CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 27 October 2017
Accepted 31 October 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; tetraphosphonate cavitands; inclusion compounds; nitrosonium ion; $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions; $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

CCDC reference: 1583086

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Nitrosonium complexation by the tetraphosphonate cavitand 5,11,17,23-tetramethyl-6,10:12,16:-18,22:24,4-tetrakis(phenylphosphonato- $\kappa^{2} O, O$)resorcin(4)arene

Roberta Pinalli and Chiara Massera*

Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy. *Correspondence e-mail: chiara.massera@unipr.it

The crystal structure of a new supramolecular complex between the tetraphosphonate cavitand 5,11,17,23-tetramethyl-6,10:12,16:18,22:24,4-tetrakis(phenyl-phosphonato- $\kappa^{2} O, O^{\prime}$)resorcin(4) arene and the nitrosyl cation NO^{+}, as the BF_{4}^{-} salt, is reported. The complex, of general formula $\left[\left(\mathrm{C}_{56} \mathrm{H}_{44} \mathrm{P}_{4} \mathrm{O}_{12}\right)(\mathrm{NO})\right] \mathrm{BF}_{4} \cdot-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{NO} @ T i i i i\left[\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\right] \mathrm{BF}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, crystallizes in the space group $P \overline{1}$. The nitrosyl cation is disordered over two equivalent positions, with occupancies of 0.503 (2) and 0.497 (2), and interacts with two adjacent $\mathrm{P}=\mathrm{O}$ groups at the upper rim of the cavitand through dipole-charge interactions. In the lattice, the cavitands are connected through a series of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the methyl and methylenic H atoms and the aromatic rings of the macrocycle. The structure is further stabilized by the presence of $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions between the hydrogen atoms of the cavitands and the F atoms of the tetrafluoridoborate anion. As a result of the disorder, the lattice dichloromethane molecules could not be modelled in terms of atomic sites, and were treated using the PLATON SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9-18]. The complexation process has also been studied in solution through NMR titrations.

1. Chemical context

Cavitands (Cram, 1983; Cram \& Cram, 1994) are synthetic organic compounds endowed with a rigid, pre-organized cavity that have been used extensively both in solution (Hooley \& Rebek, 2009; Pochorovski et al., 2012) and in the solid state (Riboni et al., 2016) as molecular receptors for neutral molecules and cationic species (Pinalli \& Dalcanale, 2013). This versatility stems from the possibility of decorating both the upper and the lower rim of the resorcinarene skeleton with desired functionalities.

In our group, we have been particularly interested in tetraphosphonate cavitands of the general formula Tiiii $\left.R, R_{1}, R_{2}\right]$ ($R=$ lower rim substituents; $R_{1}=$ upper rim substituents; $R_{2}=$ substituents on the P atom) in which the upper rim of the macrocycle is functionalized with four $\mathrm{P}=\mathrm{O}$ groups, all pointing inwards towards the cavity (Pinalli \& Dalcanale, 2013). In this way, the π basicity of the cavity, useful for C $\mathrm{H} \cdots \pi$ recognition, is enriched with dipolar groups that can act both as hydrogen-bond acceptors and interact with cationic species through cation-dipole interactions.

The nitrosonium ion and its salts have been studied in the past to investigate similarities and differences with the $\mathrm{O}_{2}{ }^{+}$ion in terms of size, ionization potential, electron affinity, oxida-
tion power etc (Mazej et al., 2009). Moreover, the NO^{+}cation can be used as a model for nitrogen oxides in molecular recognition phenomena. Indeed, the formation of stable, hostguest complexes between NO^{+}cations and organic molecular receptors has been studied in solution with resorcinarenes (Botta et al., 2007) or with calixarenes, both in solution (Zyryanov et al., 2002, 2003) and in the solid state (Rathore et al., 2000). In particular, nitrosonium hexachloroantimonate was shown to form an inclusion compound with tetramethoxyand tetra-n-propoxycalix(4)arenes due to the interaction between the positive charge of the guest and the electron-rich aromatic cavity of the host (Rathore et al., 2000). Inspired by this work, we decided to carry out a combined solution and solid-state study of the complexation properties of the rigid tetraphosphonate cavitand 5,11,17,23-tetramethyl-6,10:12,16:18,22:24,4-tetrakis(phenylphosphonato- O, O^{\prime})resorcin(4)arene (from now on indicated as Tiiii[$\left.\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\right]$) towards NOBF_{4}.

2. Studies in solution

Preliminary ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR studies were performed to probe the complexation properties of the cavitand towards the nitrosonium ion in solution. To this purpose, we synthesized the cavitand Tiiii $\left[\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\right]$, functionalized at the lower rim with four $-\mathrm{C}_{3} \mathrm{H}_{7}$ alkyl chains to enhance the cavitand solubility. The NMR tube was filled with 0.5 ml of a CDCl_{3} solution containing the cavitand (1 mmol concentration). The NOBF_{4} titrant solution was prepared by dissolving the guest in $0.4 \mathrm{ml}(10 \mathrm{mmol})$ of the above-mentioned cavitand solution to keep the concentration of the host constant during the titration. Portions (0.25 eq ., $22.5 \mu \mathrm{~L}$) of the titrant were added by syringe to the NMR tube. During the titration, the phosphorous singlet of the cavitand shifted slightly downfield, from 6.01 (signal for the free host) to 7.42 ppm upon addition of an excess (2.5 eq.) of the guest (see Fig. S1 in the Supporting information), indicating the presence of cation-dipole interactions between the nitrosonium ion and the phosphonate groups at the upper rim. The broadening of the signal is due to the fast exchange (at the NMR time scale) of the guest inside the cavity.

In Fig. 1, the comparison between the ${ }^{1} \mathrm{H}$ spectra recorded after each guest addition is reported. As can be seen, the
protons of the methyl group in the apical position of the cavitand skeleton (purple dot) are shifted up-field, increasing the guest concentration; this means that the presence of the NO^{+}cation in proximity to the cavitand upper rim creates a change in the environment, which results in an overall shielding effect. On the contrary, the signals of the protons at the lower rim, namely the aromatic hydrogens (light-blue dot), the bridging methines (green dot) and the alkyl methylenic groups (red dot), are shifted downfield. This is due to the perturbation created by the $\mathrm{BF}_{4}{ }^{-}$anion, which is likely positioned among the alkyl feet of the cavitand, as already observed for counter-anions in other crystal structures previously reported (Pinalli et al., 2016). Also in this case, broadening of the signals was observed.

Following these results, solid-state studies were carried out to obtain an insight into the type, number, strength and geometry of the weak interactions taking place in the system.

3. Structural commentary

The molecular structure of NO@Tiiii $\left[\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\right] \mathrm{BF}_{4}$-$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is reported in Fig. 2. The complex crystallizes in the space group $P \overline{1}$, and the asymmetric unit comprises one cavitand, one molecule of NOBF_{4} (with the cation disordered over two equivalent positions) and one disordered molecule of dichloromethane. The $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$ionic pair is separated, and the nitrosonium ion is located within the macrocycle, not deep inside the cavity, but lying in the mean plane passing through the four phosphonate oxygen atoms O3A, O3B, O3C and O3D (for detailed geometrical parameters, see Table 1). The nitrogen and oxygen atoms of the guest point towards the lower and the upper rims, respectively, and are held in place via cation-dipole interactions with two adjacent $\mathrm{P}=\mathrm{O}$ groups. It is interesting to note that the NO^{+}ion is disordered with 50% probability over two equivalent orientations [N1O1 with occupancy of 0.503 (2) and N 2 O 2 with occupancy of 0.497 (2)], thus forming alternately an interaction with each of the two

Figure 1
Selected portions of the ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectra recorded during the titration of the cavitand with increasing equivalents of NOBF_{4}.

Table 1
Host-guest interactions (\AA) in NO@Tiiii $\left[\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\right] \mathrm{BF}_{4}$.

$\mathrm{O} 3 A \cdots \mathrm{O} 1$	$2.621(5)$	$\mathrm{O} 3 D \cdots \mathrm{O} 2$	$2.604(4)$
$\mathrm{O} 3 A \cdots \mathrm{~N} 1$	$2.661(6)$	$\mathrm{O} 3 D \cdots \mathrm{~N} 2$	$2.650(4)$
$\mathrm{O} 3 B \cdots \mathrm{O} 1$	$2.609(3)$	$\mathrm{O} 1 \cdots \mathrm{PL}$	$0.471(4)$
$\mathrm{O} 3 B \cdots \mathrm{~N} 1$	$2.664(5)$	$\mathrm{N} 1 \cdots \mathrm{PL}$	$0.492(6)$
O3 $3 C \mathrm{O} 2$	$2.621(4)$	$\mathrm{O} 2 \cdots \mathrm{PL}$	$0.466(4)$
O3C $\cdots \mathrm{N} 2$	$2.625(7)$	$\mathrm{N} 2 \cdots \mathrm{PL}$	$0.416(6)$

PL is the mean plane passing through the four phosphonate oxygen atoms, $\mathrm{O} 3 A, \mathrm{O} 3 B$, O3C and O3D.
opposite $\mathrm{P}=\mathrm{O}$ groups (Fig. 2; the second orientation is not shown), namely $\mathrm{P} 1 A=\mathrm{O} 3 A$ and $\mathrm{P} 1 B=\mathrm{O} 3 B$ for N 1 O 1 and $\mathrm{P} 1 C=\mathrm{O} 3 C$ and $\mathrm{P} 1 D=\mathrm{O} 3 D$ with $\mathrm{N} 2 \mathrm{O} 2[\mathrm{O} 3 A \cdots \mathrm{O} 1,2.621$ (5); $\mathrm{O} 3 A \cdots \mathrm{~N} 1, \quad 2.661(6) ; \quad \mathrm{O} 3 B \cdots \mathrm{O} 1, \quad 2.609(3) ; \quad \mathrm{O} 3 B \cdots \mathrm{~N} 1$, 2.664 (5); O3C‥O2, 2.621 (4); O3C $\cdots \mathrm{N} 2, \quad 2.625$ (7); $\mathrm{O} 3 \mathrm{D} \cdots \mathrm{O} 2,2.604(4) ; \mathrm{O} 3 D \cdots \mathrm{~N} 2,2.650$ (4) Å]. This phenomenon has already been observed in the solid state with

Figure 2
Top and side views of the title compound, NO@Tiiii[$\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}$], with a partial atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level. Only one of the two disordered NO^{+}ions is shown. In the side view, the hydrogen atoms and the $\mathrm{BF}_{4}{ }^{-}$counter-ion are not shown for clarity. Cation-dipole interactions are represented as blue dashed lines.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).
$C g 1, C g 2$ and $C g 3$ are the centroids of the aromatic rings $\mathrm{C} 9 B-\mathrm{C} 14 B, \mathrm{C} 9 D_{-}$ $\mathrm{C} 14 D$ and $\mathrm{C} 1 A-\mathrm{C} 6 A$, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 B^{\mathrm{i}}-\mathrm{H} 1 B^{\mathrm{i}} \ldots \mathrm{F} 1$	0.95	2.41	3.344 (3)	169
$\mathrm{C} 14 B^{\mathrm{ii}}-\mathrm{H} 14 B^{\text {ii }} \ldots . \mathrm{F} 2$	0.95	2.57	3.357 (3)	140
$\mathrm{C} 7 C^{\text {ii }}-\mathrm{H} 7 \mathrm{C} 3^{\text {iii }} \ldots$. F 2	0.98	2.62	3.484 (2)	147
$\mathrm{C} 8 \mathrm{C}^{\mathrm{i}}-\mathrm{H} 8 \mathrm{C} 1^{\mathrm{i}} \ldots \mathrm{F} 2$	0.98	2.49	3.379 (3)	150
$\mathrm{C} 1 D^{\mathrm{i}}-\mathrm{H} 1 D^{\mathrm{i}} . . . \mathrm{F} 2$	0.95	2.60	3.439 (2)	147
$\mathrm{C} 11 A^{\text {iii }}-\mathrm{H} 11 A^{\text {iii. }} . . \mathrm{F} 3$	0.95	2.45	3.254 (2)	142
C7C ${ }^{\text {ii }}-\mathrm{H}^{\text {c }}$ C3 ${ }^{\text {ii. }} \ldots \mathrm{F} 3$	0.98	2.64	3.569 (3)	160
$\mathrm{C} 11 C-\mathrm{H} 11 C \cdots \mathrm{~F} 4$	0.95	2.53	3.447 (3)	162
$\mathrm{C} 1 D^{\mathrm{i}}-\mathrm{H} 1 D^{\mathrm{i}} \ldots \mathrm{F} 4$	0.95	2.65	3.509 (3)	150
$\mathrm{C} 14 D^{\text {iv }}-\mathrm{H} 14 D^{\text {iv }} \ldots \mathrm{F} 4$	0.95	2.63	3.336 (4)	131
$\mathrm{C} 7 \mathrm{D}-\mathrm{H} 7 \mathrm{D} 1 \cdots \mathrm{Cg} 1^{\text {v }}$	0.98	2.80	3.524 (4)	131
$\mathrm{C} 7 B-\mathrm{H} 7 \mathrm{~B} 1 \cdots \mathrm{Cg} 2^{\text {vi }}$	0.98	2.88	3.530 (4)	124
$\mathrm{C} 8 D-\mathrm{H} 8 D 2 \cdots C g 3^{\text {vii }}$	0.98	2.87	3.594 (3)	131

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y+1,-z$; (iii) $x, y, z-1$; (iv)
$-x,-y+1,-z+1$; (v) $x-1, y, z ;$ (vi) $x+1, y, z ;$ (vii) $-x,-y+2,-z+1$.
phosphonate cavitands hosting methanol and ethanol molecules (Melegari et al., 2008) and confirms that, for these systems, the stability of the host-guest complex is entropic in origin, since the guest can choose from two up to four energetically and geometrically equivalent interaction modes with the host. In this case, the NO^{+}cation forms two sets of strong interactions with two adjacent $\mathrm{P}=\mathrm{O}$ groups, which results in a better stabilizing effect than four weaker interactions with all the phosphonate moieties of the upper rim. The $\mathrm{BF}_{4}{ }^{-}$ion is outside the cavity, forming weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions with the cavitands (see Section 4 for details).

The dichloromethane solvent molecule is heavily disordered and could not be modelled, but its residual electron density, occupying a void of $312 \AA^{3}$ (Spek, 2015) is located in the hydrophobic pockets among the cavitands.

4. Supramolecular features

In the lattice, the cavitands form a supramolecular ribbon along the a-axis direction through a series of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the H atoms of the methyl groups at the upper rim and the phenyl rings of the phosphonato moieties. In particular, each cavitand interacts with two adjacent ones acting simultaneously as a donor to two methyl groups and as an acceptor to two aromatic rings (see Table 2 and Fig. 3; the centroids involved are $C g 1$ and $C g 2$, represented as red and green spheres, respectively). Moreover, pairs of centrosymmetric cavitands form another set of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the methylenic hydrogen atoms at the lower rim and the aromatic walls of the macrocycle (see Table 2 and Fig. 3, $C g 3$, blue centroids). The structure is further stabilized by the presence of $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions between the hydrogen atoms of the cavitands and the fluorine atoms of the tetrafluoridoborate anion. More precisely, each BF_{4}^{-}is surrounded by five cavitands (Fig. 4), with $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ distances ranging from 2.408 (2) to 2.653 (2) \AA (Table 2).

Figure 3
$\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (green dashed lines) forming a ribbon along the a axis direction of the unit cell. Centroids $C g 1$ (C9B-C14B), Cg2 (C9D$\mathrm{C} 14 D)$ and $C g 3(\mathrm{C} 1 A-\mathrm{C} 6 A)$ are represented as red, green and blue spheres, respectively.

5. Database survey

A search in the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016) for structures containing the isolated NO fragment, with no restrictions on the charge or on the type of bond connecting nitrogen and oxygen, yielded 65 species which are, of course, very different in nature. Meaningful comparisons with our complex are only possible with the series of calixarene-based, host-guest complexes already cited in the introduction, namely GOTCAT, GOTDEY, GOTGEB, GOTHAY and GOTHAY01 (Rathore et al., 2000) and with a cationic radical calixarene derivative capable of binding neutral nitric oxide (JAHFOO; Rathore et al., 2004). In particular, in GOTCAT, the NO^{+} cation is buried deep inside the cavity, where it interacts with two distal aromatic groups of the calixarene guest. Since the calixarene is in the 1,3-alternate conformation, two sets of cofacial benzene rings are present, and the NO^{+}ion is equally distributed between them (see Fig. 5, one pair of rings is shown

Figure 4
View of the $\mathrm{BF}_{4}{ }^{-}$ion surrounded by the five closest cavitands through $\mathrm{C}-\mathrm{H} \cdots$ F interactions. [Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y+1$, $-z$; (iii) $x, y, z-1$; (iv) $-x,-y+1,-z+1$.]
in space-filling model, the other one in capped-stick mode). The electron-rich pocket formed by the co-facial pair is essential for the complexation, and the NO^{+}ion is not bound by a single aromatic ring alone (see, for instance, GOTDEY and GOTGEB). In the case of JAHFOO, the calixarene has been oxidized to carry an overall positive charge on its core, in order to make it a good receptor for an electron rich-guest such as nitric oxide. Nevertheless, the interaction mode is similar to that observed for GOTCAT, with two disordered NO molecules buried between two distinct pairs of distal aromatic rings (Fig. 5). Also, in the title complex the guest is disordered over two equivalent positions, but its interaction with the electron-rich cavity is negligible due to the presence of the dipolar phosphonate groups which 'hold' the NO^{+}ion at the brim of the upper rim (Fig. 5).

6. Synthesis and crystallization

${ }^{1} \mathrm{H}$ NMR spectra were obtained using a Bruker AMX-400 $(400 \mathrm{MHz})$ spectrometer. All chemical shifts (δ) were reported in ppm relative to the proton resonances resulting from incomplete deuteration of the NMR solvents. ${ }^{31} \mathrm{P}$ NMR spectra were obtained using a Bruker AMX-400 (162 MHz) spectrometer. All chemical shifts (δ) were recorded in ppm relative to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ at 0.00 ppm . All commercial reagents were ACS reagent grade and used as received. The cavitands Tiiii $\left[\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\right]$ and Tiiii $\left[\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\right]$ were prepared following published procedures (Tonezzer et al., 2008; Menozzi et al., 2015).

NO@Tiiii $\left[\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\right] \mathrm{BF}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was obtained by mixing a dichloromethane solution of Tiiii $\left[\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\right]$

NO@Tiiiii[H, $\left.\mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{6}\right]$

Figure 5
Comparison of the interaction modes of GOTCAT, JAHFOO (side view), and of the title compound, NO@Tiiii[$\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}$] (top view), highlighting the disorder of the guest over two equivalent positions. The space-filling view is only partial for reasons of clarity.

Table 3
Experimental details.

Crystal data

Crystal data	
Chemical formula	$\mathrm{C}_{56} \mathrm{H}_{44} \mathrm{P}_{4} \mathrm{O}_{12} \cdot \mathrm{NO}^{+} \cdot \mathrm{BF}_{4}{ }^{-} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
M_{r}	1234.54
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	190
$a, b, c(\AA)$	$13.856(1), 14.909(2), 16.357(2)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$63.224(2), 73.137(2), 88.093(2)$
$V\left(\AA^{3}\right)$	$2868.2(6)$
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.30
Crystal size (mm)	$0.16 \times 0.13 \times 0.10$
Data collection	Bruker SMART BREEZE CCD
Diffractometer	area-detector
	Multi-scan $(S A D A B S ;$ Bruker,
Absorption correction	$2008)$
	$0.812,1.000$
$T_{\text {min }}, T_{\text {max }}$	$36384,14109,9478$
No. of measured, independent and	
observed $[I>2 \sigma(I)]$ reflections	0.033
$R_{\text {int }}$	0.690
$(\text { sin } \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	$0.042,0.128,1.00$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	14109
No. of reflections	735
No. of parameters	H-atom parameters constrained
H-atom treatment	$0.63,-0.41$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA{ }^{-3}\right)$	

Computer programs: APEX2 and SAINT (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012), PARST (Nardelli, 1995) and publCIF (Westrip, 2010).
(1 eq.) with a dichloromethane solution of NOBF_{4} (1 eq.). The mixture was left to evaporate to yield colourless single crystals of the $1: 1$ complex that were suitable for X-ray diffraction analysis.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The nitrosonium ion was found to be disordered over two positions, with a refined occupancy ratio of 0.503 (2):0.497 (2). The C-bound H atoms were placed in calculated positions and refined using a riding model: $\mathrm{C}-\mathrm{H}$ $=0.95-0.98 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}$-methyl $)$ and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

As a result of severe disorder, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent could not be sensibly modelled in terms of atomic sites, and was treated using the PLATON SQUEEZE procedure (Spek, 2015); the solvent contribution to the diffraction pattern was removed and modified $F_{\mathrm{o}}{ }^{2}$ written to a new HKL file. The number of electrons corresponding to the solvent molecules were included in the formula, formula weight, calculated density, μ and $F(000)$.

Acknowledgements

The Centro Interfacoltà di Misure "G. Casnati" and the "Laboratorio di Strutturistica Mario Nardelli" of the University of Parma are kindly acknowledged for the use of NMR facilities and of the Diffractometer.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Botta, B., D'Acquarica, I., Delle Monache, G., Nevola, L., Tullo, D., Ugozzoli, F. \& Pierini, M. (2007). J. Am. Chem. Soc. 129, 1120211212.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cram, D. J. (1983). Science, 219, 1177-1183.
Cram, D. J. \& Cram, J. M. (1994). Container Molecules and their Guests, Monographs in Supramolecular Chemistry, edited by J. F. Stoddart, vol. 4. Royal Society of Chemistry, Cambridge, UK.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hooley, R. J. \& Rebek, J. Jr (2009). Chem. Biol. 16, 255-264.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Mazej, Z., Ponikvar-Svet, M., Liebman, J. F., Passmore, J. \& Jenkins, H. D. B. (2009). J. Fluor. Chem. 130, 788-791.

Melegari, M., Suman, M., Pirondini, L., Moiani, D., Massera, C., Ugozzoli, F., Kalenius, E., Vainiotalo, P., Mulatier, J.-C., Dutasta, J.-P. \& Dalcanale, E. (2008). Chem. Eur. J. 14, 5772-5779.

Menozzi, D., Pinalli, R., Massera, C., Maffei, F. \& Dalcanale, E. (2015). Molecules, 20, 4460-4472.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Pinalli, R., Brancatelli, G., Pedrini, A., Menozzi, D., Hernández, D., Ballester, P., Geremia, S. \& Dalcanale, E. (2016). J. Am. Chem. Soc. 138, 8569-8580.
Pinalli, R. \& Dalcanale, E. (2013). Acc. Chem. Res. 46, 399-411.
Pochorovski, I., Ebert, M.-O., Gisselbrecht, J.-P., Boudon, C., Schweizer, W. B. \& Diederich, F. (2012). J. Am. Chem. Soc. 134, 14702-14705.
Rathore, R., Abdelwahed, S. H. \& Guzei, I. A. (2004). J. Am. Chem. Soc. 126, 13582-13583.
Rathore, R., Lindeman, S. V., Rao, K. S. S. P., Sun, D. \& Kochi, J. K. (2000). Angew. Chem. Int. Ed. 39, 2123-2127.

Riboni, N., Trzcinski, J. W., Bianchi, F., Massera, C., Pinalli, R., Sidisky, L., Dalcanale, E. \& Careri, M. (2016). Anal. Chim. Acta, 905, 79-84.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2015). Acta Cryst. C71, 9-18.
Tonezzer, M., Melegari, M., Maggioni, G., Milan, R., Della Mea, G. \& Dalcanale, E. (2008). Chem. Mater. 20, 6535-6542.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zyryanov, G. V., Kang, Y. \& Rudkevich, D. M. (2003). J. Am. Chem. Soc. 125, 2997-3007.
Zyryanov, G. V., Kang, Y., Stampp, S. P. \& Rudkevich, D. M. (2002). Chem. Commun. pp. 2792-2793.

supporting information

Acta Cryst. (2017). E73, 1801-1805 [https://doi.org/10.1107/S2056989017015857]
Nitrosonium complexation by the tetraphosphonate cavitand 5,11,17,23-tetra-methyl-6,10:12,16:18,22:24,4-tetrakis(phenylphosphonato$\kappa^{2} O, O$)resorcin (4)arene

Roberta Pinalli and Chiara Massera

Computing details

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), PARST (Nardelli, 1995) and publCIF (Westrip, 2010).

Nitrosonium tetrafluoridoborate-5,11,17,23-tetramethyl-6,10:12,16:18,22:24,4-tetrakis(phenylphosphonato$\left.\kappa^{2} O, O\right)$ resorcin(4)arene-dichloromethane (1/1/1)

Crystal data

$\mathrm{C}_{56} \mathrm{H}_{44} \mathrm{P}_{4} \mathrm{O}_{12} \cdot \mathrm{NO}^{+} \cdot \mathrm{BF}_{4} \cdot \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=1234.54$
Triclinic, $P \overline{1}$
$a=13.856$ (1) \AA
$b=14.909$ (2) \AA
$c=16.357(2) \AA$
$\alpha=63.224(2)^{\circ}$
$\beta=73.137(2)^{\circ}$
$\gamma=88.093(2)^{\circ}$
$V=2868.2(6) \AA^{3}$

Data collection

Bruker SMART BREEZE CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scan
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.812, T_{\text {max }}=1.000$
$Z=2$
$F(000)=1268$
$D_{\mathrm{x}}=1.429 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$
Cell parameters from 250 reflections
$\theta=1.5-29.4^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=190 \mathrm{~K}$
Prismatic, colourless
$0.16 \times 0.13 \times 0.10 \mathrm{~mm}$

36384 measured reflections
14109 independent reflections
9478 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=29.4^{\circ}, \theta_{\text {min }}=1.5^{\circ}$
$h=-18 \rightarrow 18$
$k=-20 \rightarrow 20$
$l=-22 \rightarrow 22$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.128$
$S=1.00$

14109 reflections
735 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0693 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.63 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.41 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Special details

Experimental. The calculated molar mass, density and absorption coefficient include two disordered dichloromethane molecules per cell which do not appear in the final files because of the refinements carried out with data subjected to SQUEEZE.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
N1	0.3415 (3)	0.7159 (4)	0.4179 (3)	0.0386 (10)	0.503 (2)
O1	0.3391 (2)	0.6435 (3)	0.4543 (2)	0.0307 (8)	0.503 (2)
N2	0.2020 (3)	0.7031 (4)	0.3846 (3)	0.0426 (11)	0.497 (2)
O2	0.1903 (2)	0.6363 (3)	0.4165 (2)	0.0266 (7)	0.497 (2)
B1	0.2882 (2)	0.2304 (2)	0.12591 (19)	0.0410 (6)	
F1	0.34181 (17)	0.16872 (13)	0.18534 (15)	0.0875 (6)	
F2	0.28773 (14)	0.19718 (12)	0.05981 (11)	0.0638 (4)	
F3	0.33203 (12)	0.32872 (10)	0.08112 (10)	0.0553 (4)	
F4	0.19008 (14)	0.22111 (13)	0.18451 (14)	0.0790 (6)	
P1A	0.35319 (4)	0.75850 (4)	0.63016 (3)	0.02411 (12)	
P1B	0.60883 (4)	0.73524 (4)	0.25305 (4)	0.02623 (12)	
P1C	0.19872 (4)	0.71498 (4)	0.14576 (3)	0.02352 (11)	
P1D	-0.05960 (4)	0.73655 (4)	0.52317 (4)	0.02430 (12)	
O1A	0.26652 (10)	0.82864 (10)	0.64092 (9)	0.0264 (3)	
O2A	0.45495 (10)	0.83412 (10)	0.56545 (9)	0.0256 (3)	
O3A	0.33168 (11)	0.69279 (11)	0.59071 (10)	0.0315 (3)	
O1B	0.64868 (10)	0.81454 (11)	0.27975 (10)	0.0286 (3)	
O2B	0.60145 (10)	0.80000 (11)	0.14780 (9)	0.0275 (3)	
O3B	0.51418 (10)	0.67359 (11)	0.32481 (10)	0.0344 (3)	
O1C	0.29952 (10)	0.78374 (10)	0.06637 (9)	0.0250 (3)	
O2C	0.11212 (10)	0.78858 (10)	0.13782 (9)	0.0260 (3)	
O3C	0.20873 (11)	0.66232 (11)	0.24296 (10)	0.0310 (3)	
O1D	-0.08197 (10)	0.80541 (10)	0.42444 (9)	0.0265 (3)	
O2D	-0.03700 (9)	0.81178 (10)	0.56143 (9)	0.0251 (3)	
O3D	0.02187 (10)	0.67259 (11)	0.51314 (10)	0.0331 (3)	
C1A	0.19513 (14)	0.99115 (14)	0.42444 (13)	0.0239 (4)	
H1A	0.2222	1.0501	0.3648	0.029*	
C2A	0.25267 (14)	0.95390 (14)	0.48748 (13)	0.0233 (4)	
C3A	0.21105 (14)	0.86730 (15)	0.57387 (13)	0.0239 (4)	
C4A	0.11502 (14)	0.81716 (14)	0.60086 (14)	0.0246 (4)	
C5A	0.06242 (14)	0.85866 (14)	0.53393 (13)	0.0235 (4)	

C6A	$0.09877(14)$	$0.94465(14)$	$0.44598(13)$	$0.0227(4)$
C7A	$0.07040(16)$	$0.72542(16)$	$0.69608(15)$	$0.0345(5)$
H7A1	0.1199	0.7067	0.7317	0.052^{*}
H7A2	0.0534	0.6692	0.6853	0.052^{*}
H7A3	0.0088	0.7405	0.7334	0.052^{*}
C8A	$0.35871(14)$	$1.00412(15)$	$0.46023(14)$	$0.0253(4)$
H8A1	0.3721	0.9976	0.5188	0.030^{*}
H8A2	0.3630	1.0771	0.4160	0.030^{*}
C9A	$0.36897(14)$	$0.69707(15)$	$0.74569(14)$	$0.0265(4)$
C10A	$0.35124(16)$	$0.59170(16)$	$0.79585(15)$	$0.0338(5)$
H10A	0.3299	0.5545	0.7686	0.041^{*}
C11A	$0.36511(18)$	$0.54167(19)$	$0.88606(16)$	$0.0443(6)$
H11A	0.3528	0.4700	0.9208	0.053^{*}
C12A	$0.39638(18)$	$0.5952(2)$	$0.92518(16)$	$0.0463(6)$
H12A	0.4063	0.5604	0.9866	0.056^{*}
C13A	$0.41351(19)$	$0.6994(2)$	$0.87595(17)$	$0.0473(6)$
H13A	0.4349	0.7360	0.9037	0.057^{*}
C14A	$0.39949(17)$	$0.75105(18)$	$0.78587(15)$	$0.0378(5)$
H14A	0.4108	0.8228	0.7522	0.045^{*}
C1B	$0.46749(14)$	$0.99163(14)$	$0.31262(13)$	$0.0244(4)$
H1B	0.4392	1.0488	0.2751	0.029^{*}
C2B	$0.53674(14)$	$0.94606(14)$	$0.26635(13)$	$0.0241(4)$
C3B	$0.57720(14)$	$0.86308(15)$	$0.32371(14)$	$0.0250(4)$
C4B	$0.55347(14)$	$0.82460(15)$	$0.42299(14)$	$0.0263(4)$
C5B	$0.48240(14)$	$0.87296(15)$	$0.46416(13)$	$0.0246(4)$
C6B	$0.43862(14)$	$0.95615(14)$	$0.41178(13)$	$0.0232(4)$
C7B	$0.60064(17)$	$0.73656(17)$	$0.48175(15)$	$0.0365(5)$
H7B1	0.6048	0.7425	0.5379	0.055^{*}
H7B2	0.6690	0.7360	0.4425	0.055^{*}
H7B3	0.5590	0.6735	0.5033	0.055^{*}
C8B	$0.56298(15)$	$0.98464(15)$	$0.15868(13)$	$0.0267(4)$
H8B1	0.6338	0.9735	0.1331	0.032^{*}
H8B2	0.5584	1.0583	0.1275	0.032^{*}
C9B	$0.71418(15)$	$0.66821(16)$	$0.23315(15)$	$0.0296(4)$
C10B	$0.72732(17)$	$0.58210(17)$	$0.31116(18)$	$0.0373(5)$
H10B	0.6810	0.5605	0.3739	0.045^{*}
C11B	$0.80909(18)$	$0.52802(18)$	$0.2962(2)$	$0.0459(6)$
H11B	0.8188	0.4697	0.3489	0.055^{*}
C12B	$0.87546(18)$	$0.5590(2)$	$0.2052(2)$	$0.0470(6)$
H12B	0.9313	0.5223	0.1955	0.056^{*}
C13B	$0.86170(18)$	$0.6421(2)$	$0.1286(2)$	$0.0497(7)$
H13B	0.9075	0.6620	0.0659	0.060^{*}
C14B	$0.78131(17)$	$0.6980(2)$	$0.14123(17)$	$0.0434(6)$
H14B	0.7724	0.7560	0.0877	0.052^{*}
C1C	$0.40529(14)$	$0.97320(14)$	$0.11292(13)$	$0.0241(4)$
H1C	0.3904	1.0354	0.1140	0.029^{*}
C2C	$0.33983(14)$	$0.92483(14)$	$0.09105(12)$	$0.0227(4)$
C3C	$0.36369(14)$	$0.83356(14)$	$0.09052(13)$	$0.0232(4)$

C4C	0.44987 (14)	0.78914 (15)	0.10945 (13)	0.0246 (4)
C5C	0.51171 (14)	0.84139 (15)	0.13116 (13)	0.0241 (4)
C6C	0.49252 (14)	0.93202 (14)	0.13327 (13)	0.0240 (4)
C7C	0.47466 (16)	0.69088 (16)	0.10745 (16)	0.0317 (5)
H7C1	0.4156	0.6587	0.1053	0.048*
H7C2	0.4923	0.6459	0.1655	0.048*
H7C3	0.5322	0.7041	0.0503	0.048*
C8C	0.24356 (14)	0.96932 (14)	0.07192 (13)	0.0241 (4)
H8C1	0.2544	1.0439	0.0441	0.029*
H8C2	0.2276	0.9529	0.0247	0.029*
C9C	0.16854 (14)	0.63680 (15)	0.09894 (14)	0.0251 (4)
C10C	0.17014 (16)	0.53322 (16)	0.14934 (16)	0.0331 (5)
H10C	0.1867	0.5055	0.2078	0.040*
C11C	0.14744 (17)	0.47044 (18)	0.11403 (19)	0.0418 (6)
H11C	0.1495	0.3996	0.1478	0.050*
C12C	0.12199 (17)	0.5105 (2)	0.0301 (2)	0.0457 (6)
H12C	0.1054	0.4670	0.0067	0.055*
C13C	0.12048 (19)	0.6130 (2)	-0.02015 (19)	0.0462 (6)
H13C	0.1030	0.6400	-0.0781	0.055*
C14C	0.14423 (17)	0.67743 (18)	0.01321 (16)	0.0368 (5)
H14C	0.1439	0.7484	-0.0220	0.044*
C1D	0.13485 (14)	0.97464 (14)	0.22290 (13)	0.0239 (4)
H1D	0.1751	1.0356	0.2027	0.029*
C2D	0.05730 (14)	0.93516 (14)	0.31036 (13)	0.0231 (4)
C3D	-0.00030 (14)	0.84668 (15)	0.33686 (13)	0.0242 (4)
C4D	0.01450 (14)	0.79593 (15)	0.28118 (14)	0.0255 (4)
C5D	0.09407 (14)	0.83894 (14)	0.19564 (13)	0.0232 (4)
C6D	0.15514 (14)	0.92744 (14)	0.16438 (13)	0.0228 (4)
C7D	-0.05138 (17)	0.70142 (17)	0.31159 (16)	0.0365 (5)
H7D1	-0.0530	0.6961	0.2544	0.055*
H7D2	-0.1204	0.7041	0.3481	0.055*
H7D3	-0.0237	0.6424	0.3521	0.055*
C8D	0.03903 (14)	0.98661 (14)	0.37464 (13)	0.0235 (4)
H8D1	0.0594	1.0602	0.3342	0.028*
H8D2	-0.0343	0.9763	0.4101	0.028*
C9D	-0.18126 (14)	0.67358 (15)	0.60172 (14)	0.0258 (4)
C10D	-0.21742 (16)	0.59045 (16)	0.59617 (15)	0.0319 (5)
H10D	-0.1763	0.5680	0.5530	0.038*
C11D	-0.31361 (16)	0.54133 (16)	0.65406 (16)	0.0367 (5)
H11D	-0.3388	0.4852	0.6505	0.044*
C12D	-0.37320 (16)	0.57426 (17)	0.71741 (16)	0.0386 (5)
H12D	-0.4393	0.5406	0.7567	0.046*
C13D	-0.33707 (16)	0.65558 (18)	0.72374 (16)	0.0388 (5)
H13D	-0.3781	0.6770	0.7678	0.047*
C14D	-0.24110 (16)	0.70591 (16)	0.66583 (15)	0.0321 (5)
H14D	-0.2163	0.7620	0.6698	0.039*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.026 (2)	0.068 (3)	0.030 (2)	0.002 (2)	-0.0062 (16)	-0.031 (2)
O1	0.0231 (15)	0.0457 (19)	0.0267 (16)	-0.0007 (14)	-0.0038 (12)	-0.0216 (15)
N2	0.025 (2)	0.084 (4)	0.036 (3)	0.012 (2)	-0.0103 (18)	-0.041 (3)
O2	0.0266 (16)	0.0343 (17)	0.0239 (16)	0.0087 (14)	-0.0083 (12)	-0.0176 (15)
B1	0.0572 (18)	0.0266 (13)	0.0331 (14)	0.0055 (12)	-0.0109 (13)	-0.0106 (11)
F1	0.1356 (18)	0.0472 (10)	0.0887 (13)	0.0254 (11)	-0.0712 (13)	-0.0180 (10)
F2	0.0914 (12)	0.0594 (10)	0.0434 (9)	-0.0021 (9)	-0.0133 (8)	-0.0296 (8)
F3	0.0762 (11)	0.0290 (7)	0.0436 (8)	-0.0007 (7)	-0.0064 (7)	-0.0092 (6)
F4	0.0738 (12)	0.0646 (11)	0.0825 (13)	-0.0121 (9)	0.0162 (10)	-0.0432 (10)
P1A	0.0246 (3)	0.0281 (3)	0.0190 (2)	-0.0001 (2)	-0.0069 (2)	-0.0100 (2)
P1B	0.0213 (2)	0.0333 (3)	0.0237 (3)	0.0047 (2)	-0.0060 (2)	-0.0135 (2)
P1C	0.0246 (3)	0.0281 (3)	0.0211 (2)	0.0035 (2)	-0.0079 (2)	-0.0136 (2)
P1D	0.0200 (2)	0.0283 (3)	0.0246 (3)	0.00258 (19)	-0.0042 (2)	-0.0137 (2)
O1A	0.0255 (7)	0.0335 (8)	0.0207 (7)	0.0036 (6)	-0.0088 (6)	-0.0119 (6)
O2A	0.0254 (7)	0.0322 (7)	0.0175 (6)	-0.0013 (6)	-0.0063 (5)	-0.0100 (6)
O3A	0.0361 (8)	0.0342 (8)	0.0264 (7)	-0.0018 (6)	-0.0103 (6)	-0.0151 (6)
O1B	0.0234 (7)	0.0387 (8)	0.0259 (7)	0.0058 (6)	-0.0076 (6)	-0.0170 (6)
O2B	0.0219 (7)	0.0378 (8)	0.0237 (7)	0.0060 (6)	-0.0073 (6)	-0.0150 (6)
O3B	0.0269 (8)	0.0400 (9)	0.0297 (8)	0.0012 (6)	-0.0030 (6)	-0.0139 (7)
O1C	0.0237 (7)	0.0313 (7)	0.0241 (7)	0.0020 (6)	-0.0074 (5)	-0.0161 (6)
O2C	0.0258 (7)	0.0333 (7)	0.0261 (7)	0.0062 (6)	-0.0090 (6)	-0.0193 (6)
O3C	0.0372 (8)	0.0351 (8)	0.0227 (7)	0.0052 (6)	-0.0116 (6)	-0.0136 (6)
O1D	0.0211 (7)	0.0349 (8)	0.0232 (7)	0.0012 (6)	-0.0036 (5)	-0.0149 (6)
O2D	0.0198 (6)	0.0314 (7)	0.0241 (7)	0.0003 (5)	-0.0042 (5)	-0.0143 (6)
O3D	0.0259 (7)	0.0353 (8)	0.0372 (8)	0.0081 (6)	-0.0053 (6)	-0.0190 (7)
C1A	0.0292 (10)	0.0212 (9)	0.0206 (9)	0.0029 (8)	-0.0048 (8)	-0.0107 (8)
C2A	0.0234 (9)	0.0245 (10)	0.0243 (10)	0.0027 (7)	-0.0053 (8)	-0.0143 (8)
C3A	0.0238 (10)	0.0295 (10)	0.0215 (9)	0.0051 (8)	-0.0089 (8)	-0.0133 (8)
C4A	0.0227 (9)	0.0280 (10)	0.0220 (9)	0.0019 (8)	-0.0044 (8)	-0.0121 (8)
C5A	0.0190 (9)	0.0285 (10)	0.0245 (10)	0.0017 (7)	-0.0038 (7)	-0.0152 (8)
C6A	0.0260 (10)	0.0237 (9)	0.0234 (9)	0.0071 (8)	-0.0084 (8)	-0.0150 (8)
C7A	0.0294 (11)	0.0365 (12)	0.0269 (11)	-0.0024 (9)	-0.0079 (9)	-0.0058 (9)
C8A	0.0268 (10)	0.0260 (10)	0.0242 (10)	-0.0005 (8)	-0.0072 (8)	-0.0127 (8)
C9A	0.0207 (9)	0.0348 (11)	0.0206 (9)	0.0016 (8)	-0.0049 (8)	-0.0107 (8)
C10A	0.0332 (11)	0.0338 (11)	0.0283 (11)	0.0051 (9)	-0.0065 (9)	-0.0112 (9)
C11A	0.0400 (13)	0.0418 (13)	0.0295 (12)	0.0120 (11)	-0.0036 (10)	-0.0030 (10)
C12A	0.0374 (13)	0.0701 (18)	0.0227 (11)	0.0156 (12)	-0.0118 (10)	-0.0132 (12)
C13A	0.0482 (15)	0.0689 (18)	0.0307 (12)	0.0020 (13)	-0.0183 (11)	-0.0237 (13)
C14A	0.0420 (13)	0.0430 (13)	0.0264 (11)	-0.0031 (10)	-0.0121 (10)	-0.0129 (10)
C1B	0.0251 (10)	0.0230 (9)	0.0226 (9)	-0.0024 (7)	-0.0081 (8)	-0.0075 (8)
C2B	0.0227 (9)	0.0259 (10)	0.0211 (9)	-0.0051 (7)	-0.0048 (8)	-0.0092 (8)
C3B	0.0194 (9)	0.0331 (11)	0.0229 (10)	0.0016 (8)	-0.0048 (8)	-0.0142 (8)
C4B	0.0234 (10)	0.0331 (11)	0.0243 (10)	0.0020 (8)	-0.0095 (8)	-0.0134 (9)
C5B	0.0239 (9)	0.0310 (10)	0.0171 (9)	-0.0041 (8)	-0.0050 (7)	-0.0100 (8)
C6B	0.0214 (9)	0.0242 (10)	0.0235 (9)	-0.0032 (7)	-0.0063 (8)	-0.0106 (8)

C7B	0.0389 (12)	0.0436 (13)	0.0253 (11)	0.0145 (10)	-0.0136 (9)	-0.0128 (10)
C8B	0.0277 (10)	0.0282 (10)	0.0194 (9)	-0.0032 (8)	-0.0052 (8)	-0.0079 (8)
C9B	0.0232 (10)	0.0376 (11)	0.0345 (11)	0.0060 (8)	-0.0112 (9)	-0.0207 (10)
C10B	0.0312 (11)	0.0327 (12)	0.0453 (13)	0.0029 (9)	-0.0123 (10)	-0.0155 (10)
C11B	0.0396 (13)	0.0287 (12)	0.0712 (18)	0.0076 (10)	-0.0239 (13)	-0.0206 (12)
C12B	0.0305 (12)	0.0490 (15)	0.081 (2)	0.0129 (11)	-0.0206 (13)	-0.0453 (15)
C13B	0.0350 (13)	0.0731 (19)	0.0529 (16)	0.0167 (13)	-0.0103 (12)	-0.0414 (15)
C14B	0.0358 (13)	0.0615 (16)	0.0351 (12)	0.0169 (11)	-0.0117 (10)	-0.0243 (12)
C1C	0.0290 (10)	0.0238 (9)	0.0155 (9)	0.0007 (8)	-0.0039 (8)	-0.0074 (7)
C2C	0.0221 (9)	0.0264 (10)	0.0136 (8)	0.0009 (7)	-0.0020 (7)	-0.0064 (7)
C3C	0.0231 (9)	0.0285 (10)	0.0174 (9)	-0.0005 (8)	-0.0053 (7)	-0.0104 (8)
C4C	0.0244 (10)	0.0279 (10)	0.0185 (9)	0.0014 (8)	-0.0032 (7)	-0.0102 (8)
C5C	0.0200 (9)	0.0311 (10)	0.0178 (9)	0.0029 (8)	-0.0045 (7)	-0.0091 (8)
C6C	0.0254 (10)	0.0269 (10)	0.0140 (8)	-0.0035 (8)	-0.0029 (7)	-0.0061 (8)
C7C	0.0295 (11)	0.0348 (11)	0.0355 (11)	0.0076 (9)	-0.0103 (9)	-0.0201 (10)
C8C	0.0261 (10)	0.0251 (10)	0.0188 (9)	0.0033 (8)	-0.0062 (8)	-0.0086 (8)
C9C	0.0220 (9)	0.0308 (10)	0.0269 (10)	0.0032 (8)	-0.0063 (8)	-0.0179 (9)
C10C	0.0302 (11)	0.0330 (11)	0.0360 (12)	0.0052 (9)	-0.0082 (9)	-0.0172 (10)
C11C	0.0346 (12)	0.0349 (12)	0.0553 (15)	0.0012 (10)	-0.0030 (11)	-0.0266 (12)
C12C	0.0331 (12)	0.0603 (17)	0.0659 (17)	0.0036 (11)	-0.0112 (12)	-0.0499 (15)
C13C	0.0460 (14)	0.0673 (18)	0.0474 (14)	0.0100 (12)	-0.0237 (12)	-0.0396 (14)
C14C	0.0420 (13)	0.0415 (13)	0.0356 (12)	0.0095 (10)	-0.0180 (10)	-0.0218 (10)
C1D	0.0249 (10)	0.0225 (9)	0.0236 (10)	0.0046 (7)	-0.0092 (8)	-0.0092 (8)
C2D	0.0243 (9)	0.0256 (10)	0.0231 (9)	0.0078 (8)	-0.0102 (8)	-0.0129 (8)
C3D	0.0200 (9)	0.0319 (10)	0.0204 (9)	0.0037 (8)	-0.0050 (7)	-0.0125 (8)
C4D	0.0227 (9)	0.0314 (10)	0.0262 (10)	0.0034 (8)	-0.0081 (8)	-0.0161 (9)
C5D	0.0235 (9)	0.0302 (10)	0.0229 (9)	0.0078 (8)	-0.0093 (8)	-0.0171 (8)
C6D	0.0227 (9)	0.0258 (10)	0.0201 (9)	0.0067 (7)	-0.0089 (7)	-0.0096 (8)
C7D	0.0336 (12)	0.0433 (13)	0.0365 (12)	-0.0068 (10)	-0.0026 (10)	-0.0258 (11)
C8D	0.0250 (10)	0.0243 (9)	0.0232 (9)	0.0067 (8)	-0.0077 (8)	-0.0126 (8)
C9D	0.0212 (9)	0.0282 (10)	0.0238 (10)	0.0027 (8)	-0.0066 (8)	-0.0088 (8)
C10D	0.0305 (11)	0.0316 (11)	0.0324 (11)	0.0034 (9)	-0.0093 (9)	-0.0139 (9)
C11D	0.0326 (12)	0.0286 (11)	0.0417 (13)	-0.0010 (9)	-0.0120 (10)	-0.0095 (10)
C12D	0.0242 (11)	0.0371 (12)	0.0360 (12)	0.0006 (9)	-0.0053 (9)	-0.0035 (10)
C13D	0.0289 (11)	0.0463 (14)	0.0326 (12)	0.0053 (10)	-0.0007 (9)	-0.0165 (11)
C14D	0.0289 (11)	0.0363 (12)	0.0296 (11)	0.0034 (9)	-0.0048 (9)	-0.0163 (9)

Geometric parameters ($A,{ }^{\circ}$)

N1—O1	$0.966(5)$	C7B-H7B2	0.9800
N2-O2	$0.885(5)$	C7B-H7B3	0.9800
B1—F3	$1.374(3)$	C8B-C6C	$1.524(3)$
B1—F2	$1.379(3)$	C8B-H8B1	0.9900
B1-F1	$1.382(3)$	C8B-H8B2	0.9900
B1-F4	$1.387(3)$	C9B-C14B	$1.392(3)$
P1A-O3A	$1.4716(14)$	C9B-C10B	$1.397(3)$
P1A-O1A	$1.5894(14)$	C10B-C11B	$1.397(3)$
P1A-O2A	$1.5950(14)$	C10B-H10B	0.9500

P1A-C9A	1.768 (2)
P1B-O3B	1.4688 (15)
P1B-O2B	1.5825 (14)
P1B-O1B	1.5943 (15)
P1B-C9B	1.776 (2)
P1C-O3C	1.4695 (14)
P1C-O1C	1.5911 (14)
P1C-O2C	1.5921 (14)
P1C-C9C	1.7727 (19)
P1D-O3D	1.4738 (14)
P1D-O2D	1.5867 (14)
P1D-O1D	1.5916 (14)
P1D-C9D	1.7708 (19)
O1A-C3A	1.420 (2)
O2A-C5B	1.418 (2)
O1B-C3B	1.425 (2)
O2B-C5C	1.412 (2)
$\mathrm{O} 1 \mathrm{C}-\mathrm{C} 3 \mathrm{C}$	1.418 (2)
O2C-C5D	1.418 (2)
O1D-C3D	1.422 (2)
O2D-C5A	1.418 (2)
C1A-C2A	1.392 (3)
C1A-C6A	1.399 (3)
C1A-H1A	0.9500
C2A-C3A	1.389 (3)
C2A-C8A	1.520 (3)
C3A-C4A	1.397 (3)
C4A-C5A	1.391 (3)
C4A-C7A	1.502 (3)
C5A-C6A	1.388 (3)
C6A-C8D	1.519 (3)
C7A-H7A1	0.9800
C7A-H7A2	0.9800
C7A-H7A3	0.9800
C8A-C6B	1.521 (3)
C8A-H8A1	0.9900
C8A-H8A2	0.9900
C9A-C14A	1.385 (3)
C9A-C10A	1.396 (3)
C10A-C11A	1.391 (3)
C10A-H10A	0.9500
C11A-C12A	1.370 (4)
C11A-H11A	0.9500
C12A-C13A	1.380 (4)
C12A-H12A	0.9500
C13A-C14A	1.391 (3)
C13A-H13A	0.9500
C14A-H14A	0.9500

C11B-C12B	$1.374(4)$
C11B-H11B	0.9500
C12B-C13B	$1.366(4)$
C12B-H12B	0.9500
C13B-C14B	$1.392(3)$
C13B-H13B	0.9500
C14B-H14B	0.9500
C1C-C2C	$1.391(3)$
C1C-C6C	$1.396(3)$
C1C-H1C	0.9500
C2C-C3C	$1.393(3)$
C2C-C8C	$1.521(3)$
C3C-C4C	$1.392(3)$
C4C-C5C	$1.392(3)$
C4C-C7C	$1.506(3)$
C5C-C6C	$1.382(3)$
C7C-H7C1	0.9800
C7C-H7C2	0.9800
C7C-H7C3	0.9800
C8C-C6D	$1.518(3)$
C8C-H8C1	0.9900
C8C-H8C2	0.9900
C9C-C10C	$1.388(3)$
C9C-C14C	$1.394(3)$
C10C-C11C	$1.386(3)$
C10C-H10C	0.9500
C11C-C12C	$1.377(4)$
C11C-H11C	0.9500
C12C-C13C	$1.374(4)$
C12C-H12C	0.9500
C13C-C14C	$1.387(3)$
C13C-H13C	0.9500
C14C-H14C	0.9500
C1D-C6D	$1.389(3)$
C1D-C2D	$1.393(3)$
C1D-H1D	0.9500
C2D-C3D	$1.385(3)$
C2D-C8D	$1.522(3)$
C3D-C4D	$1.395(3)$
C4D-C5D	$1.389(3)$
C4D-C7D	$1.502(3)$
C5D-C6D	$1.391(3)$
C7D-H7D1	0.9800
C7D-H7D2	0.9800
C7D-H7D3	0.9800
C8D-H8D1	0.9900
C8D-H8D2	0.9900
C9D-C14D	1

C1B-C6B	1.391 (3)
C1B-C2B	1.398 (3)
C1B-H1B	0.9500
C2B-C3B	1.392 (3)
C2B-C8B	1.515 (3)
C3B-C4B	1.392 (3)
C4B-C5B	1.396 (3)
C4B-C7B	1.498 (3)
C5B-C6B	1.391 (3)
C7B-H7B1	0.9800
F3-B1-F2	111.3 (2)
F3-B1-F1	109.5 (2)
$\mathrm{F} 2-\mathrm{B} 1-\mathrm{F} 1$	108.9 (2)
F3-B1-F4	110.4 (2)
$\mathrm{F} 2-\mathrm{B} 1-\mathrm{F} 4$	110.1 (2)
F1-B1-F4	106.6 (2)
O3A-P1A-O1A	113.25 (8)
O3A-P1A-O2A	113.39 (8)
O1A-P1A-O2A	105.21 (7)
O3A-P1A-C9A	116.42 (9)
O1A-P1A-C9A	103.86 (8)
O2A-P1A-C9A	103.48 (8)
$\mathrm{O} 3 \mathrm{~B}-\mathrm{P} 1 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}$	114.65 (8)
$\mathrm{O} 3 \mathrm{~B}-\mathrm{P} 1 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B}$	112.61 (8)
O2B-P1B-O1B	105.36 (8)
O3B-P1B-C9B	116.20 (10)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{P} 1 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}$	102.10 (9)
O1B-P1B-C9B	104.63 (8)
$\mathrm{O} 3 \mathrm{C}-\mathrm{P} 1 \mathrm{C}-\mathrm{O} 1 \mathrm{C}$	113.22 (8)
$\mathrm{O} 3 \mathrm{C}-\mathrm{P} 1 \mathrm{C}-\mathrm{O} 2 \mathrm{C}$	113.28 (8)
$\mathrm{O} 1 \mathrm{C}-\mathrm{P} 1 \mathrm{C}-\mathrm{O} 2 \mathrm{C}$	105.45 (7)
$\mathrm{O} 3 \mathrm{C}-\mathrm{P} 1 \mathrm{C}-\mathrm{C} 9 \mathrm{C}$	116.01 (9)
$\mathrm{O} 1 \mathrm{C}-\mathrm{P} 1 \mathrm{C}-\mathrm{C} 9 \mathrm{C}$	103.90 (8)
$\mathrm{O} 2 \mathrm{C}-\mathrm{P} 1 \mathrm{C}-\mathrm{C} 9 \mathrm{C}$	103.83 (8)
O3D-P1D-O2D	113.92 (8)
O3D-P1D-O1D	112.87 (8)
O2D-P1D-O1D	105.77 (7)
O3D-P1D-C9D	116.93 (9)
O2D-P1D-C9D	103.46 (8)
O1D-P1D-C9D	102.56 (8)
C3A-O1A-P1A	120.78 (12)
C5B-O2A-P1A	118.31 (11)
C3B-O1B-P1B	119.32 (12)
C5C-O2B-P1B	121.91 (11)
$\mathrm{C} 3 \mathrm{C}-\mathrm{O} 1 \mathrm{C}-\mathrm{P} 1 \mathrm{C}$	120.00 (11)
C5D-O2C-P1C	118.16 (11)
C3D-O1D-P1D	119.51 (12)

11.3 (2)
108.9 (2)
110.4 (2)
110.1 (2)
106.6 (2)
113.25 (8)
113.39 (8)
105.21 (7)
116.42 (9)
103.86 (8)
103.48 (8)
114.65 (8)
105.36 (8)
116.20 (10)
102.10 (9)
104.63 (8)
113.22 (8)
113.28 (8)
105.45 (7)
116.01 (9)
103.90 (8)
103.83 (8)
113.92 (8)
105.77 (7)
116.93 (9)
103.46 (8)
102.56 (8)
120.78 (12)
118.31 (11)
119.32 (12)
121.91 (11)
120.00 (11)
119.51 (12)
119.51 (12)

C9D-C10D	$1.402(3)$
C10D-C11D	$1.385(3)$
C10D-H10D	0.9500
C11D-C12D	$1.390(3)$
C11D-H11D	0.9500
C12D-C13D	$1.384(3)$
C12D-H12D	0.9500
C13D-C14D	$1.387(3)$
C13D-H13D	0.9500
C14D-H14D	0.9500

107.9
119.8 (2)
121.19 (17)
118.96 (16)
119.5 (2)
120.3
120.3
120.1 (2)
119.9
119.9
120.5 (2)
119.7
119.7
120.8 (2)
119.6
119.6
119.3 (2)
120.3
120.3
121.17 (18)
119.4
119.4
117.94 (17)
120.41 (17)
121.62 (17)
123.55 (17)
117.27 (16)
119.14 (16)
115.43 (17)
121.96 (18)
122.60 (18)
124.08 (18)
118.99 (17)
116.88 (17)
117.82 (17)
121.32 (18)
120.85 (17)

C5A-O2D-P1D	121.38 (11)
C2A-C1A-C6A	122.21 (17)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A}$	118.9
C6A-C1A-H1A	118.9
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	117.45 (17)
C3A-C2A-C8A	121.68 (17)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	120.82 (17)
C2A-C3A-C4A	123.67 (18)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	118.98 (16)
C4A-C3A-O1A	117.30 (16)
C5A-C4A-C3A	115.46 (17)
C5A-C4A-C7A	121.91 (17)
C3A-C4A-C7A	122.63 (18)
C6A-C5A-C4A	124.41 (17)
C6A-C5A-O2D	118.99 (17)
C4A-C5A-O2D	116.51 (16)
C5A-C6A-C1A	116.79 (17)
C5A-C6A-C8D	122.56 (17)
C1A-C6A-C8D	120.65 (17)
C4A-C7A-H7A1	109.5
C4A-C7A-H7A2	109.5
H7A1-C7A-H7A2	109.5
C4A-C7A-H7A3	109.5
H7A1-C7A-H7A3	109.5
H7A2-C7A-H7A3	109.5
C2A-C8A-C6B	111.10 (15)
C2A-C8A-H8A1	109.4
C6B-C8A-H8A1	109.4
C2A-C8A-H8A2	109.4
C6B-C8A-H8A2	109.4
H8A1-C8A-H8A2	108.0
C14A-C9A-C10A	120.16 (19)
C14A-C9A-P1A	121.45 (16)
C10A-C9A-P1A	118.38 (16)
C11A-C10A-C9A	119.4 (2)
C11A-C10A-H10A	120.3
C9A-C10A-H10A	120.3
C12A-C11A-C10A	120.4 (2)
C12A-C11A-H11A	119.8
C10A-C11A-H11A	119.8
C11A-C12A-C13A	120.4 (2)
C11A-C12A-H12A	119.8
C13A-C12A-H12A	119.8
C12A-C13A-C14A	120.2 (2)
C12A-C13A-H13A	119.9
C14A-C13A-H13A	119.9
C9A-C14A-C13A	119.5 (2)
C9A-C14A-H14A	120.3

$\mathrm{C} 4 \mathrm{C}-\mathrm{C} 7 \mathrm{C}-\mathrm{H} 7 \mathrm{C} 1$	109.5
$\mathrm{C} 4 \mathrm{C}-\mathrm{C} 7 \mathrm{C}-\mathrm{H} 7 \mathrm{C} 2$	109.5
H7C1-C7C-H7C2	109.5
$\mathrm{C} 4 \mathrm{C}-\mathrm{C} 7 \mathrm{C}-\mathrm{H} 7 \mathrm{C} 3$	109.5
H7C1-C7C-H7C3	109.5
H7C2-C7C-H7C3	109.5
C6D-C8C-C2C	110.63 (15)
C6D-C8C-H8C1	109.5
$\mathrm{C} 2 \mathrm{C}-\mathrm{C} 8 \mathrm{C}-\mathrm{H} 8 \mathrm{C} 1$	109.5
C6D-C8C-H8C2	109.5
$\mathrm{C} 2 \mathrm{C}-\mathrm{C} 8 \mathrm{C}-\mathrm{H} 8 \mathrm{C} 2$	109.5
H8C1-C8C-H8C2	108.1
C10C-C9C-C14C	120.11 (19)
C10C-C9C-P1C	118.53 (16)
C14C-C9C-P1C	121.36 (16)
C11C-C10C-C9C	119.7 (2)
C11C-C10C-H10C	120.2
C9C-C10C-H10C	120.2
$\mathrm{C} 12 \mathrm{C}-\mathrm{C} 11 \mathrm{C}-\mathrm{C} 10 \mathrm{C}$	120.1 (2)
$\mathrm{C} 12 \mathrm{C}-\mathrm{C} 11 \mathrm{C}-\mathrm{H} 11 \mathrm{C}$	119.9
C10C-C11C-H11C	119.9
C13C-C12C-C11C	120.4 (2)
$\mathrm{C} 13 \mathrm{C}-\mathrm{C} 12 \mathrm{C}-\mathrm{H} 12 \mathrm{C}$	119.8
C11C-C12C-H12C	119.8
$\mathrm{C} 12 \mathrm{C}-\mathrm{C} 13 \mathrm{C}-\mathrm{C} 14 \mathrm{C}$	120.5 (2)
$\mathrm{C} 12 \mathrm{C}-\mathrm{C} 13 \mathrm{C}-\mathrm{H} 13 \mathrm{C}$	119.8
$\mathrm{C} 14 \mathrm{C}-\mathrm{C} 13 \mathrm{C}-\mathrm{H} 13 \mathrm{C}$	119.8
C13C-C14C-C9C	119.2 (2)
$\mathrm{C} 13 \mathrm{C}-\mathrm{C} 14 \mathrm{C}-\mathrm{H} 14 \mathrm{C}$	120.4
C9C-C14C-H14C	120.4
C6D-C1D-C2D	121.92 (18)
C6D-C1D-H1D	119.0
C2D-C1D-H1D	119.0
C3D-C2D-C1D	117.33 (17)
C3D-C2D-C8D	121.87 (17)
C1D-C2D-C8D	120.79 (17)
C2D-C3D-C4D	124.00 (17)
C2D-C3D-O1D	119.04 (16)
C4D-C3D-O1D	116.93 (17)
C5D-C4D-C3D	115.41 (17)
C5D-C4D-C7D	122.33 (17)
C3D-C4D-C7D	122.26 (18)
C4D-C5D-C6D	123.81 (17)
C4D-C5D-O2C	116.92 (16)
C6D-C5D-O2C	119.27 (16)
C1D-C6D-C5D	117.52 (17)
C1D-C6D-C8C	120.72 (17)
C5D-C6D-C8C	121.72 (17)

C13A-C14A-H14A	120.3	C4D-C7D-H7D1	109.5
C6B-C1B-C2B	$122.22(18)$	C4D-C7D-H7D2	109.5
C6B-C1B-H1B	118.9	H7D1-C7D-H7D2	109.5
C2B-C1B-H1B	118.9	C4D-C7D-H7D3	109.5
C3B-C2B-C1B	$117.18(17)$	H7D1-C7D-H7D3	109.5
C3B-C2B-C8B	$122.31(18)$	H7D2-C7D-H7D3	109.5
C1B-C2B-C8B	$120.48(18)$	C6A-C8D-C2D	$111.24(15)$
C4B-C3B-C2B	$123.83(18)$	C6A-C8D-H8D1	109.4
C4B-C3B-O1B	$119.91(17)$	C2D-C8D-H8D1	109.4
C2B-C3B-O1B	$115.61(18)$	C6A-C8D-H8D2	109.4
C3B-C4B-C5B	$122.11(18)$	C2D-C8D-H8D2	109.4
C3B-C4B-C7B	$122.28(18)$	C14D-C8D-H8D2	108.0
C5B-C4B-C7B	$123.92(17)$	C14D-C9D-P1D	$120.33(18)$
C6B-C5B-C4B	$119.10(17)$	C10D-C9D-P1D	$121.92(16)$
C6B-C5B-O2A	$117.97(17)$	C11D-C10D-C9D	$117.74(15)$
C4B-C5B-O2A	$122.02(17)$	C9D-C10D-H10D	$119.5(2)$
C5B-C6B-C1B	$120.71(17)$	C10D-C11D-C12D	120.3
C5B-C6B-C8A	109.5	C10D-C11D-H11D	120.3
C1B-C6B-C8A	109.5	C12D-C11D-H11D	$119.9(2)$
C4B-C7B-H7B1	109.5	C13D-C12D-C11D	120.0
C4B-C7B-H7B2	109.5	C13D-C12D-H12D	120.0
H7B1-C7B-H7B2	109.5	C11D-C12D-H12D	119.7
C4B-C7B-H7B3	109.5	C12D-C13D-C14D	119.7
H7B1-C7B-H7B3	$112.07(15)$	C12D-C13D-H13D	$120.1(2)$
H7B2-C7B-H7B3	109.2	C14D-C13D-H13D	119.9
C2B-C8B-C6C	109.2	109.2	C13D-C14D-C9D

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$C g 1, C g 2$ and $C g 3$ are the centroids of the aromatic rings C9B-C14B, C9D-C14D and C1A-C6A, respectively.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 B^{\mathrm{i}}-\mathrm{H} 1 B^{\mathrm{i} . . . \mathrm{F} 1}$	0.95	2.41	3.344 (3)	169
C14B ${ }^{\text {iii }}$ - $\mathrm{H} 14 B^{\text {ii....F2 }}$	0.95	2.57	3.357 (3)	140
$\mathrm{C} 7 \mathrm{C}^{\mathrm{ii}}-\mathrm{H} 7 \mathrm{C} 3^{\mathrm{ii} . . . \mathrm{F} 2}$	0.98	2.62	3.484 (2)	147
$\mathrm{C} 8 \mathrm{C}^{\mathrm{i}}-\mathrm{H} 8 \mathrm{Cl}^{\mathrm{i}} \ldots{ }^{\text {. }} \mathrm{F} 2$	0.98	2.49	3.379 (3)	150
$\mathrm{C} 1 D^{\mathrm{i}}$ - $\mathrm{H} 1 D^{\mathrm{i}} \ldots \mathrm{F} 2$	0.95	2.60	3.439 (2)	147
$\mathrm{C} 11 A^{\text {iii- }} \mathrm{H} 11 A^{\text {iii...F3 }}$	0.95	2.45	3.254 (2)	142
C7C ${ }^{\text {ii }}-\mathrm{H} 7 \mathrm{C} 3{ }^{\text {ii.... }} \mathrm{F} 3$	0.98	2.64	3.569 (3)	160
$\mathrm{C} 11 C-\mathrm{H} 11 C \cdots \mathrm{~F} 4$	0.95	2.53	3.447 (3)	162
$\mathrm{C} 1 D^{\mathrm{i}}-\mathrm{H} 1 D^{\mathrm{i}} \ldots \mathrm{F} 4$	0.95	2.65	3.509 (3)	150
$\mathrm{C} 14 D^{\text {iv }}-\mathrm{H} 14 D^{\mathrm{iv} \cdots \mathrm{F} 4}$	0.95	2.63	3.336 (4)	131
C7D-H7D1 ${ }^{-} \mathrm{Cg} 1^{\text {v }}$	0.98	2.80	3.524 (4)	131

supporting information

$\mathrm{C} 7 B-\mathrm{H} 7 B 1 \cdots C g 2^{\text {vi }}$	0.98	2.88	$3.530(4)$	124
$\mathrm{C} 8 D — \mathrm{H} 8 D 2 \cdots C g 3^{\text {vii }}$	0.98	2.87	$3.594(3)$	131

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y+1,-z$; (iii) $x, y, z-1$; (iv) $-x,-y+1,-z+1$; (v) $x-1, y, z$; (vi) $x+1, y, z$; (vii) $-x,-y+2,-z+1$.

