

Received 16 October 2017 Accepted 29 October 2017

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; bisindole; MRI; contrast agent.

CCDC reference: 1582719

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of diethyl 3,3'-[(2,4-dichlorophenyl)methylidene]bis(1*H*-indole-2-carboxylate)

Yu-Long Li, Hong-Shun Sun,* Hong Jiang, Yu-Liang Chen and Yang-Feng Chen

Targeted MRI Contrast Agents Laboratory of Jiangsu Province, Nanjing Polytechnic Institute, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China. *Correspondence e-mail: njutshs@126.com

In the title compound, $C_{29}H_{24}Cl_2N_2O_4$, the mean planes of the two indole ring systems (r.m.s. deviations = 0.1249 and 0.0075 Å) are approximately perpendicular to one another, with a dihedral angle of 80.9 (5)° between them. The benzene ring is inclined to the mean planes of the two indole ring systems by 76.1 (3) and 78.3 (4)°. Weak intramolecular $C-H\cdots\pi$ interactions affect the molecular conformation. In the crystal, pairs of $N-H\cdotsO$ hydrogen bonds link the molecules into inversion dimers which are further linked into supramolecular chains by $N-H\cdotsO$ hydrogen bonds and short Cl-Cl contacts.

1. Chemical context

Bis(indolyl)methane derivatives are abundantly present in various terrestrial and marine natural resources (Porter *et al.*,1977; Sundberg, 1996). They are important antibiotics in the field of pharmaceuticals with diverse activities, displaying anticancer, antileishmanial and antihyperlipidemic properties (Chang *et al.*, 1999; Ge *et al.*, 1999). Furthermore, bis(indolyl)methane derivatives can also be used as precursors for MRI necrosis avid contrast agents (Ni, 2008). In recent years, we have reported the synthesis and crystal structures of some similar bis(indoly)methane compounds (Sun *et al.*, 2012, 2015; Li *et al.*, 2014; Lu *et al.*, 2014). We report here the molecular and crystal structure of the title bis(indoly)methane derivative.

OPEN 3 ACCESS

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The overall conformation of the molecule is affected by intramolecular $C4-H4A\cdots Cg5$ and $C15-H15A\cdots Cg1$

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1 and Cg5 are the centroids of the N1,C8,C3,C2,C9 and C24–C29 rings respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathrm{H} \cdots A$
$N1-H1A\cdotsO1^{i}$	0.86	2.07	2.864 (4)	152
$N2-H2A\cdots O4^{ii}$	0.86	2.04	2.871 (4)	161
$C11-H11A\cdots Cl1^{iii}$	0.97	2.81	3.731 (5)	158
$C4-H4A\cdots Cg5$	0.93	2.77	3.516 (4)	137
$C15-H15A\cdots Cg1$	0.93	2.72	3.476 (5)	139
-				

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x + 1, -y + 2, -z; (iii) x - 1, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

interactions (*Cg*1 and *Cg*5 are the centroids of the N1,C8,C3,C2,C9 and C24–C29 rings, respectively), Fig. 1, Table 1. The two indole ring systems are nearly perpendicular to one another, subtending a dihedral angle of 80.9 (5)° while the C24–C29 benzene ring is inclined to the N1/C2–C9 and N2/C13–C20 indole ring systems by dihedral angles of 76.1 (3) and 78.3 (4)°, respectively. The carboxyl groups lie close to the planes of the indole ring systems to which they are bound, with dihedral angles between the carboxyl groups and the mean planes of the N1/C2–C9 and N2/C13–C20 indole ring systems to systems to which they are bound, with dihedral angles between the carboxyl groups and the mean planes of the N1/C2–C9 and N2/C13–C20 indole ring systems of 8.3 (5) and 5.6 (3)°, respectively.

3. Supramolecular features

In the crystal, pairs of N1-H1A \cdots O1 and N2-H2A \cdots O4 hydrogen bonds, Table 1, link the molecules into inversion dimers that form supramolecular chains along the *b*-axis

Figure 1

The molecular structure of the title molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Intramolecular C-H··· π (ring) contacts (Table 1) are shown as dotted black lines with ring centroids displayed as coloured spheres.

direction. C11-H11A···Cl1 and short Cl2···Cl2 contacts [Cl2···Cl2(1 - x, 1 - y, -z) = 3.467 (2) Å] bridge these chains and form sheets of molecules parallel to ($\overline{112}$), Fig. 2.

4. Database survey

Several similar structures have been reported previously, *i.e.* diethyl 3,3'-(phenylmethylene)bis(1*H*-indole-2-carboxylate) (Sun *et al.*, 2012), dimethyl 3,3'-[(4-fluorophenyl)methylene]bis(1*H*-indole-2-carboxylate) (Sun *et al.*, 2015) dimethyl 3,3'-[(4-chlorophenyl) methylene]bis(1*H*-indole-2-carboxylate) (Li *et al.*, 2014) and dimethyl 3,3'-[(3-fluorophenyl)methylene]bis(1*H*-indole-2-carboxylate) (Lu *et al.*, 2014). In these structures, the two indole ring systems are also nearly perpendicular to one another, making dihedral angles of 82.0 (5), 84.0 (5), 79.5 (4) and 87.8 (5)°, respectively.

5. Synthesis and crystallization

Ethyl indole-2-carboxylate (1.88 g, 10 mmol) was dissolved in 20 ml ethanol; commercially available 2,4-dichlorobenzaldehyde (0.88 g, 5 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (0.5 ml) was added and the reaction was left for 1 h. After cooling, the white

Figure 2

A packing diagram of the title compound. Hydrogen bonds (Table 1) and $Cl \cdots Cl$ contacts are shown as dashed lines.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{29}H_{24}Cl_2N_2O_4$
$M_{ m r}$	535.40
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.776 (2), 15.939 (3), 17.581 (4)
β (°)	101.94 (3)
$V(Å^3)$	2680.2 (9)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.28
Crystal size (mm)	$0.30 \times 0.20 \times 0.10$
Data collection Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} $(\sin \theta/\lambda)_{\max} (\text{\AA}^{-1})$	Enraf–Nonius CAD-4 ψ scan (North <i>et al.</i> , 1968) 0.921, 0.973 5221, 4917, 2864 0.034 0.603
Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters H-atom treatment $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)	0.067, 0.192, 1.00 4917 328 H-atom parameters constrained 0.69, -1.14

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

product was filtered off and washed thoroughly with ethanol. The reaction was monitored with TLC (AcOEt:hexane = 1:3). Colourless block-like crystals of the title compound suitable for X-ray analysis were obtained in 92% yield by slow evaporation of an ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically with N-H = 0.86 Å and C-H = 0.93-0.98 Å, and constrained to ride on their parent atoms with $U_{iso}(H)$ = $xU_{eq}(C,N)$, where x = 1.5 for methyl H atoms and 1.2 for all others.

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Funding information

Funding for this research was provided by: University of Natural Science Foundation in Jiangsu Province (grant No. 17KJB320001); Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (grant No. PPZY2015B179); Training program of Students innovation and entrepreneurship in Jiangsu Province (grant No. 201712920001Y); Qing Lan Project of Jiangsu Province.

References

- Chang, Y.-C., Riby, J., Chang, G. H., Peng, G.-F., Firestone, G. & Bjeldanes, L. F. (1999). *Biochem. Pharmacol.* 58, 825–834.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Ge, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199–3203.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259–261.
- Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593-595.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96-112.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140–1142.
- Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, 02764.
- Sundberg, R. J. (1996). *The Chemistry of Indoles*, p. 113 New York: Academic Press.

supporting information

Acta Cryst. (2017). E73, 1817-1819 [https://doi.org/10.1107/S2056989017015730]

Crystal structure of diethyl 3,3'-[(2,4-dichlorophenyl)methylidene]bis(1*H*-indole-2-carboxylate)

Yu-Long Li, Hong-Shun Sun, Hong Jiang, Yu-Liang Chen and Yang-Feng Chen

Computing details

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Diethyl 3,3'-[(2,4-dichlorophenyl)methylidene]bis(1H-indole-2-carboxylate)

Crystal data

C₂₉H₂₄Cl₂N₂O₄ $M_r = 535.40$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.776 (2) Å b = 15.939 (3) Å c = 17.581 (4) Å $\beta = 101.94$ (3)° V = 2680.2 (9) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.921, T_{\max} = 0.973$ 5221 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.192$ S = 1.004917 reflections 328 parameters 0 restraints F(000) = 1112 $D_x = 1.327 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.30 \times 0.20 \times 0.10 \text{ mm}$

4917 independent reflections 2864 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = 0 \rightarrow 11$ $k = 0 \rightarrow 19$ $l = -21 \rightarrow 21$ 3 standard reflections every 200 reflections intensity decay: 1%

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1P)^{2} + 0.670P] \qquad \Delta \rho_{max} = 0.69 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -1.13 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} < 0.001$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	v	Ζ	U_{iso}^*/U_{eq}
Cl1	0.99326 (13)	0.65116 (9)	0.32372 (10)	0.0997 (6)
01	0.0795 (3)	0.57429 (17)	-0.06706 (15)	0.0537 (7)
N1	0.1566 (3)	0.53608 (18)	0.09007 (17)	0.0440 (8)
H1A	0.0821	0.5101	0.0675	0.053*
C1	0.4458 (4)	0.6877 (2)	0.0923 (2)	0.0371 (8)
H1B	0.4656	0.6719	0.0418	0.044*
Cl2	0.61986 (13)	0.53457 (7)	0.08076 (8)	0.0813 (5)
O2	0.2675 (3)	0.65654 (16)	-0.05724 (14)	0.0478 (7)
N2	0.3672 (3)	0.91230 (18)	0.04635 (18)	0.0458 (8)
H2A	0.3841	0.9599	0.0272	0.055*
C2	0.3421 (4)	0.6237 (2)	0.1094 (2)	0.0373 (8)
O3	0.6370 (3)	0.77571 (16)	0.01095 (16)	0.0514 (7)
C3	0.3369 (4)	0.5821 (2)	0.1812 (2)	0.0400 (8)
O4	0.6115 (3)	0.91368 (16)	-0.00828 (18)	0.0600 (8)
C4	0.4188 (4)	0.5829 (3)	0.2572 (2)	0.0554 (11)
H4A	0.4952	0.6187	0.2702	0.066*
C5	0.3842 (5)	0.5301 (3)	0.3120 (3)	0.0628 (12)
H5A	0.4388	0.5304	0.3620	0.075*
C6	0.2703 (5)	0.4761 (3)	0.2950 (3)	0.0598 (12)
H6A	0.2510	0.4410	0.3337	0.072*
C7	0.1858 (4)	0.4738 (2)	0.2225 (2)	0.0526 (10)
H7A	0.1089	0.4382	0.2111	0.063*
C8	0.2203 (4)	0.5274 (2)	0.1659 (2)	0.0424 (9)
C9	0.2289 (3)	0.5925 (2)	0.0549 (2)	0.0379 (8)
C10	0.1837 (4)	0.6072 (2)	-0.0283 (2)	0.0378 (8)
C11	0.2406 (5)	0.6680 (3)	-0.1409 (2)	0.0611 (12)
H11A	0.1587	0.7029	-0.1577	0.073*
H11B	0.2245	0.6142	-0.1670	0.073*
C12	0.3646 (5)	0.7087 (3)	-0.1591 (3)	0.080
H12A	0.3509	0.7169	-0.2143	0.120*
H12B	0.4449	0.6737	-0.1418	0.120*
H12C	0.3789	0.7619	-0.1333	0.120*

C13	0.3873 (3)	0.7766 (2)	0.0822 (2)	0.0367 (8)
C14	0.2657 (4)	0.8105 (2)	0.1040 (2)	0.0393 (8)
C15	0.1617 (4)	0.7797 (3)	0.1419 (2)	0.0499 (10)
H15A	0.1632	0.7241	0.1582	0.060*
C16	0.0581 (5)	0.8334 (3)	0.1541 (3)	0.0624 (12)
H16A	-0.0111	0.8133	0.1786	0.075*
C17	0.0542 (5)	0.9170 (3)	0.1308 (3)	0.0755 (14)
H17A	-0.0165	0.9517	0.1409	0.091*
C18	0.1515 (4)	0.9490 (3)	0.0938 (3)	0.0610 (12)
H18A	0.1474	1.0047	0.0776	0.073*
C19	0.2575 (4)	0.8959 (2)	0.0809 (2)	0.0430 (9)
C20	0.4467 (4)	0.8411 (2)	0.0468 (2)	0.0378 (8)
C21	0.5712 (4)	0.8480 (2)	0.0141 (2)	0.0410 (9)
C22	0.7623 (5)	0.7796 (3)	-0.0215 (3)	0.0673 (13)
H22A	0.8306	0.8168	0.0093	0.081*
H22B	0.7397	0.8006	-0.0744	0.081*
C23	0.8196 (6)	0.6929 (4)	-0.0202 (4)	0.113 (2)
H23A	0.9022	0.6932	-0.0417	0.170*
H23B	0.7509	0.6566	-0.0505	0.170*
H23C	0.8427	0.6730	0.0325	0.170*
C24	0.5846 (4)	0.6817 (2)	0.1501 (2)	0.0391 (8)
C25	0.6324 (4)	0.7431 (2)	0.2053 (2)	0.0437 (9)
H25A	0.5790	0.7912	0.2068	0.052*
C26	0.7582 (4)	0.7340 (3)	0.2582 (2)	0.0530 (11)
H26A	0.7885	0.7758	0.2948	0.064*
C27	0.8370 (4)	0.6642 (3)	0.2566 (3)	0.0614 (12)
C28	0.7963 (4)	0.6021 (3)	0.2019 (3)	0.0634 (12)
H28A	0.8513	0.5547	0.2006	0.076*
C29	0.6715 (4)	0.6124 (2)	0.1493 (2)	0.0505 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0617 (8)	0.0762 (9)	0.1361 (13)	-0.0114 (7)	-0.0373 (8)	0.0215 (8)
01	0.0412 (15)	0.0659 (18)	0.0512 (16)	-0.0065 (14)	0.0034 (13)	0.0008 (14)
N1	0.0394 (17)	0.0439 (18)	0.0467 (18)	-0.0081 (14)	0.0045 (14)	0.0025 (14)
C1	0.0398 (19)	0.0283 (17)	0.043 (2)	0.0036 (15)	0.0076 (16)	-0.0009 (15)
Cl2	0.0746 (8)	0.0529 (7)	0.1067 (10)	0.0220 (6)	-0.0039 (7)	-0.0310(7)
O2	0.0522 (15)	0.0472 (15)	0.0421 (15)	-0.0103 (13)	0.0050 (12)	0.0081 (12)
N2	0.0482 (18)	0.0284 (15)	0.064 (2)	0.0026 (14)	0.0178 (16)	0.0064 (14)
C2	0.0386 (19)	0.0289 (18)	0.044 (2)	-0.0002 (15)	0.0090 (17)	0.0012 (15)
O3	0.0497 (16)	0.0397 (14)	0.0711 (18)	0.0091 (12)	0.0271 (14)	0.0049 (13)
C3	0.044 (2)	0.0314 (18)	0.044 (2)	0.0024 (16)	0.0090 (17)	0.0068 (16)
O4	0.0536 (17)	0.0404 (15)	0.094 (2)	0.0019 (13)	0.0339 (16)	0.0158 (15)
C4	0.058 (3)	0.056 (2)	0.050(2)	-0.012 (2)	0.005 (2)	0.005 (2)
C5	0.061 (3)	0.070 (3)	0.054 (3)	-0.003 (2)	0.005 (2)	0.018 (2)
C6	0.063 (3)	0.057 (3)	0.062 (3)	0.001 (2)	0.019 (2)	0.023 (2)
C7	0.050 (2)	0.047 (2)	0.063 (3)	-0.0070 (19)	0.017 (2)	0.011 (2)

supporting information

C8	0.039 (2)	0.036 (2)	0.053 (2)	0.0003 (16)	0.0113 (17)	0.0015 (17)
C9	0.0347 (18)	0.0327 (18)	0.047 (2)	-0.0003 (15)	0.0107 (16)	0.0019 (16)
C10	0.0344 (19)	0.0329 (18)	0.045 (2)	0.0045 (16)	0.0061 (17)	-0.0003 (16)
C11	0.058 (3)	0.068 (3)	0.052 (3)	-0.007(2)	-0.002 (2)	0.016 (2)
C12	0.080	0.080	0.080	0.000	0.017	0.000
C13	0.0364 (19)	0.0316 (18)	0.042 (2)	0.0024 (15)	0.0072 (16)	-0.0020 (15)
C14	0.040 (2)	0.0365 (19)	0.043 (2)	0.0038 (16)	0.0105 (16)	-0.0017 (16)
C15	0.046 (2)	0.050(2)	0.058 (3)	0.0015 (19)	0.021 (2)	0.0061 (19)
C16	0.059 (3)	0.059 (3)	0.078 (3)	0.000 (2)	0.035 (2)	0.002 (2)
C17	0.064 (3)	0.058 (3)	0.114 (4)	0.021 (2)	0.042 (3)	-0.001 (3)
C18	0.056 (3)	0.041 (2)	0.093 (3)	0.012 (2)	0.030 (2)	0.006 (2)
C19	0.040 (2)	0.038 (2)	0.054 (2)	0.0029 (17)	0.0158 (18)	0.0010 (17)
C20	0.0388 (19)	0.0288 (18)	0.046 (2)	-0.0016 (15)	0.0097 (16)	-0.0008 (15)
C21	0.039 (2)	0.039 (2)	0.045 (2)	-0.0015 (17)	0.0076 (17)	0.0001 (17)
C22	0.063 (3)	0.061 (3)	0.089 (3)	0.012 (2)	0.041 (3)	0.002 (2)
C23	0.102 (4)	0.099 (5)	0.158 (6)	0.055 (4)	0.071 (4)	0.029 (4)
C24	0.038 (2)	0.0334 (18)	0.046 (2)	-0.0048 (16)	0.0095 (16)	0.0011 (16)
C25	0.045 (2)	0.0338 (19)	0.052 (2)	-0.0043 (17)	0.0096 (18)	0.0023 (17)
C26	0.060 (3)	0.043 (2)	0.052 (2)	-0.018 (2)	0.004 (2)	0.0031 (18)
C27	0.045 (2)	0.052 (3)	0.080 (3)	-0.008 (2)	-0.006 (2)	0.016 (2)
C28	0.042 (2)	0.046 (2)	0.097 (4)	0.005 (2)	0.001 (2)	0.008 (2)
C29	0.046 (2)	0.034 (2)	0.069 (3)	0.0024 (18)	0.006 (2)	-0.0040 (19)

Geometric parameters (Å, °)

Cl1—C27	1.738 (4)	C11—H11B	0.9700
O1-C10	1.221 (4)	C12—H12A	0.9600
N1-C8	1.356 (5)	C12—H12B	0.9600
N1-C9	1.368 (4)	C12—H12C	0.9600
N1—H1A	0.8600	C13—C20	1.389 (5)
C1—C2	1.511 (5)	C13—C14	1.429 (5)
C1-C24	1.521 (5)	C14—C15	1.414 (5)
C1—C13	1.525 (4)	C14—C19	1.418 (5)
C1—H1B	0.9800	C15—C16	1.377 (5)
Cl2—C29	1.730 (4)	C15—H15A	0.9300
O2—C10	1.312 (4)	C16—C17	1.392 (6)
O2—C11	1.450 (5)	C16—H16A	0.9300
N2-C19	1.363 (4)	C17—C18	1.358 (6)
N2-C20	1.375 (4)	C17—H17A	0.9300
N2—H2A	0.8600	C18—C19	1.393 (5)
С2—С9	1.396 (5)	C18—H18A	0.9300
C2—C3	1.436 (5)	C20—C21	1.454 (5)
O3—C21	1.327 (4)	C22—C23	1.489 (7)
O3—C22	1.456 (5)	C22—H22A	0.9700
C3—C4	1.409 (5)	C22—H22B	0.9700
C3—C8	1.415 (5)	C23—H23A	0.9600
O4—C21	1.212 (4)	C23—H23B	0.9600
C4—C5	1.372 (5)	C23—H23C	0.9600

supporting information

C4—H4A	0.9300	C24—C25	1 389 (5)
C5-C6	1 390 (6)	C_{24} C_{29}	1.305(5)
C5—H5A	0.9300	C_{25} C_{25} C_{26}	1 388 (5)
C6-C7	1 369 (6)	C25—H25A	0.9300
С6—Н6А	0.9300	C_{26} C_{27}	1 358 (6)
C7-C8	1 405 (5)	C26—H26A	0.9300
C7—H7A	0.9300	$C_{20} = 1120 \text{ A}$	1 380 (6)
C_{1}	1,457 (5)	C_{2}^{2} C_{2}^{0} C_{2}^{0}	1.300(0) 1.380(5)
C_{11} C_{12}	1.457 (5)	$C_{28} = C_{29}$	0.0300
C11_H11A	0.0700	C20—1120A	0.9300
Сп—нпа	0.9700		
C8—N1—C9	109.6 (3)	C14—C13—C1	129.2 (3)
C8—N1—H1A	125.2	C15—C14—C19	117.7 (3)
C9—N1—H1A	125.2	C15—C14—C13	135.6 (3)
C2-C1-C24	111.6 (3)	C19—C14—C13	106.7 (3)
$C_2 - C_1 - C_{13}$	113.6 (3)	C16—C15—C14	118.8 (4)
$C_{24} - C_{1} - C_{13}$	113 4 (3)	C16—C15—H15A	120.6
C_2 C_1 H_1B	105.8	C14— $C15$ — $H15A$	120.0
C_2^{24} C_1^{-H1B}	105.8	C_{15} C_{16} C_{17}	120.0 121.7(4)
C_{13} C_{1} H_{1B}	105.8	C_{15} C_{16} H_{16A}	110 1
$C_{10} = O_2 = C_{11}$	118 2 (3)	$C_{12} = C_{10} = H_{16A}$	110.1
C10 N2 C20	110.2(3)	$C_{17} = C_{10} = IIIOX$	117.1 121 A (A)
$C_{19} = N_2 = C_{20}$	109.0 (3)	$C_{18} = C_{17} = C_{10}$	121.4 (4)
$C_{10} = N_2 = H_2 \Lambda$	125.2	$C_{10} = C_{17} = H_{17A}$	119.5
C_{20} C_{2} C_{3}	125.2 105.7(2)	$C_{10} - C_{17} - M_{17} - M_{17}$	117.3 117.0(4)
$C_{9} = C_{2} = C_{3}$	105.7(3) 125.0(2)	C17 - C18 - C19	117.9 (4)
C_{2}	123.0(3) 120.2(2)	$C_{1} = C_{10} = H_{10}$	121.0
$C_3 = C_2 = C_1$	129.3(3) 115.8(3)	$N_{2} = C_{10} = C_{18}$	121.0 120.6(2)
$C_{21} = 03 = C_{22}$	113.0(3) 117.6(2)	N2 - C19 - C18	129.0(3)
C4 - C3 - C8	117.0(3) 125.5(2)	$N_2 - C_{19} - C_{14}$	108.0(3)
$C_4 - C_3 - C_2$	155.5(5) 10(0(2))	C10 - C19 - C14	122.3(3)
$C_8 = C_3 = C_2$	100.9 (3)	N2-C20-C13	109.0(3)
C_{5}	119.1 (4)	$N_2 = C_2 = C_2 I$	11/.0(3)
C_{3} C_{4} H_{4}	120.5	C13 - C20 - C21	134.0 (3)
$C_3 - C_4 - H_4 A$	120.5	04 - 021 - 03	122.9 (3)
C4 - C5 - C6	122.2 (4)	04-021-020	123.3 (3)
C4—C5—H5A	118.9	03 - C21 - C20	113.8 (3)
C6—C5—H5A	118.9	03-022-023	107.4 (4)
C/C6C5	121.2 (4)	03—C22—H22A	110.2
С/—С6—Н6А	119.4	C23—C22—H22A	110.2
С5—С6—Н6А	119.4	03—C22—H22B	110.2
C6—C7—C8	117.2 (4)	С23—С22—Н22В	110.2
С6—С7—Н7А	121.4	H22A—C22—H22B	108.5
С8—С7—Н7А	121.4	C22—C23—H23A	109.5
N1—C8—C7	129.0 (3)	C22—C23—H23B	109.5
N1-C8-C3	108.2 (3)	H23A—C23—H23B	109.5
C7—C8—C3	122.8 (4)	С22—С23—Н23С	109.5
N1—C9—C2	109.6 (3)	H23A—C23—H23C	109.5
N1C9C10	118.8 (3)	H23B—C23—H23C	109.5

C2C9C10	131.6 (3)	C25—C24—C29	116.6 (3)
O1—C10—O2	123.8 (3)	C25—C24—C1	123.2 (3)
O1—C10—C9	122.4 (3)	C29—C24—C1	120.2 (3)
O2—C10—C9	113.7 (3)	C26—C25—C24	121.2 (4)
O2—C11—C12	107.0 (3)	C26—C25—H25A	119.4
O2—C11—H11A	110.3	C24—C25—H25A	119.4
C12—C11—H11A	110.3	C27—C26—C25	120.0 (4)
O2—C11—H11B	110.3	C27—C26—H26A	120.0
C12—C11—H11B	110.3	C25—C26—H26A	120.0
H11A—C11—H11B	108.6	C26—C27—C28	121.3 (4)
C11—C12—H12A	109.5	$C_{26} - C_{27} - C_{11}$	121.0(1) 1204(4)
C_{11} C_{12} H_{12B}	109.5	$C_{28} - C_{27} - C_{11}$	120.1(1) 118.3(3)
H12A $C12$ $H12B$	109.5	C_{29} C_{28} C_{27}	110.5(3) 1180(4)
$\begin{array}{c} \text{III} \\ \text{CII} \\ \\ \text{CII} \\ \\ \\ \text{HI2C} \end{array}$	109.5	$C_{29} = C_{28} = H_{28A}$	121.0
$H_{12}A_{-C_{12}}H_{12}C$	109.5	C_{27} C_{28} H_{28A}	121.0
H12R_C12_H12C	109.5	C_{28} C_{29} C_{24}	121.0 122.9(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105.5	$C_{28} = C_{29} = C_{24}$	122.9(4) 118 1 (3)
$C_{20} = C_{13} = C_{14}$	100.8(3) 124.0(2)	$C_{26} - C_{29} - C_{12}$	110.1(3)
C20—C13—C1	124.0 (3)	C24—C29—C12	119.0 (3)
C_{24} C_{1} C_{2} C_{0}	15(0(2))	C12 C14 C15 C16	179.0(4)
$C_{24} - C_{1} - C_{2} - C_{9}$	-130.0(3)	C13 - C14 - C13 - C10	1/8.9(4)
C13 - C1 - C2 - C9	74.5 (4)	C14 - C13 - C10 - C17	-0.0(7)
$C_{24} - C_{1} - C_{2} - C_{3}$	23.5 (5)	C15 - C16 - C17 - C18	1.1 (8)
C13 - C1 - C2 - C3	-106.2 (4)	C16-C1/-C18-C19	-1.1(8)
$C_{9} - C_{2} - C_{3} - C_{4}$	1/8./(4)	C_{20} N2-C19-C18	1/9.4 (4)
C1—C2—C3—C4	-0.9 (7)	C20—N2—C19—C14	-0.5 (4)
C9—C2—C3—C8	0.3 (4)	C17—C18—C19—N2	-179.2 (4)
C1—C2—C3—C8	-179.3 (3)	C17—C18—C19—C14	0.7 (7)
C8—C3—C4—C5	1.4 (6)	C15—C14—C19—N2	179.6 (3)
C2—C3—C4—C5	-176.9 (4)	C13—C14—C19—N2	0.6 (4)
C3—C4—C5—C6	-0.5 (7)	C15—C14—C19—C18	-0.3 (6)
C4—C5—C6—C7	-0.6 (7)	C13—C14—C19—C18	-179.4 (4)
C5—C6—C7—C8	0.7 (6)	C19—N2—C20—C13	0.2 (4)
C9—N1—C8—C7	-176.9 (4)	C19—N2—C20—C21	-178.2 (3)
C9—N1—C8—C3	1.5 (4)	C14—C13—C20—N2	0.1 (4)
C6—C7—C8—N1	178.5 (4)	C1C13C20N2	179.2 (3)
C6—C7—C8—C3	0.3 (6)	C14—C13—C20—C21	178.2 (4)
C4—C3—C8—N1	-179.8 (3)	C1-C13-C20-C21	-2.7 (6)
C2-C3-C8-N1	-1.1 (4)	C22—O3—C21—O4	0.0 (5)
C4—C3—C8—C7	-1.3 (5)	C22—O3—C21—C20	180.0 (3)
C2—C3—C8—C7	177.5 (3)	N2-C20-C21-O4	4.9 (5)
C8—N1—C9—C2	-1.4 (4)	C13—C20—C21—O4	-173.1 (4)
C8—N1—C9—C10	176.0 (3)	N2-C20-C21-O3	-175.1 (3)
C3—C2—C9—N1	0.6 (4)	C13—C20—C21—O3	7.0 (6)
C1—C2—C9—N1	-179.7 (3)	C21—O3—C22—C23	-179.8 (4)
C3—C2—C9—C10	-176.2 (3)	C2—C1—C24—C25	-110.9 (4)
C1—C2—C9—C10	3.4 (6)	C13—C1—C24—C25	18.9 (5)
C11—O2—C10—O1	-4.5 (5)	C2-C1-C24-C29	69.4 (4)
C11—O2—C10—C9	173.4 (3)	C13—C1—C24—C29	-160.8(3)
			(-)

3.8 (5)	C29—C24—C25—C26	-2.0 (5)
-179.5 (4)	C1-C24-C25-C26	178.3 (3)
-174.1 (3)	C24—C25—C26—C27	0.0 (6)
2.5 (5)	C25—C26—C27—C28	1.5 (6)
-167.2 (3)	C25—C26—C27—Cl1	-178.8 (3)
-162.4 (3)	C26—C27—C28—C29	-0.9 (7)
68.8 (4)	Cl1—C27—C28—C29	179.4 (3)
16.4 (5)	C27—C28—C29—C24	-1.2 (7)
-112.3 (4)	C27—C28—C29—Cl2	-179.8 (3)
-179.2 (4)	C25—C24—C29—C28	2.6 (6)
1.8 (7)	C1—C24—C29—C28	-177.7 (4)
-0.4 (4)	C25—C24—C29—Cl2	-178.8 (3)
-179.4 (3)	C1—C24—C29—Cl2	0.9 (5)
0.2 (6)		
	$\begin{array}{l} 3.8 (5) \\ -179.5 (4) \\ -174.1 (3) \\ 2.5 (5) \\ -167.2 (3) \\ -162.4 (3) \\ 68.8 (4) \\ 16.4 (5) \\ -112.3 (4) \\ -179.2 (4) \\ 1.8 (7) \\ -0.4 (4) \\ -179.4 (3) \\ 0.2 (6) \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Hydrogen-bond geometry (Å, °)

Cg1 and Cg5 are the centroids of the N1,C8,C3,C2,C9 and C24-C29 rings respectively.

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1A····O1 ⁱ	0.86	2.07	2.864 (4)	152
N2—H2A····O4 ⁱⁱ	0.86	2.04	2.871 (4)	161
C11—H11A···Cl1 ⁱⁱⁱ	0.97	2.81	3.731 (5)	158
C4—H4 <i>A</i> ··· <i>Cg</i> 5	0.93	2.77	3.516 (4)	137
C15—H15A····Cg1	0.93	2.72	3.476 (5)	139

Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+2, -z; (iii) x-1, -y+3/2, z-1/2.