

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 2 September 2017
Accepted 7 November 2017

Edited by A. Van der Lee, Université de Montpellier II, France

Keywords: crystal structure; cyclohexane-1,4dicarboxylic acid; lanthanum(III) complex.

CCDC reference: 1546730
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of poly[[di- μ_{3}-acetato-tetraaquabis(μ_{2}-cyclohexane-1,4-dicarboxylato)dilanthanum(III)] dihydrate]

 M. R. Sudarsankumar ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Mahatma Gandhi College, Thiruvananthapuram 695004 , Kerala, India, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka. *Correspondence e-mail: msithambaresan@gmail.com

The title compound, $\left\{\left[\mathrm{La}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n} \quad$ or $\left[\mathrm{La}_{2}(a c)_{2}(e, a \text {-cis-1,4-chdc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, where $a c$ is acetate and 1,4-chdc is cyclohexane-1,4-dicarboxylate anion, is a binuclear lanthanum(III) complex. Each metal atom is decacoordinated by four O atoms from two distinct 1,4chdc ${ }^{2-}$ ligands, four O atoms from three acetate groups and two O atoms from coordinated water molecules to form a distorted bicapped square-antiprismatic geometry. Two non-coordinated water molecules are also present in the formula unit. The most remarkable feature of this compound is that it possesses a only cis conformation for cyclohexane-1,4-dicarboxylic acid, although the raw material consists of a mixture of cis and trans isomers. The $\mu_{3}-\eta^{2}: \eta^{2}$ coordination mode of the bridging acetate group and the flexible dicarboxylate fragments of 1,4chdc ${ }^{2-}$ results in the formation of infinite two-dimensional lanthanidecarboxylate layers within the crystal structure. The directionality of strong intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions provides robustness to the layers, which leads to the construction of a three-dimensional supramolecular network. The crystal studied was refined as a two-component twin.

1. Chemical context

1,4-Cyclohexanedicarboxyic acid (1,4-chdcH H_{2}) is a flexible alicyclic, ditopic ligand having a chair-type backbone structure, which has been used for the construction of many coordination polymers (CPs) with remarkable architectures (Liu et al., 2010). It can exist in three different conformations two trans isomers, (a, a) and (e, e), and one cis (e, a) form. From a thermodynamical point of view, the trans (e, e) form is the most stable of the three different conformations as a result of the equatorial-equatorial -COOH groups and the trans (a, a) isomer is the least stable because of 1,3-diaxial hindrance (Yu et al., 2007; Gong et al., 2005; Bi et al., 2003; Du et al., 2005; Chen et al., 2014).Theoretical calculations suggest that the isomers tend to cause conformational inversion within the ligand structure due to the flexibility of the $\mathrm{C}-\mathrm{C}$ bond rotation and also because of the extremely low free energy change between them (Qiblawi et al., 2013; Lin \& Tong, 2011; Liu et al., 2010). Furthermore, the isomeric separation of the organic ligand can be controlled by several factors such as the pH of the solution, the nature of the metal ion, the co-ligand, the reaction solvent and the temperature (Lin \& Tong, 2011; Liu et al., 2010).

2. Structural commentary

The asymmetric unit of the title compound consists of one crystallographically unique La metal ion, a fully deprotonated $1,4-$ chdc $^{2-}$ anion, an acetate moiety and three water molecules (two coordinated and one non-coordinated). From the molecular structure (Fig. 1), it is evident that each $\mathrm{La}^{\mathrm{III}}$ atom has a distorted bicapped square-antiprismatic coordination sphere defined by four oxygen atoms from two distinct 1,4 -chdc ${ }^{2-}$ ligands ($\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 7, \mathrm{O} 8$), four oxygen atoms from three acetate groups (O5, $\left.06, \mathrm{O}^{\prime}, \mathrm{O6}^{\prime}\right)$ and two oxygen atoms from coordinated water molecules $(\mathrm{O} 3, \mathrm{O} 4)$ to form a $\left[\mathrm{LaO}_{10}\right]$ coordination polyhedron (Fig. 2). Of the three prevalent conformations of $1,4-\mathrm{chdcH}_{2}$, low temperature usually favours the cis (e, a) and high temperature favours the trans (e, e) conformational compounds (Lin \& Tong, 2011; Lu et al., 2008;

Figure 1
ORTEP view of the molecular structure of the title complex with the atom-numbering scheme and ellipsoids drawn at the 50% probability level..

Figure 2
Bicapped square-antiprismatic geometry of an $\left[\mathrm{LaO}_{10}\right]$ polyhedron. Displacement ellipsoids are drawn at the 80% probability level.

Bi et al., 2004). Here, the bent structure of the organic linker possesses an L-shaped cis (e,a) conformation within the crystal structure. The corresponding $\mathrm{La}-\mathrm{O}$ bond lengths are in the range 2.506 (8)-2.792 (7) \AA and the $\mathrm{O}-\mathrm{La}-\mathrm{O}$ bond angles vary from 46.51 (19) to 170.7 (2) ${ }^{\circ}$. The $\mathrm{La}-\mathrm{O}$ bond distances are comparable with those in several reported structures in which 1,4-cyclohexanedicarboxylic acid exists in various coordination modes and conformations (Rao et al., 2007; Qi et al., 2008).

The bridging $\mu_{3}-\eta^{2}: \eta^{2}$ coordination mode (each oxygen atom connects two metal atoms) of the acetate group joins two $\left[\mathrm{LaO}_{10}\right]$ polyhedra by edge sharing to form a dimeric structure. The dimers are then interlinked by $\mathrm{La}-\mathrm{O}-\mathrm{La}$ bonding and as a consequence of this, infinite zigzag $1 \mathrm{D}\left[\mathrm{La}_{2} \mathrm{O}_{2}\right]$ chains are formed. Within these chains, La• La non-bonding distances are found to be 4.5835 (9) and 4.4125 (9) \AA. Additionally, the bis-bidentate chelating $\mu_{2}-\eta^{1}: \eta^{1}: \eta^{1}: \eta^{1}$ coordination mode of the dicarboxylate group of $1,4-$ chdc $^{2-}$ connects two metal atoms and hence converts it into a 2D coordination polymeric structure parallel to the $a b$ plane. A perspective view of the packing along the c axis in a wireframe model (Fig. 3) shows

Figure 3
Perspective view of the packing along the c axis.

Table 1
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C10-H10C...O1	0.96	2.49	3.295 (14)	141
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O}^{\text {i }}$	0.90 (2)	1.92 (5)	2.771 (10)	158 (12)
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{D} \cdots \mathrm{O} 9^{\text {ii }}$	0.89 (2)	1.96 (6)	2.812 (11)	158 (12)
O3-H3C . O9	0.90 (2)	1.97 (3)	2.858 (12)	172 (13)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{D} \cdots \mathrm{O}^{\text {ii }}$	0.90 (2)	1.86 (3)	2.750 (11)	170 (14)
$\mathrm{O} 9-\mathrm{H} 9 A \cdots \mathrm{O} 2$	0.90 (2)	2.20 (11)	2.786 (12)	122 (11)
$\mathrm{O} 9-\mathrm{H} 9 B \cdots \mathrm{O} 1^{\text {iii }}$	0.90 (2)	1.97 (5)	2.846 (11)	164 (13)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+1$; (iii) $x-1, y, z$.
the formation of infinite 2D lanthanide-carboxylate layers. The $\left[\mathrm{La}_{2} \mathrm{O}_{2}\right]$ chains are then further interconnected by a dicarboxylate anion from two $1,4-$ chdc $^{2-}$ units to form a 24 membered macrocyclic ring as shown in Fig. 4. A series of organotin complexes of the cis and trans isomers of $1,4-\mathrm{chdcH}_{2}$ show similar 2D networks containing 26- and 36-membered tetratin macrocyclic rings (Ma et al., 2009).

3. Supramolecular features

From the polyhedral view along the a axis (Fig. 5), it is clear that the two lattice water molecules residing in the voids of the $1,4-\mathrm{chdc}^{2-}$ units are responsible for the development of hydrophilic channels within the crystal structure. The hydrogen-bonding interactions (Table 1) shown in Fig. 6 play a vital role in increasing the stability and higher dimensionality of the crystal packing. Here, the oxygen atom O 9 of the lattice

Figure 4
The 24 -membered macrocyclic ring formation by 1,4 -chdc ${ }^{2-}$ between two [$\mathrm{La}_{2} \mathrm{O}_{2}$] chains.

Figure 5
Polyhedral view along the a axis showing the free water molecules.
water molecule acts as a donor for hydrogen bonds with oxygen atoms O 1 and O 2 of the carboxylate group of the 1,4chdc $^{2-}$ ligand $[\mathrm{O} 9-\mathrm{H} 9 A \cdots \mathrm{O} 2=2.786$ (12) \AA and $\mathrm{O} 9-$ $\mathrm{H} 9 B \cdots \mathrm{O}^{1 i i}=2.846(11) \AA$]. It also acts as the hydrogen-bond acceptor for oxygen atoms O 3 and O 4 of the coordinated water molecules $[\mathrm{O} 3-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{O} 9=2.858$ (12) \AA and $\mathrm{O} 4-$ $\mathrm{H} 4 \mathrm{D} \cdots \mathrm{O} 9^{\text {ii }} 2.812$ (11) Å]. Similarly, oxygen atom O7 of the carboxylate group of 1,4 -chdc acts as an acceptor to atoms O3 and O 4 of the coordinated water molecules $\left[\mathrm{O} 3-\mathrm{H} 3 \mathrm{D} \cdots \mathrm{O} 7^{\text {ii }}\right.$ $=2.750(11) \AA$ and $\mathrm{O} 4-\mathrm{H} 4 C \cdots \mathrm{O}^{\mathrm{i}}=2.771(10) \AA$. A . Apart from this strong intermolecular hydrogen bonding, there are also weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between the carbon atom C 10 of the coordinated acetate group and the O1 oxygen atom of a carboxylate group of the organic linker [C10$\mathrm{H} 10 C \cdots \mathrm{O} 1=3.295(14) \AA$. .

4. Database survey

In the three-dimensional structures of $\left[\mathrm{La}_{2}(1,4 \text {-chdc })_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$, $\left[\mathrm{La}_{3}(1,4-\mathrm{Hchdc})_{2}(1,4-\mathrm{chdc})_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{La}_{2}(1,4-\mathrm{chdc})_{3^{-}}\right.$

Figure 6
Hydrogen-bonding interactions (dashed lines) in the structure of the title compound. For symmetry operations, see Table 1.

Table 2
Experimental details.
Crystal data
Chemical formula

M_{r}

Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and
observed $[I>2 \sigma(I)]$ reflections $(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

$$
\begin{aligned}
& {\left[\mathrm{La}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}\right)_{2}-\right.} \\
& \left.\quad\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& 844.32 \\
& \text { Triclinic, } P \overline{1} \\
& 293 \\
& 6.9341(8), 8.9597(13), \\
& 12.3030(16) \\
& 110.217(5), 91.060(5), 93.280(5) \\
& 715.49(16) \\
& 1 \\
& \mathrm{Mo} \mathrm{~K} \mathrm{\alpha} \\
& 3.02 \\
& 0.20 \times 0.15 \times 0.15 \\
& \\
& \text { Bruker Kappa APEXII CCD } \\
& \text { Multi-scan }(S A D A B S ; \text { Bruker, } \\
& 2004) \\
& 0.60,0.74 \\
& 2818,2815,2447 \\
& 0.617 \\
& \\
& 0.041,0.146,1.07 \\
& 2818 \\
& 204 \\
& 9 \\
& \mathrm{H} \text { atoms treated by a mixture of } \\
& \text { independent and constrained } \\
& \text { refinement } \\
& 2.17,-2.46
\end{aligned}
$$

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SIR92 (Sheldrick, 2015), DIAMOND (Brandenburg, 2010), SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$, the dicarboxylate anion exists in different conformations obtained under hydrothermal conditions (Rao et al., 2007). Similarly a two-dimensional lanthanum coordination polymer $\left[\mathrm{La}_{2}(1,10 \text {-phen })_{2}(1,4-\text { chdc })_{3}\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ with $\pi-\pi$ stacking was observed by the incorporation of 1,10 -phenanthroline as a co-ligand along with 1,4-cyclohexanedicarboxylic acid (Qi et al., 2008). Additionally, dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO) solvent-coordinated lanthanum complexes, one-dimensional $\left[\mathrm{La}(\right.$ cis-chdc $)(\mathrm{DMF})_{2^{-}}$ $\left.\left(\mathrm{NO}_{3}\right)\right]$ and three-dimensional $\left[\mathrm{La}_{2}(\text { trans-chdc })_{3}(\mathrm{DMSO})_{4}\right]$ have also been reported. The presence of solvent molecules can completely segregate the cis and trans conformations of 1,4-chdc (Tian et al., 2009).

5. Synthesis and crystallization

Single crystals of the title compound were prepared by the geldiffusion technique at ambient temperature using sodium metasilicate nonahydrate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}\right)$ as the gel medium. The optimum condition for crystal growth was obtained by dissolving 0.75 g of $1,4-\mathrm{H}_{2}$ chdc in 25 ml of $1.04 \mathrm{~g} \mathrm{~cm}^{-3}$ dense gel medium. 5 ml of the above solution was poured into glass tubes and the pH of the solution was set to 7.0 by adding glacial acetic acid drop by drop. On completion of the gel-
setting process, 3 ml of 0.5 M concentration of aqueous lanthanum nitrate solution was added as the upper reagent. The whole arrangement was kept undisturbed at room temperature and was covered to protect it from the foreign matter present in the atmosphere. Within seven days, transparent, colourless block-shaped crystals were observed at the gel interface. The diffusion of La^{3+} ions and $1,4-\mathrm{chdcH}_{2}$ through the fine pores of the gel media lead to the expected chemical reaction as shown below:
> $2 \mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot \mathbf{6} \mathrm{H}_{2} \mathrm{O}+2 \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}+2 \mathrm{CH}_{3} \mathbf{C O O H} \rightarrow$ $\left[\mathrm{La}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}\right)_{\mathbf{2}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}+\mathbf{6 H N O} 3$.

Elemental analysis calculated (\%) for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{La}_{2} \mathrm{O}_{18}$ (844.32): C, 28.42; H, 4.50. Found (\%): C, 28.36; H, 4.33. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3380,2940,1573,1460,743,673,597$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Carbon-bound hydrogen atoms were placed in calculated positions and included in the refinement in the riding-model approximation with $\mathrm{C}-\mathrm{H}$ distances of $0.96-0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methyl hydrogen atoms and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for all others. Water hydrogen atoms were located from difference-Fourier maps and refined with an $\mathrm{O}-\mathrm{H}$ distance restraint of 0.90 (2) \AA and an $\mathrm{H} \cdots \mathrm{H}$ separation of $1.39(2) \AA$. The isotropic displacement parameters of the hydrogen atoms attached to atoms O3, O4 and O9 were made equal by using an EDAP instruction. The crystal studied was refined as a twocomponent twin $(\mathrm{BASF}=0.4203)$.

Acknowledgements

The authors are thankful to the authorities of SAIF, Kochi for instrumental facilities. We are indebted to Dr M. R. Prathachandra Kurup, Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, for helping us to visualize the crystal structure using DIAMOND software. RD is thankful to the University of Kerala, Trivandrum, India, for the award of a University Research Fellowship.

References

Bi, W., Cao, R., Sun, D., Yuan, D., Li, X. \& Hong, M. (2003). Inorg. Chem. Commun. 6, 1426-1428.
Bi, W. H., Cao, R., Sun, D. F., Yuan, D. Q., Li, X., Wang, Y. Q., Li, X. J. \& Hong, M. C. (2004). Chem. Commun. pp. 2104-2105.
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, Z. H., Zhao, Y., Wang, P., Chen, S. S. \& Sun, W. Y. (2014). Polyhedron, 67, 253-263.
Du, M., Cai, H. \& Zhao, X. J. (2005). Inorg. Chim. Acta, 358, 40344038.

Gong, Y., Hu, C. W., Li, H., Huang, K. L. \& Tang, W. (2005). J. Solid State Chem. 178, 3152-3158.
Lin, Z. \& Tong, M. L. (2011). Coord. Chem. Rev. 255, 421-450.
Liu, T. F., Lü, J. \& Cao, R. (2010). CrystEngComm, 12, 660-670.
Lü, J., Bi, W. H., Xiao, F. X., Batten, S. R. \& Cao, R. (2008). Chem. Asian J. 3, 542-547.

Ma, C., Wang, Y. \& Zhang, R. (2009). Inorg. Chim. Acta, 362, 41374144.

Qi, Y., Li, H., Liu, C. \& Hu, C. (2008). J. Coord. Chem. 61, 315-321. Qiblawi, S. H., Sposato, L. K. \& LaDuca, R. L. (2013). Inorg. Chim. Acta, 407, 297-305.
Rao, K. P., Thirumurugan, A. \& Rao, C. N. R. (2007). Chem. Eur. J. 13, 3193-3201.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Tian, G., Zhu, G., Su, B.-L. \& Qiu, S. (2009). J. Mater. Sci. 44, 65766582.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yu, M., Xie, L., Liu, S., Wang, C., Cheng, H., Ren, Y. \& Su, Z. (2007). Inorg. Chim. Acta, 360, 3108-3112.

supporting information

Acta Cryst. (2017). E73, 1926-1930 [https://doi.org/10.1107/S2056989017016103]

Crystal structure of poly[[di- μ_{3}-acetato-tetraaquabis (μ_{2}-cyclohexane-1,4-dicarboxylato)dilanthanum(III)] dihydrate]

R. Drisya, U. S. Soumya MoI, P. R. Satheesh Chandran, M. Sithambaresan and M. R.

Sudarsankumar

Computing details

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010)'.

Poly[[di- μ_{3}-acetato-tetraaquabis(μ_{2}-cyclohexane-1,4-dicarboxylato)dilanthanum(III)] dihydrate]

Crystal data

$\left[\mathrm{La}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad Z=1$
$M_{r}=844.32$
Triclinic, $P \overline{1}$
$a=6.9341$ (8) \AA
$b=8.9597(13) \AA$
$c=12.3030(16) \AA$
$\alpha=110.217$ (5) ${ }^{\circ}$
$\beta=91.060(5)^{\circ}$
$\gamma=93.280(5)^{\circ}$
$V=715.49(16) \AA^{3}$
$F(000)=416$
$D_{\mathrm{x}}=1.960 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7100 reflections
$\theta=2.8-30.9^{\circ}$
$\mu=3.02 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.20 \times 0.15 \times 0.15 \mathrm{~mm}$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: Sealed tube
ω and φ scan
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.60, T_{\text {max }}=0.74$

> 2818 measured reflections
> 2815 independent reflections
> 2447 reflections with $I>2 \sigma(I)$
> $\theta_{\max }=26.0^{\circ}, \theta_{\min }=2.4^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-11 \rightarrow 10$
> $l=0 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.146$
$S=1.07$
2818 reflections
204 parameters
9 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	0.2377 (17)	0.7936 (10)	0.7752 (7)	0.0203 (18)
C2	0.2486 (18)	0.7706 (11)	0.8920 (8)	0.030 (2)
H2	0.2447	0.8760	0.9522	0.036*
C3	0.0724 (17)	0.6681 (16)	0.9058 (11)	0.033 (3)
H3A	0.0698	0.6715	0.9855	0.040*
H3B	-0.0448	0.7116	0.8889	0.040*
C4	0.0778 (17)	0.4962 (14)	0.8253 (10)	0.030 (3)
H4A	0.0694	0.4919	0.7455	0.036*
H4B	-0.0331	0.4339	0.8379	0.036*
C5	0.2631 (16)	0.4239 (11)	0.8460 (7)	0.024 (2)
H5	0.2633	0.4196	0.9245	0.028*
C6	0.4375 (16)	0.5264 (15)	0.8372 (11)	0.030 (3)
H6A	0.4468	0.5213	0.7574	0.036*
H6B	0.5526	0.4836	0.8576	0.036*
C7	0.4325 (17)	0.6994 (14)	0.9147 (10)	0.028 (2)
H7A	0.5438	0.7602	0.9010	0.034*
H7B	0.4403	0.7067	0.9952	0.034*
C8	0.2736 (16)	0.2574 (10)	0.7614 (8)	0.0229 (19)
C9	0.7522 (14)	1.0347 (9)	0.6555 (7)	0.0141 (16)
C10	0.7542 (18)	1.0729 (13)	0.7831 (8)	0.030 (2)
H10A	0.7030	1.1749	0.8194	0.046*
H10B	0.8846	1.0758	0.8118	0.046*
H10C	0.6763	0.9926	0.8006	0.046*
O1	0.3916 (11)	0.7991 (10)	0.7225 (7)	0.0280 (18)
O2	0.0804 (11)	0.8116 (10)	0.7334 (7)	0.0272 (18)
O3	-0.0144 (11)	0.6946 (10)	0.4871 (7)	0.0310 (18)
O4	0.3865 (13)	0.6914 (10)	0.4470 (8)	0.039 (2)
O5	0.5999 (10)	0.9978 (10)	0.5957 (6)	0.0219 (16)
O6	0.9100 (10)	1.0455 (9)	0.6066 (6)	0.0220 (16)
O7	0.2827 (11)	0.2366 (7)	0.6530 (5)	0.0223 (14)
O8	0.2635 (12)	0.1397 (7)	0.7932 (5)	0.0283 (15)
O9	-0.2682 (13)	0.6345 (9)	0.6499 (7)	0.0384 (18)
Lal	0.23952 (8)	0.92768 (5)	0.58722 (4)	0.01486 (18)
H4C	0.474 (15)	0.704 (14)	0.398 (8)	0.05 (3)*
H4D	0.326 (16)	0.597 (8)	0.406 (8)	0.05 (3)*
H3C	-0.088 (14)	0.668 (17)	0.538 (9)	0.06 (3)*
H3D	-0.105 (12)	0.705 (17)	0.437 (9)	0.06 (3)*
H9A	-0.207 (15)	0.687 (15)	0.719 (6)	0.06 (3)*

H9B	$-0.388(9)$	$0.669(17)$	$0.663(10)$	$0.06(3)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.026(5)$	$0.012(4)$	$0.025(4)$	$-0.004(4)$	$0.006(5)$	$0.008(3)$
C2	$0.047(7)$	$0.023(5)$	$0.019(4)$	$0.003(5)$	$-0.002(5)$	$0.008(4)$
C3	$0.029(7)$	$0.041(7)$	$0.034(7)$	$0.011(5)$	$0.007(5)$	$0.017(6)$
C4	$0.031(7)$	$0.027(6)$	$0.030(6)$	$0.004(5)$	$0.003(4)$	$0.005(5)$
C5	$0.030(6)$	$0.026(5)$	$0.016(4)$	$-0.005(4)$	$-0.002(4)$	$0.011(4)$
C6	$0.022(6)$	$0.037(7)$	$0.033(6)$	$0.004(5)$	$-0.005(4)$	$0.014(5)$
C7	$0.041(8)$	$0.025(6)$	$0.017(5)$	$0.001(5)$	$-0.004(4)$	$0.007(4)$
C8	$0.017(5)$	$0.024(5)$	$0.029(5)$	$0.002(4)$	$-0.001(4)$	$0.012(4)$
C9	$0.010(4)$	$0.012(3)$	$0.018(4)$	$0.003(4)$	$-0.002(4)$	$0.001(3)$
C10	$0.026(6)$	$0.042(6)$	$0.020(4)$	$-0.006(5)$	$0.003(5)$	$0.007(4)$
O1	$0.016(4)$	$0.039(5)$	$0.039(5)$	$0.005(3)$	$0.005(3)$	$0.025(4)$
O2	$0.026(5)$	$0.031(5)$	$0.028(4)$	$0.004(3)$	$-0.005(3)$	$0.015(4)$
O3	$0.026(5)$	$0.035(5)$	$0.034(5)$	$-0.005(3)$	$-0.002(3)$	$0.017(4)$
O4	$0.033(5)$	$0.022(4)$	$0.051(5)$	$-0.009(3)$	$0.023(4)$	$-0.001(4)$
O5	$0.012(4)$	$0.037(4)$	$0.020(4)$	$-0.001(3)$	$0.002(3)$	$0.014(3)$
O6	$0.011(4)$	$0.032(4)$	$0.025(4)$	$-0.001(3)$	$0.002(3)$	$0.011(3)$
O7	$0.025(4)$	$0.024(3)$	$0.018(3)$	$0.001(3)$	$0.006(3)$	$0.007(2)$
O8	$0.042(4)$	$0.021(3)$	$0.024(3)$	$-0.001(4)$	$-0.004(3)$	$0.011(3)$
O9	$0.023(5)$	$0.033(4)$	$0.057(5)$	$0.004(4)$	$0.004(4)$	$0.013(4)$
La1	$0.0121(3)$	$0.0169(3)$	$0.0169(3)$	$0.0017(2)$	$0.0015(2)$	$0.00745(18)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{O} 2$	1.240 (13)	C9-La1 ${ }^{\text {ii }}$	3.119 (8)
C1-O1	1.266 (13)	C10-H10A	0.9600
C1-C2	1.522 (12)	C10-H10B	0.9600
C1-La1	2.952 (8)	C10-H10C	0.9600
C2-C7	1.521 (17)	O1-Lal	2.570 (7)
C2-C3	1.533 (17)	O2-Lal	2.601 (8)
C2-H2	0.9800	O3-La1	2.588 (8)
C3-C4	1.519 (18)	O3-H3C	0.90 (2)
C3-H3A	0.9700	O3-H3D	0.90 (2)
C3-H3B	0.9700	O4-La1	2.506 (8)
C4-C5	1.527 (16)	O4-H4C	0.90 (2)
C4-H4A	0.9700	O4-H4D	0.89 (2)
C4-H4B	0.9700	O5-La1	2.533 (7)
C5-C8	1.502 (12)	O5-La ${ }^{\text {ii }}$	2.792 (7)
C5-C6	1.505 (15)	O6-La $1^{\text {iii }}$	2.552 (7)
C5-H5	0.9800	O6-Lal ${ }^{\text {ii }}$	2.674 (7)
C6-C7	1.516 (17)	O7-La1 ${ }^{\text {i }}$	2.598 (6)
C6-H6A	0.9700	O8-La1 ${ }^{\text {i }}$	2.585 (6)
C6-H6B	0.9700	O9-H9A	0.90 (2)
C7-H7A	0.9700	O9-H9B	0.90 (2)

C7-H7B	0.9700
C8-08	1.244 (11)
C8-07	1.284 (11)
C8-La1 ${ }^{\text {i }}$	2.983 (9)
C9-O5	1.237 (11)
C9-06	1.273 (11)
C9-C10	1.487 (11)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	120.1 (8)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	120.4 (9)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	119.5 (10)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{La} 1$	61.6 (5)
O1-C1-La1	60.2 (5)
C2-C1-La1	164.8 (6)
C1-C2-C7	114.2 (9)
C1-C2-C3	110.9 (9)
C7-C2-C3	109.4 (8)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	107.4
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{H} 2$	107.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	107.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	111.4 (9)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.4
C2-C3-H3B	109.4
H3A-C3-H3B	108.0
C3-C4-C5	111.4 (10)
C3-C4-H4A	109.4
C5-C4-H4A	109.4
C3-C4-H4B	109.4
C5-C4-H4B	109.4
H4A - $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.0
C8-C5-C6	110.0 (9)
C8-C5-C4	111.2 (9)
C6-C5-C4	110.4 (8)
C8-C5-H5	108.4
C6-C5-H5	108.4
C4-C5-H5	108.4
C5-C6-C7	113.4 (9)
C5-C6-H6A	108.9
C7-C6-H6A	108.9
C5-C6-H6B	108.9
C7-C6-H6B	108.9
H6A-C6-H6B	107.7
C6-C7-C2	111.4 (9)
C6-C7-H7A	109.3
C2-C7-H7A	109.3
C6-C7-H7B	109.3

$\mathrm{La} 1-\mathrm{O}^{\mathrm{iv}}$	$2.552(7)$
$\mathrm{La} 1-\mathrm{O}^{\mathrm{v}}$	$2.585(6)$
$\mathrm{La} 1-\mathrm{O}^{\mathrm{v}}$	$2.598(6)$
$\mathrm{La} 1-\mathrm{O}^{\mathrm{ii}}$	$2.674(7)$
$\mathrm{La}-\mathrm{O}^{\mathrm{ii}}$	$2.792(7)$
$\mathrm{La} 1-\mathrm{C} 8^{\mathrm{v}}$	$2.983(9)$

C9—O6—La $1^{\text {ii }} \quad 98.1$ (5)
$\mathrm{La} 1^{\mathrm{iii}}$ —O6—La1 ${ }^{\mathrm{ii}} 115.2$ (3)
C8-O7-La ${ }^{\mathrm{i}} \quad 94.3$ (5)
$\mathrm{C} 8-\mathrm{O} 8-\mathrm{La} 1^{\mathrm{i}} \quad 96.0$ (5)
H9A-O9—H9B 101 (3)
O4—La1—O5 73.2 (3)
O4—La1-O6 ${ }^{\text {iv }} \quad 135.8$ (3)
O5—La1-O6 ${ }^{\text {iv }} 143.4$ (2)
O4-Lal-O1 77.7 (3)
O5—La1—O1 73.8 (2)
O6 ${ }^{\text {iv }}$-La1—O1 126.4 (2)
$\mathrm{O} 4-\mathrm{La} 1-\mathrm{O}^{v} \quad 146.0$ (3)
$\mathrm{O} 5-\mathrm{La}-\mathrm{O}^{\vee} \quad 82.5$ (3)
$\mathrm{O}^{\mathrm{iv}}-\mathrm{La} 1-\mathrm{O} 8^{\mathrm{v}} \quad 76.9$ (2)
O1-Lal-O8 $8^{v} 72.8$ (2)
O4—La1-O3 67.5 (3)
O5-La1-O3 140.7 (3)
$\mathrm{O}^{\text {iv-LLa1-O3 }} 73.0$ (3)
O1—La1-O3 96.1 (3)
$\mathrm{O} 8{ }^{2}-\mathrm{La} 1-\mathrm{O} 3 \quad 131.7$ (3)
$\mathrm{O} 4-\mathrm{La} 1-\mathrm{O} 7^{v} \quad 138.0$ (2)
O5-La1-O7v $\quad 73.7$ (2)
$\mathrm{O}^{\text {iv }}-\mathrm{La} 1-\mathrm{O}^{\mathrm{v}} \quad 69.9$ (2)
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 7^{v} \quad 116.4$ (2)
O8 ${ }^{v}-\mathrm{La} 1 — 7^{v} \quad 49.88$ (18)
$\mathrm{O} 3-\mathrm{La} 1-\mathrm{O}^{v} \quad 140.6$ (2)
O4-La1-O2 103.1 (3)
O5-La1-O2 121.8 (2)
$\mathrm{O}^{\text {iv }} \mathrm{La} 1-\mathrm{O} 2 \quad 78.8$ (2)
O1—La1—O2 49.7 (2)
$\mathrm{O}^{2}-\mathrm{La} 1-\mathrm{O} 2 \quad 69.9$ (2)
O3—La1—O2 67.7 (3)
O7—La1—O2 116.2 (2)
O4-La1-O6 ${ }^{\text {ii }} 83.0$ (3)
O5—La1—O6 ${ }^{\text {ii }} 107.7$ (2)
$\mathrm{O}^{\mathrm{iv}}-\mathrm{La} 1-\mathrm{O}^{\mathrm{ii}} \quad 64.8$ (3)
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O}^{\text {ii }} \quad 159.3$ (3)
$\mathrm{O} 8^{\mathrm{v}}-\mathrm{La} 1-\mathrm{O}^{\mathrm{ii}} \quad 127.8$ (2)
$\mathrm{O} 3-\mathrm{La} 1-\mathrm{O}^{\mathrm{ii}} \quad 69.3$ (2)
$\mathrm{O}^{\mathrm{v}}-\mathrm{La} 1-\mathrm{O}^{6 i} \quad 83.2$ (2)

C2-C7- H 7 B	109.3
H7A-C7-H7B	108.0
O8-C8-O7	119.6 (8)
O8-C8-C5	121.6 (8)
O7-C8-C5	118.7 (7)
O8-C8-La1 ${ }^{\text {i }}$	59.5 (5)
O7-C8-La ${ }^{\text {i }}$	60.3 (4)
C5-C8-La ${ }^{\text {i }}$	172.5 (8)
O5-C9-O6	118.9 (7)
O5-C9-C10	121.7 (9)
O6-C9-C10	119.4 (9)
O5-C9-La1 ${ }^{\text {ii }}$	63.3 (4)
O6-C9-La1 ${ }^{\text {ii }}$	58.1 (4)
C10-C9-Lal ${ }^{\text {ii }}$	161.8 (6)
C9-C10-H10A	109.5
C9-C10-H10B	109.5
H10A-C10-H10B	109.5
C9-C10-H10C	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
C1-O1-La1	94.4 (6)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{La} 1$	93.6 (6)
La1-O3-H3C	113 (9)
La1-O3-H3D	120 (9)
$\mathrm{H} 3 \mathrm{C}-\mathrm{O} 3-\mathrm{H} 3 \mathrm{D}$	101 (3)
La1-O4-H4C	121 (8)
La1-O4-H4D	127 (8)
H4C-O4-H4D	102 (3)
C9-O5-La1	147.1 (6)
C9-O5-La1 ${ }^{\text {ii }}$	93.4 (5)
La1-O5-La ${ }^{1 i}$	118.7 (3)
C9-O6-La $1^{\text {iii }}$	138.0 (6)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	161.8 (9)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	-20.4 (13)
La1- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	-105 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	37.7 (12)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-144.5 (9)
La1- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	131 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	69.6 (12)
C7-C2-C3-C4	-57.2 (11)
C2-C3-C4-C5	57.2 (12)
C3-C4-C5-C8	-176.5 (9)
C3-C4-C5-C6	-54.1 (12)
C8-C5-C6-C7	176.5 (9)
C4-C5-C6-C7	53.4 (11)
C5-C6-C7-C2	-55.0 (12)
C1-C2-C7-C6	-69.6 (12)

O2-La1-O6 ${ }^{\text {ii }}$	129.9 (2)
O4-La1-O5 ${ }^{\text {ii }}$	68.8 (3)
O5-La1-O5 ${ }^{\text {ii }}$	61.3 (3)
$\mathrm{O} 6^{\text {iv }}$-Lal-O5 ${ }^{\text {ii }}$	103.7 (2)
O1-La1-O5 ${ }^{\text {ii }}$	129.6 (2)
O8 ${ }^{v}-\mathrm{La} 1-\mathrm{O} 5^{\text {ii }}$	119.3 (2)
O3-La1-O5 ${ }^{\text {ii }}$	104.2 (2)
$\mathrm{O7} 7^{*}-\mathrm{La} 1-\mathrm{O} 5^{\text {ii }}$	72.9 (2)
O2-La1-O5 ${ }^{\text {ii }}$	170.7 (2)
$\mathrm{O} 6^{\text {iii-La }}$ - $\mathrm{O}^{\text {iii }}$	46.51 (19)
O4-Lal-C1	93.6 (3)
O5-La1-C1	97.2 (3)
$\mathrm{Of}^{\mathbf{i v}}$-Lal-C1	101.4 (3)
O1-Lal-C1	25.3 (3)
O8\%-La1-C1	65.9 (2)
O3-Lal-C1	84.1 (3)
O7 ${ }^{\text {- }}$ La $1-\mathrm{C} 1$	115.7 (2)
O2-La1-C1	24.8 (3)
O6 ${ }^{\text {ii- }}$ La1-C1	152.5 (3)
O5ii-La1-C1	154.8 (3)
O4-La1-C8 ${ }^{\text {v }}$	151.3 (3)
O5-La1-C8 ${ }^{\text {v }}$	78.0 (3)
$\mathrm{Of}^{\mathrm{iv}}-\mathrm{La} 1-\mathrm{C} 8^{\mathrm{v}}$	70.6 (3)
O1-La1-C8 ${ }^{\text {v }}$	94.8 (3)
O8 8^{v} Lal- $\mathrm{C}^{\text {b }}$	24.5 (2)
O3-La1-C8 ${ }^{\text {v }}$	141.2 (3)
O7v-Lal-C8 ${ }^{v}$	25.4 (2)
O2-La1-C8 ${ }^{\text {- }}$	92.3 (3)
O6ii-Lal-C8 ${ }^{\text {v }}$	105.7 (2)
O5ii-La ${ }^{\text {- }}$ - $8^{\text {v }}$	97.0 (2)
C1-La1-C8 ${ }^{\text {v }}$	90.4 (2)

C4-C5-C8-O7	63.7 (13)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1-\mathrm{La} 1$	15.4 (9)
C2-C1-O1-La	-162.5 (7)
O1-C1-O2-La	-15.2 (9)
C2-C1-O2-La 1	162.6 (7)
O6-C9-O5-La	174.3 (8)
C10-C9-O5-La	-8.2 (16)
La1 ${ }^{\text {iii }}$ C9-O5-Lal	-168.1 (12)
O6-C9-O5-La $1^{\text {ii }}$	-17.7 (8)
C10-C9-O5-La ${ }^{\text {ii }}$	159.9 (7)
O5-C9-O6-La $1^{\text {iii }}$	-124.4 (8)
C10-C9-O6-La $1^{\text {iii }}$	58.0 (12)
La $1^{\text {ii- }}$ - $9-06-\mathrm{La} 1^{1 i i}$	-143.1 (9)
O5-C9-O6-Lal ${ }^{\text {ii }}$	18.6 (9)
C10-C9-O6-La ${ }^{\text {ii }}$	-158.9 (7)

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$55.3(11)$	$\mathrm{O} 8-\mathrm{C} 8-\mathrm{O} 7-\mathrm{La} 1^{\mathrm{i}}$	$4.7(11)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8-\mathrm{O} 8$	$124.8(11)$	$\mathrm{C} 5-\mathrm{C} 8-\mathrm{O} 7-\mathrm{La} 1^{\mathrm{i}}$	$-171.5(9)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8-\mathrm{O} 8$	$-112.5(12)$	$\mathrm{O} 7-\mathrm{C} 8-\mathrm{O} 8-\mathrm{La} 1^{\mathrm{i}}$	$-4.8(11)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8-\mathrm{O} 7$	$-59.0(13)$	$\mathrm{C} 5-\mathrm{C} 8-\mathrm{O} 8-\mathrm{La} 1^{\mathrm{i}}$	$171.4(9)$

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y+2,-z+1$; (iii) $x+1, y, z$; (iv) $x-1, y, z$; (v) $x, y+1, z$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10 — \mathrm{H} 10 C \cdots \mathrm{O} 1$	0.96	2.49	$3.295(14)$	141
$\mathrm{O} 4 — \mathrm{H} 4 C \cdots \mathrm{O} 7^{\text {vi }}$	$0.90(2)$	$1.92(5)$	$2.771(10)$	$158(12)$
$\mathrm{O} 4 — \mathrm{H} 4 D \cdots \mathrm{O} 9{ }^{\text {vii }}$	$0.89(2)$	$1.96(6)$	$2.812(11)$	$158(12)$
$\mathrm{O} 3 — \mathrm{H} 3 C \cdots \mathrm{O} 9$	$0.90(2)$	$1.97(3)$	$2.858(12)$	$172(13)$
$\mathrm{O} 3 — \mathrm{H} 3 D \cdots \mathrm{O} 7^{\text {vii }}$	$0.90(2)$	$1.86(3)$	$2.750(11)$	$170(14)$
$\mathrm{O}-\mathrm{H} 9 A \cdots \mathrm{O} 2$	$0.90(2)$	$2.20(11)$	$2.786(12)$	$122(11)$
$\mathrm{O} 9 — \mathrm{H} 9 B \cdots \mathrm{O} 1^{\text {iv }}$	$0.90(2)$	$1.97(5)$	$2.846(11)$	$164(13)$

Symmetry codes: (iv) $x-1, y, z$; (vi) $-x+1,-y+1,-z+1$; (vii) $-x,-y+1,-z+1$.

