CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 17 October 2017
Accepted 29 October 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; diastereomeric salt separation; zwitterion; intermolecular hydrogen bonding; helical columnar structure.

CCDC reference: 1582706

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of (1S,2R)-2-hydroxy-1,2-di-phenylethan-1-aminium (S)-2-azaniumylbutanedioate monohydrate

Isao Fujii*

School of Science, Tokai University, 4-1-1 Kitakaname, Hiratuka, Kanagawa 259-1292, Japan. *Correspondence e-mail: fujii@wing.ncc.u-tokai.ac.jp

The title diastereomeric salt, formed between 2-amino-1,2-diphenylethanol (ADE) and aspartic acid (ASP), $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{NO}_{4}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, crystallizes as a monohydrate. The 1,2-diphenylethyl group in the cation has a cis conformation, and the aspartic acid anion is in the zwitterionic form. In the crystal, the ASP anions are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a 2_{1} helix along the b axis direction. The helices are linked by the ADE cations via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming layers parallel to the $b c$ plane. There are channels in the layers that are occupied by water molecules, which link to both the anions and cations via $\mathrm{O}_{\text {water }}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}_{\text {water }}$ hydrogen bonds. There are also $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions present within the layers.

1. Chemical context

The production of chiral compounds has great importance in the pharmaceutical industry, and diastereomeric salt separation is still widely applied in the process. A synthetic optical resolving agent, chiral 2-amino-1,2-diphenylethanol (ADE) (Read \& Steele, 1927), has been widely tried and used in diastereomeric salt-separation methods for chiral alcohols or organic acids. L-(S)-aspartic acid (ASP) is a known neurotransmitter, and $\mathrm{D}-(R)$ - ASP is a non-essential amino acid, one of two D-amino acids commonly found in mammals. D-ASP has also attracted attention as residue in the antifungal bacitracin, while N-methyl-D-aspartic acid (NMDA) acts as a specific agonist at the NMDA receptor. D-amino acids are mainly resolved enzymatically with D-aminoacylase (EC 3.5.1.14) in industrial applications. The optical separation of ASP with cis-ADE was introduced without chemical modification. The crystal structure of the title molecular salt, formed between $\mathrm{L}-(S)$-ASP and $(1 R, 2 S)$-cis-ADE, is reported herein.

$\mathrm{H}_{2} \mathrm{O}$

open 〇 access

Table 1
Selected torsion angles (${ }^{\circ}$).

$\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{N} 1 A$	$-65.0(2)$	$\mathrm{N} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{C} 4 B$	$73.0(2)$
$\mathrm{C} 3 A-\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 9 A$	$-66.1(2)$	$\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{C} 4 B$	$-53.0(2)$
$\mathrm{O} 1 B-\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{N} 1 B$	$17.4(2)$	$\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{O} 3 B$	$1.4(3)$

2. Structural commentary

The molecular structures of the components of the title salt are shown in Fig. 1, and selected torsion angles are given in Table 1. It can be seen that the hydroxy and protonated amino groups of cis-ADE form a tweezer-like motif. The dihedral angle between the phenyl rings (A and B; Fig.1) is 48.71 (9) ${ }^{\circ}$ and the torsion angle $\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{N} 1 A$ is $-65.0(2)^{\circ}$. The hydroxy group adopts a gauche conformation [O1A$\left.\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 9 A=60.1(2)^{\circ}\right]$ with respect to phenyl ring B. Thus, the tweezer-like motif is twisted with respect to the phenyl groups. This arrangement is similar to that found in racemic cis-ADE (Fujii, 2015) and the diastereomeric salts formed with cis-enantiomers.

L-(S)-ASP crystallizes as a deprotonated zwitterion. The succinate group adopts a cis conformation $[\mathrm{C} 1 B-\mathrm{C} 2 B-$ $\left.\mathrm{C} 3 B-\mathrm{C} 4 B=-53.0(2)^{\circ}\right]$, which is the motif commonly found in L-ASP salts; for example L-His•L-ASP monohydrate (Suresh \& Vijayan, 1987). The amino and residual carboxy groups have a slightly right-handed helical-shape; torsion angles $\mathrm{N} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{C} 4 B$ and $\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{O} 3 B$ are 73.0 (2) and 1.4 (3) $)^{\circ}$, respectively.

Figure 1
A view of the molecular structure of $(1 S, 2 R)$-cis-ADE•(S)-ASP monohydrate, with the atom and ring labelling. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate the hydrogen bonds (see Table 2).

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).
$C g B$ is the centroid of phenyl ring $B(\mathrm{C} 9-\mathrm{C} 14)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 B-\mathrm{H} 1 B 1 \cdots \mathrm{O} 3 B^{\text {i }}$	$0.92(4)$	$1.92(4)$	$2.819(2)$	$168(3)$
$\mathrm{N} 1 B-\mathrm{H} 1 B 3 \cdots \mathrm{O} 3 B^{\text {ii }}$	$0.87(3)$	$2.46(3)$	$3.112(2)$	$132(3)$
$\mathrm{N} 1 B-\mathrm{H} 1 B 3 \cdots \mathrm{O} 4 B^{\text {ii }}$	$0.87(3)$	$2.20(3)$	$2.868(2)$	$134(3)$
$\mathrm{O} 1 A-\mathrm{H} 1 O 1 \cdots \mathrm{O} 2 B^{\text {i }}$	$0.88(3)$	$1.88(3)$	$2.752(2)$	$171(3)$
$\mathrm{N} 1 A-\mathrm{H} 1 A 1 \cdots \mathrm{O} 4 B^{\text {iii }}$	$1.08(4)$	$1.70(4)$	$2.742(3)$	$162(3)$
$\mathrm{N} 1 A-\mathrm{H} 1 A 2 \cdots \mathrm{O} 1 B$	$0.95(3)$	$1.92(3)$	$2.862(2)$	$173(3)$
$\mathrm{O} 1 C-\mathrm{H} 1 O B \cdots \mathrm{O} 1 B^{\text {i }}$	$0.92(4)$	$1.82(4)$	$2.734(2)$	$173(3)$
$\mathrm{O} 1 C-\mathrm{H} 1 O A \cdots \mathrm{O} 1 B^{\text {iv }}$	$0.90(4)$	$2.01(4)$	$2.840(2)$	$153(4)$
$\mathrm{N} 1 A-\mathrm{H} 1 A 3 \cdots \mathrm{O} 1 C$	$0.87(4)$	$2.45(3)$	$2.926(3)$	$115(2)$
$\mathrm{N} 1 B-\mathrm{H} 1 B 2 \cdots \mathrm{O} 1 C$	$0.96(2)$	$2.01(3)$	$2.938(2)$	$163(2)$
$\mathrm{C} 2 A-\mathrm{H} 2 A \cdots \mathrm{O} 1 A^{\mathrm{v}}$	0.98	2.42	$3.304(3)$	150
$\mathrm{C} 14 A-\mathrm{H} 14 A \cdots \mathrm{O} 4 B^{\text {vi }}$	0.93	2.53	$3.371(3)$	150
$\mathrm{C} 3 B-\mathrm{H} 3 B 2 \cdots \mathrm{CgB} B^{\text {iii }}$	0.97	2.87	$3.6127(16)$	134

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+2, y+\frac{1}{2},-z$; (iii) $x, y, z+1$; (iv) $-x+2, y+\frac{1}{2},-z+1$; (v) $x, y-1, z$; (vi) $x, y+1, z+1$.

3. Supramolecular features

In the crystal, the (S)-ASP anions correlated with crystallographic symmetry are linked via $\mathrm{N} 1 B-\mathrm{H} 1 B 3 \cdots \mathrm{O} 4 B^{\mathrm{ii}}$ [2.868 (2) \AA] hydrogen bonds into $C(6)$ chains to form a righthanded 2_{1}-helix along the b-axis direction (Fig. 2 and Table 2). The helices are linked by the $(1 R, 2 S)$-cis-ADE cations via N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{N} 1 A-\mathrm{H} 1 A 2 \cdots \mathrm{O} 1 B=2.862(2) \AA$ and $\mathrm{N} 1 A-\mathrm{H} 1 A 1 \cdots \mathrm{O} 4 B^{\mathrm{iii}}=2.742(3) \AA$] and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $\left[\mathrm{O} 1 A-\mathrm{H} 1 O 1 \cdots \mathrm{O} 2 B^{\mathrm{i}}=2.752\right.$ (2) \AA], forming layers parallel to the $b c$ plane (Fig. 3, Table 2). There are channels in the layers that are occupied by water molecules which link to both the anions and cations via tetrahedrally placed hydrogen bonds; $\mathrm{O}_{\text {water }}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds

Figure 2
A view along the c axis of the right-handed 2_{1}-helix of ASP anions. Hydrogen bonds are shown as dashed lines (see Table 2) and C-bound H atoms have been omitted.

Figure 3
A partial view along the b axis of the crystal packing of the ASP helices linked by the ADE cations. Hydrogen bonds are shown as dashed lines (see Table 2) and C -bound H atoms have been omitted.
$\left[\mathrm{O} 1 C-\mathrm{H} 1 O B \cdots \mathrm{O} 1 B^{\mathrm{i}}=2.734(2) \AA\right.$ and $\mathrm{O} 1 C-$ $\mathrm{H} 1 O A \cdots \mathrm{O} 1 B^{\text {iv }}=2.840(2) \AA$ 이 $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}_{\text {water }}$ hydrogen bonds $[\mathrm{N} 1 B-\mathrm{H} 1 B 2 \cdots \mathrm{O} 1 C=2.938(2) \AA$ and $\mathrm{N} 1 A-$

Figure 4
A view along the b axis of the crystal packing of ($1 S, 2 R$)-cis-ADE•((S) ASP monohydrate. Hydrogen bonds are shown as dashed lines (see Table 2) and C-bound H atoms have been omitted.

Table 3
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{NO}_{4}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{\text {r }}$	364.39
Crystal system, space group	Monoclinic, $P 2_{1}$
Temperature (K)	297
$a, b, c(\AA)$	18.310 (8), 5.2661 (10), 9.2792 (10)
$\beta\left({ }^{\circ}\right)$	96.070 (4)
$V\left(\AA^{3}\right)$	889.7 (4)
Z	2
Radiation type	Cu K α
$\mu\left(\mathrm{mm}^{-1}\right)$	0.86
Crystal size (mm)	$0.4 \times 0.2 \times 0.2$
Data collection	
Diffractometer	Enraf-Nonius CAD-4
Absorption correction	ψ scan (North et al., 1968)
$T_{\text {min }}, T_{\text {max }}$	0.74, 0.86
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	2114, 2051, 1907
$R_{\text {int }}$	0.020
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.626
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.028, 0.079, 1.06
No. of reflections	2051
No. of parameters	272
No. of restraints	1
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.17, -0.13
Absolute structure	No quotients, so Flack (1983) parameter determined by classical intensity fit
Absolute structure parameter	0.1 (2)

Computer programs: CAD4 (Enraf-Nonius, 1994), XCAD4 (Harms \& Wocadlo, 1995), SHELXS86 (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
$\mathrm{H} 1 A 3 \cdots \mathrm{O} 1 C=2.926$ (3) Å], shown in Fig. 4; see also Table 2. There are also $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions present within the layers (Table 2). Finally, the hydrophobic and hydrophilic layers are well separated along the a-axis direction.

4. Database survey

The author has reported the crystal structures of several amino acids without chemical modification including the chiral resolving agents; $1,1^{\prime}$-binaphthalene- $2,2^{\prime}$-diyl hydrogen phosphate, 2-phenoxypropionic acid and mandelic acid (Fujii \& Hirayama, 2002; Fujii et al., 2005, 2006). The crystal structures of racemic trans- and cis-ADE have been reported (GAQXON: Bari et al., 2012; RUTROP: Fujii, 2015, respectively). Recently, the solvent-induced chirality switching in optical resolution between mandelic acid and cis-ADE has been demonstrated (Shitara et al., 2013). Moreover, a database search (CSD Version 5.28, last update May 2017; Groom et al., 2016) yielded other comparable structures, viz. L-aspartic acid (LASPRT: Derissen et al., 1968), L-aspartic acid monohydrate (IJEQET: Umadevi et al., 2003) and N-methyl-D-aspartic acid monohydrate (KEWGUO: Sawka-Dobrowolska et al., 1990).

5. Synthesis and crystallization

(1R,2S)-cis-2-Amino-1,2-diphenylethanol (ADE) and aspartic acid (ASP) were purchased from Sigma-Aldrich Co. Ltd. The title molecular salt was obtained from an aqueous ethanol solution of racemic-ASP and $(1 R, 2 S)$-cis-ADE in a $2: 1$ molar ratio, heated to 333 K under stirring. On slow cooling to ambient temperature and slow evaporation of the solvent, colourless rod-shaped crystals were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All the H atoms were located in difference-Fourier maps. The $\mathrm{NH}_{3}{ }^{+}, \mathrm{OH}$, and water H atoms were freely refined. The C -bound H atoms were included in calculated positions and treated as riding atoms: $\mathrm{C}-\mathrm{H}=0.93-$ $0.98 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

The author thanks Tokai University for a research grant, which partially supported this work.

References

Bari, A., Al-Obaid, A. M. \& Ng, S. W. (2012). Acta Cryst. E68, 0491.

Derissen, J. L., Endeman, H. J. \& Peerdeman, A. F. (1968). Acta Cryst. B24, 1349-1354.
Enraf-Nonius (1994). CAD4. Enraf-Nonius, Delft, The Netherlands. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fujii, I. (2015). Acta Cryst. E71, 1539-1541.
Fujii, I., Baba, H. \& Takahashi, Y. (2005). Anal. Sci. X-ray Struct. Anal. Online, 21, x175-176.
Fujii, I. \& Hirayama, N. (2002). Helv. Chim. Acta, 85, 2946-2960.
Fujii, I., Watadani, T., Nunomura, S. \& Takahashi, Y. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x75-x76.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Read, J. \& Steele, C. C. (1927). J. Chem. Soc. pp. 910-918.
Sawka-Dobrowolska, W., Głowiak, T., Kozłowski, H. \& Masterlerz, P. (1990). Acta Cryst. C46, 1679-1681.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Shitara, H., Shintani, T., Kodama, K. \& Hirose, T. (2013). J. Org. Chem. 78, 9309-9316.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Suresh, C. G. \& Vijayan, M. (1987). J. Biosci. 12, 13-21.
Umadevi, K., Anitha, K., Sridhar, B., Srinivasan, N. \& Rajaram, R. K. (2003). Acta Cryst. E59, o1073-o1075.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2017). E73, 1827-1830 [https://doi.org/10.1107/S2056989017015729]

Crystal structure of (1S,2R)-2-hydroxy-1,2-diphenylethan-1-aminium (S)-2-azaniumylbutanedioate monohydrate

Isao Fujii

Computing details

Data collection: CAD4 (Enraf-Nonius, 1994); cell refinement: CAD4 (Enraf-Nonius, 1994); data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).
(1S,2R)-2-Hydroxy-1,2-diphenylethan-1-aminium (S)-2-azaniumylbutanedioate monohydrate

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{NO}_{4} \cdot{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=364.39$
Monoclinic, $P 2_{1}$
Hall symbol: P 2 yb
$a=18.310$ (8) \AA
$b=5.2661(10) \AA$
$c=9.2792(10) \AA$
$\beta=96.070(4)^{\circ}$
$V=889.7$ (4) \AA^{3}
$Z=2$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: Enraf Nonius FR590
Graphite monochromator
non-profiled $\omega / 2 \tau$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.74, T_{\text {max }}=0.86$
2114 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.079$
$S=1.06$
2051 reflections
272 parameters
$F(000)=388$
$D_{\mathrm{x}}=1.36 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 25 reflections
$\theta=28.2-34.6^{\circ}$
$\mu=0.86 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Rod, colorless
$0.4 \times 0.2 \times 0.2 \mathrm{~mm}$

2051 independent reflections
1907 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=74.9^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=0 \rightarrow 22$
$k=0 \rightarrow 6$
$l=-11 \rightarrow 11$
3 standard reflections every 60 min
intensity decay: 5\%

1 restraint
0 constraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0517 P)^{2}+0.0743 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.17 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.13$ e \AA^{-3}

Extinction correction: (SHELXL2017;
Sheldrick, 2015),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0104 (12)
Absolute structure: No quotients, so Flack (1983) parameter determined by classical intensity fit
Absolute structure parameter: 0.1 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1B	0.86265 (9)	0.1336 (4)	0.25943 (17)	0.0285 (3)
C2B	0.87228 (9)	0.3556 (4)	0.15574 (17)	0.0281 (3)
H2B	0.834662	0.481729	0.171984	0.034*
C3B	0.86125 (10)	0.2862 (4)	-0.00305 (18)	0.0331 (4)
H3B1	0.872821	0.433561	-0.059083	0.040*
H3B2	0.809703	0.247484	-0.028525	0.040*
C4B	0.90650 (9)	0.0630 (4)	-0.04800 (18)	0.0309 (4)
N1B	0.94481 (9)	0.4807 (4)	0.19193 (17)	0.0344 (3)
O1B	0.90523 (7)	0.1301 (3)	0.37604 (13)	0.0363 (3)
O2B	0.81052 (7)	-0.0126 (3)	0.22709 (14)	0.0410 (3)
O3B	0.94788 (7)	-0.0504 (3)	0.04607 (14)	0.0378 (3)
O4B	0.89947 (7)	0.0126 (3)	-0.18182 (14)	0.0437 (4)
H1B1	0.9480 (15)	0.620 (7)	0.134 (3)	0.064 (8)*
H1B2	0.9537 (12)	0.517 (5)	0.294 (3)	0.044 (6)*
H1B3	0.9841 (16)	0.405 (7)	0.168 (3)	0.069 (9)*
C1A	0.73892 (10)	0.5069 (4)	0.44043 (19)	0.0329 (4)
H1A	0.768063	0.436672	0.367158	0.039*
C2A	0.75763 (9)	0.3549 (4)	0.58118 (18)	0.0326 (4)
H2A	0.741273	0.179814	0.561992	0.039*
C3A	0.65856 (10)	0.4782 (4)	0.38426 (18)	0.0343 (4)
C4A	0.63715 (12)	0.2766 (5)	0.2934 (2)	0.0458 (5)
H4A	0.672227	0.164185	0.265603	0.055*
C5A	0.56362 (13)	0.2416 (5)	0.2438 (3)	0.0547 (6)
H5A	0.549539	0.104493	0.184080	0.066*
C6A	0.51174 (12)	0.4086 (5)	0.2827 (3)	0.0562 (6)
H6A	0.462589	0.385662	0.248470	0.067*
C7A	0.53231 (12)	0.6099 (6)	0.3721 (3)	0.0578 (6)
H7A	0.497042	0.722986	0.398421	0.069*
C8A	0.60593 (11)	0.6449 (5)	0.4233 (2)	0.0450 (5)
H8A	0.619641	0.781071	0.484053	0.054*
C9A	0.72103 (9)	0.4489 (4)	0.70990 (17)	0.0300 (4)
C10A	0.66288 (10)	0.3106 (4)	0.7532 (2)	0.0403 (4)

H10A	0.646344	0.166838	0.701394	0.048^{*}
C11A	$0.62902(13)$	$0.3850(6)$	$0.8737(2)$	$0.0551(6)$
H11A	0.589386	0.292688	0.900760	0.066^{*}
C12A	$0.65359(13)$	$0.5929(6)$	$0.9524(2)$	$0.0541(6)$
H12A	0.631510	0.639855	1.034136	0.065^{*}
C13A	$0.71124(14)$	$0.7326(5)$	$0.9101(2)$	$0.0503(5)$
H13A	0.728153	0.873940	0.963729	0.060^{*}
C14A	$0.74423(11)$	$0.6637(4)$	$0.7880(2)$	$0.0397(4)$
H14A	0.782096	0.762143	0.758481	0.048^{*}
N1A	$0.83958(9)$	$0.3495(5)$	$0.6135(2)$	$0.0445(4)$
O1A	$0.76176(8)$	$0.7615(3)$	$0.46671(15)$	$0.0392(3)$
H1A1	$0.8579(18)$	$0.240(8)$	$0.709(3)$	$0.087(11)^{*}$
H1A2	$0.8600(15)$	$0.288(7)$	$0.530(3)$	$0.067(9)^{*}$
H1A3	$0.8561(15)$	$0.501(7)$	$0.638(3)$	$0.053(8)^{*}$
H1O1	$0.7784(15)$	$0.818(7)$	$0.387(3)$	$0.062(8)^{*}$
O1C	$0.94824(9)$	$0.6688(3)$	$0.49070(19)$	$0.0476(4)$
H1OB	$0.9297(17)$	$0.820(9)$	$0.453(3)$	$0.077(10)^{*}$
H1OA	$0.991(2)$	$0.707(9)$	$0.543(4)$	$0.090(11)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1B	$0.0317(7)$	$0.0269(8)$	$0.0277(7)$	$-0.0005(7)$	$0.0073(6)$	$0.0007(7)$
C2B	$0.0292(7)$	$0.0260(8)$	$0.0297(7)$	$0.0032(7)$	$0.0054(6)$	$0.0030(7)$
C3B	$0.0374(8)$	$0.0338(10)$	$0.0280(7)$	$0.0067(8)$	$0.0025(6)$	$0.0061(7)$
C4B	$0.0312(7)$	$0.0305(9)$	$0.0318(7)$	$-0.0023(7)$	$0.0075(6)$	$0.0018(7)$
N1B	$0.0367(8)$	$0.0300(8)$	$0.0367(8)$	$-0.0035(7)$	$0.0050(6)$	$0.0064(7)$
O1B	$0.0440(7)$	$0.0328(7)$	$0.0312(6)$	$-0.0031(6)$	$-0.0005(5)$	$0.0062(6)$
O2B	$0.0437(7)$	$0.0411(8)$	$0.0387(6)$	$-0.0143(7)$	$0.0061(5)$	$0.0035(6)$
O3B	$0.0425(7)$	$0.0308(7)$	$0.0406(7)$	$0.0073(6)$	$0.0068(5)$	$0.0072(6)$
O4B	$0.0458(7)$	$0.0528(10)$	$0.0328(6)$	$0.0030(7)$	$0.0054(5)$	$-0.0066(6)$
C1A	$0.0359(9)$	$0.0326(10)$	$0.0310(8)$	$0.0018(8)$	$0.0077(6)$	$0.0030(8)$
C2A	$0.0317(8)$	$0.0334(9)$	$0.0330(8)$	$0.0023(8)$	$0.0041(6)$	$0.0039(8)$
C3A	$0.0389(9)$	$0.0338(9)$	$0.0300(7)$	$0.0022(8)$	$0.0028(6)$	$0.0045(8)$
C4A	$0.0485(11)$	$0.0399(12)$	$0.0479(11)$	$0.0043(10)$	$0.0003(8)$	$-0.0053(10)$
C5A	$0.0568(12)$	$0.0483(13)$	$0.0561(12)$	$-0.0057(12)$	$-0.0075(10)$	$-0.0066(11)$
C6A	$0.0409(11)$	$0.0594(17)$	$0.0655(14)$	$-0.0038(11)$	$-0.0074(10)$	$0.0067(12)$
C7A	$0.0395(10)$	$0.0593(15)$	$0.0733(15)$	$0.0108(12)$	$-0.0004(10)$	$-0.0058(13)$
C8A	$0.0412(10)$	$0.0426(11)$	$0.0506(11)$	$0.0057(10)$	$0.0015(8)$	$-0.0067(10)$
C9A	$0.0299(8)$	$0.0297(9)$	$0.0298(8)$	$0.0018(7)$	$0.0013(6)$	$0.0039(7)$
C10A	$0.0378(9)$	$0.0414(11)$	$0.0427(10)$	$-0.0083(9)$	$0.0083(7)$	$-0.0013(9)$
C11A	$0.0513(12)$	$0.0670(17)$	$0.0506(12)$	$-0.0069(12)$	$0.0213(9)$	$0.0014(12)$
C12A	$0.0658(13)$	$0.0590(16)$	$0.0399(10)$	$0.0156(13)$	$0.0171(9)$	$-0.0001(11)$
C13A	$0.0746(14)$	$0.0369(11)$	$0.0380(10)$	$0.0047(11)$	$-0.0003(9)$	$-0.0051(9)$
C14A	$0.0471(10)$	$0.0332(10)$	$0.0382(9)$	$-0.0060(9)$	$0.0016(7)$	$0.0010(9)$
N1A	$0.0338(8)$	$0.0613(13)$	$0.0392(9)$	$0.0097(9)$	$0.0076(6)$	$0.0119(9)$
O1A	$0.0455(7)$	$0.0349(7)$	$0.0378(7)$	$-0.0054(6)$	$0.0065(5)$	$0.0053(6)$
O1C	$0.0472(8)$	$0.0297(8)$	$0.0625(9)$	$-0.0008(6)$	$-0.0098(7)$	$-0.0011(7)$

Geometric parameters ($A,{ }^{\circ}$)

C1B-O2B	1.239 (2)	C5A-C6A	1.370 (4)
C1B-O1B	1.265 (2)	C5A-H5A	0.9300
C1B-C2B	1.536 (2)	C6A-C7A	1.374 (4)
C2B-N1B	1.488 (2)	C6A-H6A	0.9300
C2B-C3B	1.511 (2)	C7A-C8A	1.393 (3)
C2B-H2B	0.9800	C7A-H7A	0.9300
C3B-C4B	1.522 (3)	C8A-H8A	0.9300
C3B-H3B1	0.9700	C9A-C10A	1.384 (3)
C3B-H3B2	0.9700	C9A-C14A	1.386 (3)
C4B-O3B	1.246 (2)	C10A-C11A	1.391 (3)
C4B-O4B	1.263 (2)	C10A-H10A	0.9300
N1B-H1B1	0.92 (4)	C11A-C12A	1.365 (4)
N1B-H1B2	0.96 (2)	C11A-H11A	0.9300
N1B-H1B3	0.87 (3)	C12A-C13A	1.377 (4)
C1A-O1A	1.418 (2)	C12A-H12A	0.9300
C1A-C3A	1.516 (3)	C13A-C14A	1.387 (3)
C1A-C2A	1.539 (2)	C13A-H13A	0.9300
C1A-H1A	0.9800	C14A-H14A	0.9300
C2A-N1A	1.499 (2)	N1A-H1A1	1.08 (4)
C2A-C9A	1.513 (2)	N1A-H1A2	0.95 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	0.9800	N1A-H1A3	0.87 (4)
C3A-C8A	1.380 (3)	O1A-H1O1	0.88 (3)
C3A-C4A	1.386 (3)	O1C-H1OB	0.92 (4)
C4A-C5A	1.388 (3)	$\mathrm{O} 1 \mathrm{C}-\mathrm{H} 1 \mathrm{OA}$	0.90 (4)
C4A-H4A	0.9300		
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B}$	125.99 (17)	$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A}$	119.8
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	117.27 (14)	C5A-C4A-H4A	119.8
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	116.47 (15)	C6A-C5A-C4A	120.2 (2)
N1B-C2B-C3B	110.56 (14)	C6A-C5A-H5A	119.9
N1B-C2B-C1B	110.74 (13)	C4A-C5A-H5A	119.9
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	114.48 (15)	C5A-C6A-C7A	120.0 (2)
N1B-C2B-H2B	106.9	C5A-C6A-H6A	120.0
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	106.9	C7A-C6A-H6A	120.0
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	106.9	C6A-C7A-C8A	120.1 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	115.70 (14)	C6A-C7A-H7A	119.9
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 1$	108.4	C8A-C7A-H7A	119.9
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 1$	108.4	C3A-C8A-C7A	120.2 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	108.4	C3A-C8A-H8A	119.9
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	108.4	C7A-C8A-H8A	119.9
H3B1-C3B-H3B2	107.4	C10A-C9A-C14A	118.70 (17)
O3B-C4B-O4B	125.39 (18)	C10A-C9A-C2A	118.39 (18)
O3B-C4B-C3B	119.12 (15)	C14A-C9A-C2A	122.89 (16)
O4B-C4B-C3B	115.47 (16)	C9A-C10A-C11A	120.5 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B} 1$	109.3 (17)	C9A-C10A-H10A	119.8
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B} 2$	111.4 (14)	C11A-C10A-H10A	119.8

$\mathrm{H} 1 \mathrm{~B} 1-\mathrm{N} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B} 2$	114 (3)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B} 3$	119 (2)
H1B1-N1B-H1B3	96 (3)
H1B2-N1B-H1B3	107 (2)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	114.28 (16)
O1A-C1A-C2A	108.10 (15)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	111.15 (14)
O1A-C1A-H1A	107.7
C3A-C1A-H1A	107.7
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A}$	107.7
N1A-C2A-C9A	111.47 (15)
N1A-C2A-C1A	107.92 (15)
C9A-C2A-C1A	114.98 (16)
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	107.4
C9A-C2A-H2A	107.4
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	107.4
C8A-C3A-C4A	119.11 (18)
C8A-C3A-C1A	121.73 (18)
C4A-C3A-C1A	119.16 (18)
C3A-C4A-C5A	120.4 (2)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	-65.0 (2)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}$	60.14 (19)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	168.86 (17)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}$	-66.1 (2)
O1A-C1A-C3A-C4A	149.76 (18)
O1A-C1A-C3A-C8A	-31.4 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	-87.6 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	91.3 (2)
N1A-C2A-C9A-C10A	-131.49 (19)
N1A-C2A-C9A-C14A	47.0 (3)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	105.3 (2)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A}$	-76.2 (2)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	178.1 (2)
C8A-C3A-C4A-C5A	-0.7 (3)
C1A-C3A-C8A-C7A	-178.7 (2)
C4A-C3A-C8A-C7A	0.2 (3)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	1.0 (4)
C4A-C5A-C6A-C7A	-0.6 (4)

C12A-C11A-C10A	120.4 (2)
C12A-C11A-H11A	119.8
C10A-C11A-H11A	119.8
C11A-C12A-C13A	119.7 (2)
C11A-C12A-H12A	120.2
C13A-C12A-H12A	120.2
C12A-C13A-C14A	120.4 (2)
C12A-C13A-H13A	119.8
C14A-C13A-H13A	119.8
C9A-C14A-C13A	120.3 (2)
C9A-C14A-H14A	119.8
C13A-C14A-H14A	119.8
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A} 1$	113.1 (18)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A} 2$	108.5 (16)
H1A1-N1A-H1A2	111 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A} 3$	110.3 (18)
H1A1-N1A-H1A3	102 (3)
H1A2-N1A-H1A3	112 (3)
C1A-O1A-H1O1	107 (2)
$\mathrm{H1OB}-\mathrm{OlC}-\mathrm{H1OA}$	106 (4)
C5A-C6A-C7A-C8A	0.1 (4)
C6A-C7A-C8A-C3A	0.2 (4)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	177.95 (19)
C14A-C9A-C10A-C11A	-0.6 (3)
C2A-C9A-C14A-C13A	-176.29 (19)
C10A-C9A-C14A-C13A	2.2 (3)
C9A-C10A-C11A-C12A	-1.2(3)
C10A-C11A-C12A-C13A	1.4 (4)
C11A-C12A-C13A-C14A	0.2 (4)
C12A-C13A-C14A-C9A	-2.0 (3)
O1B-C1B-C2B-N1B	17.4 (2)
O1B-C1B-C2B-C3B	143.24 (16)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	-168.28 (16)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	-42.5 (2)
N1B-C2B-C3B-C4B	73.0 (2)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	-53.0 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{O} 3 \mathrm{~B}$	1.4 (3)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{O} 4 \mathrm{~B}$	-177.08(16)

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$C g B$ is the centroid of phenyl ring B (C9-C14).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 B — \mathrm{H} 1 B 1 \cdots \mathrm{O} 3 B^{\mathrm{i}}$	$0.92(4)$	$1.92(4)$	$2.819(2)$	$168(3)$
$\mathrm{N} 1 B-\mathrm{H} 1 B 3 \cdots \mathrm{O} 3 B^{\mathrm{ii}}$	$0.87(3)$	$2.46(3)$	$3.112(2)$	$132(3)$
$\mathrm{N} 1 B-\mathrm{H} 1 B 3 \cdots \mathrm{O} 4 B^{\mathrm{ii}}$	$0.87(3)$	$2.20(3)$	$2.868(2)$	$134(3)$
$\mathrm{O} 1 A — \mathrm{H} 1 O 1 \cdots \mathrm{O} 2 B^{\mathrm{i}}$	$0.88(3)$	$1.88(3)$	$2.752(2)$	$171(3)$

$\mathrm{N} 1 A-\mathrm{H} 1 A 1 \cdots \mathrm{O} 4 B^{\mathrm{iii}}$	$1.08(4)$	$1.70(4)$	$2.742(3)$	$162(3)$
$\mathrm{N} 1 A-\mathrm{H} 1 A 2 \cdots \mathrm{O} 1 B$	$0.95(3)$	$1.92(3)$	$2.862(2)$	$173(3)$
$\mathrm{O} 1 C-\mathrm{H} 1 O B \cdots \mathrm{O} 1 B^{\mathrm{i}}$	$0.92(4)$	$1.82(4)$	$2.734(2)$	$173(3)$
$\mathrm{O} 1 C-\mathrm{H} 1 O A \cdots \mathrm{O} 1 B^{\text {iv }}$	$0.90(4)$	$2.01(4)$	$2.840(2)$	$153(4)$
$\mathrm{N} 1 A-\mathrm{H} 1 A 3 \cdots \mathrm{O} 1 C$	$0.87(4)$	$2.45(3)$	$2.926(3)$	$115(2)$
$\mathrm{N} 1 B-\mathrm{H} 1 B 2 \cdots \mathrm{O} 1 C$	$0.96(2)$	$2.01(3)$	$2.938(2)$	$163(2)$
$\mathrm{C} 2 A-\mathrm{H} 2 A \cdots \mathrm{O} 1 A^{\text {v }}$	0.98	2.42	$3.304(3)$	150
$\mathrm{C} 14 A-\mathrm{H} 14 A \cdots \mathrm{O} 4 B^{\text {vi }}$	0.93	2.53	$3.371(3)$	150
$\mathrm{C} 3 B-\mathrm{H} 3 B 2 \cdots \mathrm{CgB}^{\mathrm{iii}}$	0.97	2.87	$3.6127(16)$	134

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+2, y+1 / 2,-z$; (iii) $x, y, z+1$; (iv) $-x+2, y+1 / 2,-z+1$; (v) $x, y-1, z$; (vi) $x, y+1, z+1$.

