.0571(8)$ | $0.8910(7)$ | $0.3296(5)$ | $0.0105(10)$ |
| O4 | $0.3801(8)$ | $0.5917(7)$ | $0.4075(5)$ | $0.0099(10)$ |
| O5 | $-0.0125(8)$ | $1.2729(7)$ | $0.4122(5)$ | $0.0125(10)$ |
| O6 | $-0.2437(9)$ | $0.9808(7)$ | $0.1213(5)$ | $0.0139(11)$ |
| O7 | $0.1684(8)$ | $0.4587(7)$ | $0.1276(6)$ | $0.0133(11)$ |
| O8 | $0.6676(8)$ | $0.4888(7)$ | $0.2047(5)$ | $0.0127(10)$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ba1 | $0.0116(3)$ | $0.0073(3)$ | $0.0072(3)$ | $-0.00194(18)$ | $0.00103(18)$ | $0.0003(2)$ |
| Mn1 | $0.0061(5)$ | $0.0097(5)$ | $0.0073(5)$ | $-0.0021(4)$ | $0.0006(4)$ | $0.0000(4)$ |
| Mn2 | $0.0053(5)$ | $0.0125(6)$ | $0.0087(6)$ | $0.0006(4)$ | $0.0003(4)$ | $-0.0009(4)$ |
| As1 | $0.0043(4)$ | $0.0072(4)$ | $0.0043(4)$ | $-0.0005(3)$ | $0.0007(3)$ | $-0.0001(3)$ |
| As2 | $0.0036(4)$ | $0.0060(4)$ | $0.0069(4)$ | $-0.0002(3)$ | $0.0007(3)$ | $0.0007(3)$ |
| O1 | $0.006(2)$ | $0.011(2)$ | $0.010(2)$ | $0.0021(17)$ | $0.0015(17)$ | $0.0034(19)$ |
| O2 | $0.017(2)$ | $0.006(2)$ | $0.012(3)$ | $0.0009(18)$ | $0.0022(19)$ | $0.0023(19)$ |
| O3 | $0.006(2)$ | $0.009(2)$ | $0.016(3)$ | $0.0021(17)$ | $0.0009(18)$ | $0.005(2)$ |
| O4 | $0.009(2)$ | $0.009(2)$ | $0.008(2)$ | $0.0015(18)$ | $0.0040(17)$ | $-0.0008(18)$ |
| O5 | $0.013(2)$ | $0.013(2)$ | $0.006(2)$ | $-0.0032(18)$ | $0.0037(18)$ | $-0.001(2)$ |
| O6 | $0.017(3)$ | $0.018(3)$ | $0.004(2)$ | $0.002(2)$ | $-0.0009(19)$ | $0.004(2)$ |
| O7 | $0.008(2)$ | $0.013(2)$ | $0.016(3)$ | $-0.0008(18)$ | $-0.0042(19)$ | $0.007(2)$ |
| O8 | $0.006(2)$ | $0.018(2)$ | $0.011(2)$ | $-0.0018(18)$ | $0.0055(18)$ | $0.002(2)$ |
|  |  |  |  |  |  |  |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$ | $2.647(4)$ | $\mathrm{Mn} 2-\mathrm{O} 8^{\text {viii }}$ | $2.094(5)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Ba} 1-\mathrm{O} 7^{\mathrm{ii}}$ | $2.682(5)$ | $\mathrm{Mn} 2-\mathrm{O} 4$ | $2.136(5)$ |
| $\mathrm{Ba} 1-\mathrm{O}^{\mathrm{iii}}$ | $2.687(5)$ | $\mathrm{Mn} 2-\mathrm{O} 5^{\text {vii }}$ | $2.152(5)$ |
| $\mathrm{Ba} 1-\mathrm{O} 7$ | $2.741(5)$ | $\mathrm{Mn} 2-\mathrm{O} 3$ | $2.178(5)$ |
| $\mathrm{Ba} 1-\mathrm{O}^{\mathrm{iv}}$ | $2.853(5)$ | $\mathrm{Mn} 2-\mathrm{O} 7$ | $2.518(5)$ |
| $\mathrm{Ba} 1-\mathrm{O}^{v}$ | $2.921(5)$ | $\mathrm{Mn} 2 — \mathrm{O} 5^{\text {ix }}$ | $2.526(5)$ |


| $\mathrm{Ba} 1-\mathrm{O} 3$ | $3.000(5)$ |
| :--- | :--- |
| $\mathrm{Ba} 1-\mathrm{O} 1^{\mathrm{v}}$ | $3.131(5)$ |
| $\mathrm{Mn} 1-\mathrm{O} 4^{\text {vi }}$ | $2.052(5)$ |
| $\mathrm{Mn} 1-\mathrm{O}^{\mathrm{i}}$ | $2.108(5)$ |
| $\mathrm{Mn} 1-\mathrm{O}^{\mathrm{v}}$ | $2.179(4)$ |
| $\mathrm{Mn} 1-\mathrm{O} 1^{\text {vii }}$ | $2.200(5)$ |
| $\mathrm{Mn} 1-\mathrm{O} 3$ | $2.202(5)$ |
| $\mathrm{Mn} 1-\mathrm{O} 5$ | $2.491(5)$ |
| $\mathrm{Mn} 1-\mathrm{Mn1}^{\text {vi }}$ | $3.185(2)$ |

$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 7^{\mathrm{ii}}$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O}^{\text {iii }}$
$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O}^{\text {iii }}$
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 7$
$\mathrm{O} 7 \mathrm{ii}-\mathrm{Ba} 1-\mathrm{O} 7$
O6 $6^{\text {iii- }} \mathrm{Ba} 1-\mathrm{O} 7$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O}^{\mathrm{iv}}$
$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Ba}-\mathrm{O}^{\mathrm{iv}}$
$\mathrm{O} 6^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 8^{\mathrm{iv}}$
$\mathrm{O} 7-\mathrm{Ba} 1-\mathrm{O}^{\mathrm{iv}}$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O}^{\mathrm{v}}$
$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Ba}-\mathrm{O}^{\mathrm{v}}$
O6 $6^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O}^{\mathrm{v}}$
O7- $\mathrm{Ba} 1-\mathrm{O}^{\vee}$
$\mathrm{O} 8^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O}^{\mathrm{v}}$
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 3$
$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 3$
O6 $6^{\text {iii- }} \mathrm{Ba} 1-\mathrm{O} 3$
$\mathrm{O} 7-\mathrm{Ba}-\mathrm{O} 3$
$\mathrm{O} 8^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 3$
O6 ${ }^{v}-\mathrm{Ba} 1-\mathrm{O} 3$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O}^{\mathrm{v}}$
$\mathrm{O}^{7 i}-\mathrm{Ba}-\mathrm{O}^{\mathrm{v}}$
$\mathrm{O} 6^{\text {iii- }}-\mathrm{Ba} 1-\mathrm{O} 1^{v}$
$\mathrm{O} 7-\mathrm{Ba} 1-\mathrm{O}^{v}$
$\mathrm{O}^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O}^{\mathrm{v}}$
$\mathrm{O}^{v}-\mathrm{Ba}-\mathrm{Ol}^{v}$
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O}^{v}$
$\mathrm{O} 4^{\mathrm{vi}}-\mathrm{Mn} 1-\mathrm{O} 2^{\mathrm{i}}$
$\mathrm{O} 4{ }^{\text {vi }}-\mathrm{Mn} 1-\mathrm{O}^{\mathrm{v}}$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O}^{\mathrm{v}}$
$\mathrm{O} 4{ }^{\mathrm{vi}}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {vii }}$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {vii }}$
$\mathrm{O}^{\mathrm{v}}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {vii }}$
$\mathrm{O} 4^{\text {vi }}-\mathrm{Mn} 1-\mathrm{O} 3$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 3$
$\mathrm{O}^{\mathrm{v}}-\mathrm{Mn} 1-\mathrm{O} 3$
$\mathrm{O}^{\text {vii }}-\mathrm{Mn} 1-\mathrm{O} 3$
3.000 (5)
3.131 (5)
2.052 (5)
2.108 (5)
2.179 (4)
2.200 (5)
2.202 (5)
3.185 (2)
133.63 (15)
74.41 (15)
90.91 (15)
127.00 (15)
71.27 (16)
158.19 (14)
144.78 (15)
69.26 (14)
79.72 (15)
82.17 (15)
67.93 (15)
152.74 (15)
78.74 (16)
111.37 (14)
84.02 (14)
63.79 (14)
94.34 (15)
126.26 (14)
69.23 (14)
150.59 (13)
112.17 (13)
58.18 (14)
146.18 (14)
121.73 (13)
78.33 (13)
121.31 (13)
54.34 (13)
60.47 (12)
102.96 (19)
99.75 (17)
82.98 (19)
84.93 (19)
167.89 (17)
86.66 (18)
166.2 (2)
88.15 (19)
89.68 (17)
85.54 (18)

| As1-O6 | $1.663(5)$ |
| :--- | :--- |
| As1-O1 | $1.697(5)$ |
| As1-O5 | $1.709(5)$ |
| As1-O3 | $1.710(4)$ |
| As2-O7 | $1.669(5)$ |
| As2-O2 | $1.677(5)$ |
| As2-O8 | $1.677(4)$ |
| As2-O4 | $1.698(5)$ |


| $\mathrm{O} 8^{\text {viii }}-\mathrm{Mn} 2-\mathrm{O} 5^{\text {ix }}$ | 94.05 (18) |
| :---: | :---: |
| O4-Mn2-O5 $5^{\text {ix }}$ | 79.10 (17) |
| $\mathrm{O} 5^{\text {vii }}-\mathrm{Mn} 2-\mathrm{O} 5^{\text {ix }}$ | 81.45 (17) |
| $\mathrm{O} 3-\mathrm{Mn} 2-\mathrm{O} 5^{\text {ix }}$ | 173.25 (17) |
| O7-Mn2-O5 $5^{\text {ix }}$ | 94.82 (16) |
| O6-As1-O1 | 111.1 (2) |
| O6-As1-O5 | 114.6 (2) |
| O1-As1-O5 | 110.1 (2) |
| O6-As1-O3 | 109.1 (2) |
| O1-As1-O3 | 109.0 (2) |
| O5-As1-O3 | 102.5 (2) |
| O7-As2-O2 | 111.2 (2) |
| O7-As2-08 | 114.4 (3) |
| O2-As2-O8 | 109.7 (2) |
| O7-As2-O4 | 99.8 (2) |
| $\mathrm{O} 2-\mathrm{As} 2-\mathrm{O} 4$ | 109.1 (2) |
| O8-As2-O4 | 112.2 (2) |
| As1-O1-Mn1 ${ }^{\text {viii }}$ | 121.9 (2) |
| As1-O1-Mn1 ${ }^{\text {vii }}$ | 125.5 (2) |
| Mn1 ${ }^{\text {viii -O1-Mn1 }}$ - ${ }^{\text {vii }}$ | 93.34 (18) |
| As1-O1-Ba1 ${ }^{\text {viii }}$ | 93.03 (18) |
| Mn1 ${ }^{\text {viii- }} \mathrm{O} 1-\mathrm{Ba}{ }^{\text {viii }}$ | 85.45 (14) |

117.6 (2)
141.9 (3)
100.46 (18)
127.5 (2)
98.5 (2)
127.0 (2)
104.3 (2)
101.98 (16)
88.38 (16)
127.8 (3)
99.8 (2)
121.3 (2)
122.2 (3)
88.39 (19)
97.19 (19)

## supporting information

| $\mathrm{O} 4{ }^{\text {vi }}-\mathrm{Mn} 1-\mathrm{O} 5$ | 104.50 (16) | As1-O5-Mn2 ${ }^{\text {i }}$ | 129.8 (3) |
| :---: | :---: | :---: | :---: |
| $\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 5$ | 79.89 (17) | $\mathrm{Mn} 2{ }^{\text {vii }}$-O5-Mn2 ${ }^{\text {i }}$ | 98.55 (17) |
| $\mathrm{O} 1{ }^{\text {v }}-\mathrm{Mn1}-\mathrm{O} 5$ | 152.85 (16) | $\mathrm{Mn} 1-\mathrm{O} 5-\mathrm{Mn} 2{ }^{\text {i }}$ | 116.29 (18) |
| $\mathrm{O}{ }^{\text {vii }} \mathrm{Mn} 1-\mathrm{O} 5$ | 107.30 (17) | As1-O6- $\mathrm{Ba}^{1 \mathrm{iii}}$ | 137.3 (3) |
| $\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 5$ | 68.96 (16) | As1-O6- $\mathrm{Ba}^{\text {viii }}$ | 101.6 (2) |
| O8 ${ }^{\text {viii- }} \mathrm{Mn} 2-\mathrm{O} 4$ | 150.46 (18) | $\mathrm{Ba} 1^{\text {iii- }}$ - $06-\mathrm{Ba} 1^{\text {viii }}$ | 101.26 (16) |
| $\mathrm{O} 8^{\text {viii }}-\mathrm{Mn} 2-\mathrm{O} 5^{\text {vii }}$ | 116.23 (18) | As2-O7-Mn2 | 87.0 (2) |
| $\mathrm{O} 4-\mathrm{Mn} 2-\mathrm{O} 5^{\text {vii }}$ | 91.36 (18) |  | 132.7 (2) |
| O8 ${ }^{\text {viii- }} \mathrm{Mn} 2-\mathrm{O} 3$ | 92.31 (19) | $\mathrm{Mn} 2-\mathrm{O} 7-\mathrm{Ba} 1^{\text {ii }}$ | 96.77 (16) |
| $\mathrm{O} 4-\mathrm{Mn} 2-\mathrm{O} 3$ | 96.40 (18) | As2-O7-Ba1 | 116.9 (2) |
| $\mathrm{O}{ }^{\text {vii }}-\mathrm{Mn} 2-\mathrm{O} 3$ | 93.72 (19) | $\mathrm{Mn} 2-\mathrm{O} 7-\mathrm{Ba} 1$ | 100.85 (16) |
| O8 ${ }^{\text {viii- }} \mathrm{Mn} 2-\mathrm{O} 7$ | 85.61 (17) | $\mathrm{Ba} 1{ }^{\mathrm{ii}}-\mathrm{O} 7-\mathrm{Ba} 1$ | 108.73 (16) |
| $\mathrm{O} 4-\mathrm{Mn} 2-\mathrm{O} 7$ | 66.64 (17) | As2-O8-Mn2 ${ }^{\text {v }}$ | 127.9 (3) |
| $\mathrm{O} 5^{\text {vii }} \mathrm{Mn} 2-\mathrm{O} 7$ | 157.97 (16) |  | 116.1 (2) |
| $\mathrm{O} 3-\mathrm{Mn} 2-\mathrm{O} 7$ | 87.90 (17) | $\mathrm{Mn} 2{ }^{\mathrm{v}}-\mathrm{O} 8-\mathrm{Ba} 1^{\text {iv }}$ | 102.60 (17) |

Symmetry codes: (i) $x, y+1, z$; (ii) $-x,-y+1,-z$; (iii) $-x,-y+2,-z$; (iv) $-x+1,-y+1,-z$; (v) $x+1, y, z$; (vi) $-x+1,-y+2,-z+1$; (vii) $-x,-y+2,-z+1$; (viii) $x-1, y, z ;$ (ix) $x, y-1, z$.


[^0]:    Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $x, y+1, z$; (iii) $x+1, y, z$; (iv) $-x,-y+2,-z+1$; (v) $x-1, y, z$; (vi) $x, y-1, z$.

