

Received 1 November 2017 Accepted 3 November 2017

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; chloranilic acid; 2carboxypyridine; 2-carboxyquinoline; twitterion; disorder; hydrogen bond.

CCDC references: 1583721; 1583720

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\odot}$ ACCESS

Crystal structures of two 1:2 dihydrate compounds of chloranilic acid with 2-carboxypyridine and 2-carboxyquinoline

Kazuma Gotoh and Hiroyuki Ishida*

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan. *Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

The crystal structure of the 1:2 dihydrate compound of chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) with 2-carboxypyridine (another common name: picolinic acid; systematic name: pyridine-2-carboxylic acid), namely, 2C₆H_{5.5}NO₂^{0.5+}C₆HCl₂O₄⁻·2H₂O, (I), has been determined at 180 K, and the structure of the 1:2 dihydrate compound of chloranilic acid with 2-carboxyquinoline (another common name: quinaldic acid; systematic name: quinoline-2-carboxylic acid), namely, $2C_{10}H_7NO_2 \cdot C_6H_2$ Cl₂O₄·2H₂O, (II), has been redetermined at 200 K. This determination presents a higher precision crystal structure than the previously published structure [Marfo-Owusu & Thompson (2014). X-ray Struct. Anal. Online, 30, 55-56]. Compound (I) was analysed as a disordered structure over two states, viz. salt and co-crystal. The salt is bis(2-carboxypyridinium) chloranilate dihydrate, $2C_6H_6NO_2^+ \cdot C_6Cl_2O_4^{2-} \cdot 2H_2O_1$, and the co-crystal is bis(pyridinium-2-carboxylate) chloranilic acid dihydrate, 2C6H5NO2·C6H2Cl2O4·2H2O, including zwitterionic 2-carboxypyridine. In both salt and co-crystal, the water molecule links the chloranilic acid and 2-carboxypyridine molecules through O-H···O and N- $H \cdot \cdot O$ hydrogen bonds. The 2-carboxypyridine molecules are connected into a head-to-head inversion dimer by a short $O-H \cdots O$ hydrogen bond, in which the H atom is disordered over two positions. Compound (II) is a 1:2 dihydrate cocrystal of chloranilic acid and zwitterionic 2-carboxyquinoline. The water molecule links the chloranilic acid and 2-carboxyquinoline molecules through O-H···O hydrogen bonds. The 2-carboxyquinoline molecules are connected into a head-to-tail inversion dimer by a pair of $N-H \cdots O$ hydrogen bonds.

1. Chemical context

Chloranilic acid, a dibasic acid with hydrogen-bond donor as well as acceptor groups, appears particularly attractive as a template for generating tightly bound self-assemblies with various pyridine derivatives as well as being a model compound for investigating hydrogen-transfer motions in O- $H \cdots N$ and $N - H \cdots O$ hydrogen-bond systems (Zaman *et al.*, 2004; Molčanov & Kojić-Prodić, 2010; Seliger et al., 2009; Asaji et al. 2010). Previously, we have prepared three 1:1 compounds of chloranilic acid with 2-, 3- and 4-carboxypyridine and analysed the crystal structures in order to extend our study on $D - H \cdot \cdot \cdot A$ hydrogen bonding (D = N, O or C; A = N, O or Cl) in chloranilic acid-substituted pyridine systems (Gotoh et al., 2006, 2009; Tabuchi et al., 2005). In the present study, we have prepared a 1:2 compound of chloranilic acid with 2-carboxypyridine and also redetermined the structure of a 1:2 compound of chloranilic acid with 2-carboxyquinoline with higher precision than previously reported structure [Marfo-

Owusu & Thompson, 2014; although the title and text in this reference refer to the 1:1 adduct of chloranilic acid with 2-carboxyqulinone, the reported structure is the 1:2 compound, the same as the present compound (II)]. The crystal structure of the anhydrous 1:2 compound of chloranilic acid with 2-carboxyquinoline was also reported by Marfo-Owusu & Thompson (2016).

(II)

2. Structural commentary

Compound (I) (Fig. 1) crystallizes with one-half of a chloranilic acid molecule, which is located on an inversion centre, one 2-carboxypyridine molecule and one water molecule in the asymmetric unit. In the crystal, the water molecule is disordered over two sites with equal occupancies of 0.5. The occupancies of the H atoms in the chloranilic acid molecule and the carboxy group of the 2-carboxypyridine molecule are also 0.5. The compound is, therefore, considered to be a disordered state over two forms, viz. bis(2-carboxypyridinium) chloranilate dihydrate, (A), and bis(pyridinium-2-carboxylate) chloranilic acid dihydrate, (B), as shown in the scheme and Fig. 2. In form (A), the water molecule acts as one $N-H \cdots O$ hydrogen-bond acceptor and two O-H···O hydrogen-bond donors (N1-H1···O5A, O5A-O9A···O4ⁱⁱ and O5A-H10A···O2; symmetry code as in Table 1), while in form (B), the water molecule acts as the acceptor of $N-H \cdots O$ and O- $H \cdots O$ hydrogen bonds, and as two $O - H \cdots O$ hydrogen-bond donors (N1-H1···O5B, O2-H2···O5B, O5B-H9B···O4ⁱⁱ and $O5B - H10B \cdots O1^{iii}$; Table 1). The dihedral angle

Figure 1

The molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii. The water molecule is disordered over two sites with equally occupancies. Atoms H2 and H3 have site-occupancy factors of 0.5. [Symmetry code: (iv) -x + 1, -y + 1, -z + 1.]

between the pyridine ring and the carboxy plane in the base molecule is $23.32 (15)^{\circ}$.

The asymmetric unit of compound (II) consists of one-half of a chloranilic acid molecule, which is located on an inversion centre, one 2-carboxyquinoline molecule and one water molecule. In the crystal, the 2-carboxyquinoline molecule is in a

A partial packing diagram of compound (I) around the disordered water molecule in bis(2-carboxypyridinium) chloranilate dihydrate (A) and bis(pyridinium-2-carboxylate) chloranilic acid dihydrate (B), showing $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds (dashed lines). [Symmetry codes: (ii) -x, -y, -z + 1; (iii) -x + 1, -y, -z + 1.]

research communications

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O5A	0.895 (17)	1.843 (17)	2.7380 (19)	179 (2)
$N1-H1\cdots O5B$	0.895 (17)	1.907 (17)	2.7417 (18)	154 (2)
$O2-H2\cdots O5B$	0.83 (3)	2.12 (3)	2.8111 (19)	141 (3)
$O3-H3\cdots O3^i$	0.82(3)	1.62 (4)	2.4352 (14)	174 (4)
$O5A - H9A \cdots O4^{ii}$	0.82 (3)	2.11 (3)	2.927 (2)	170 (3)
$O5B - H9B \cdot \cdot \cdot O4^{ii}$	0.82 (3)	2.02 (3)	2.8159 (19)	162 (3)
$O5A - H10A \cdots O2$	0.84 (3)	1.90 (3)	2.6762 (19)	154 (4)
$O5B-H10B\cdots O1^{iii}$	0.85 (2)	2.60 (3)	3.095 (2)	119 (2)
C8−H8···Cl1 ⁱⁱⁱ	0.95	2.78	3.6524 (12)	154
C8−H8···O1 ⁱⁱⁱ	0.95	2.47	3.1871 (14)	132

Symmetry codes. (1) -x, -y + 1, -z + 1, (ii) -x, -y, -z + 1, -x + 1, -y, -z + 1.

twitterionic form and no acid-base interaction involving Hatom transfer between chloranilic acid and 2-carboxyquinoline is observed (Fig. 3). The dihedral angle between the quinoline ring system and the carboxylate plane in the base molecule is 20.84 (19)°. The water molecule acts as an O– $H \cdot \cdot \cdot O$ hydrogen-bonding bridge between the chloranilic and 2-carboxyquinoline molecules (O2–H2···O5 and O5– H3···O4; Table 2).

3. Supramolecular features

In the crystal of compound (I), the 2-carboxypyridine molecules, which are related by an inversion centre, are linked into a head-to-head dimer *via* a short $O-H\cdots O$ hydrogen bond, in which the H atom is disordered over two sites (O3– H3···O3ⁱ, Table 1), as observed in pyridinium-2-carboxylic acid pyridinium-2-carboxylate perchlorate (Wang *et al.*, 2015). The three components are linked *via* the above-mentioned $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds together with weak $C-H\cdots Cl$ and $C-H\cdots O$ hydrogen bonds (C8– H8···Cl1ⁱⁱⁱ and C8–H8···O1ⁱⁱⁱ; Table 1), forming a layer parallel to the *ab* plane (Fig. 4). In the layer, the chloranilic acid rings are stacked along the *b* axis through a π - π interaction [centroid–centroid distance = 3.6851 (7) Å and interplanar spacing = 3.2118 (4) Å]. The pyridine rings are also

Figure 3

The molecular structure of compound (II), showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii. O-H···O hydrogen bonds are shown as dashed lines. [Symmetry code: (v) -x, -y, -z.]

Table 2					
Hydrogen-bond	geometry	(Å,	°)	for	(II).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdotsO3^{i}$ $O2-H2\cdotsO5$	0.88(2) 0.98(3)	1.91 (2) 1.59 (3)	2.7724 (17) 2.5092 (17)	167 (2) 155 (3)
$05 - H3 \cdots 04$ $05 - H4 \cdots 04^{ii}$ $C6 - H6 \cdots 01^{iii}$	0.82 (2) 0.85 (2) 0.95	2.01 (2) 1.82 (2) 2.54	2.8072 (19) 2.6632 (19) 3.392 (2)	164 (2) 171 (2) 150
$C6 - H6 \cdots O5^{10}$	0.95	2.47	3.211 (2)	134

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) x + 1, y, z + 1; (iv) -x + 1, -y, -z + 1.

stacked along the *b* axis through a π - π interaction [centroidcentroid distance = 3.6851 (7) Å and interplanar spacing = 3.4787 (5) Å]. Between the layers, a short Cl···Cl contact is observed [Cl1···Cl1^v = 3.3717 (5) Å; symmetry code: (v) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$].

In the crystal of (II), two adjacent 2-carboxyquinoline molecules, which are related by an inversion centre, form a head-to-tail dimer via a pair of N-H···O hydrogen bonds $(N-H1\cdots O3^{i};$ symmetry code as in Table 2). The dimers are stacked in a column along the *a* axis through a weak $\pi - \pi$ interaction between the N1/C4-C7/C12 and C7-C12 rings with a centroid-centroid distance of 3.9184 (10) Å. The water molecule links the stacked base molecules related by translation along a via O-H···O hydrogen bonds [O5-H3···O4 and $O5-H4\cdots O4^{ii}$; Table 2] and also links the acid molecule and the two base molecules via $O-H \cdots O$ hydrogen bonds, forming a layer structure parallel to $(0\overline{1}1)$ as shown in Fig. 5. No significant short contact between the acid molecules in the layer is observed. Between the layers, a bifurcated $C-H \cdots (O, O)$ O) hydrogen bond $(C6-H6\cdots O1^{iii})$ and $C6-H6\cdots O5^{iv}$; Table 2) is observed, through which the 2-carboxyquinoline molecule is weakly linked with the chloranilic acid and water molecules.

A packing diagram of compound (I) viewed along the *b* axis, showing the layer structure. $O-H \cdots O$ and $N-H \cdots O$ hydrogen bonds are shown as dashed lines.

Table 3Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$2C_6H_5 NO_2^{0.5+} \cdot C_6HCl_2O_4^{-} \cdot 2H_2O$	$2C_{10}H_7NO_2 \cdot C_6H_2Cl_2O_4 \cdot 2H_2O$
M_r	491.24	591.36
Crystal system, space group	Monoclinic, $P2_1/c$	Triclinic, $P\overline{1}$
Temperature (K)	180	200
a, b, c (Å)	15.1028 (10), 3.6851 (3), 17.5689 (13)	4.4745 (2), 10.5448 (8), 13.6111 (6)
α, β, γ (°)	90, 101.871 (3), 90	96.652 (4), 94.109 (3), 99.009 (4)
$V(\dot{A}^3)$	956.89 (12)	627.38 (6)
Z	2	1
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.40	0.32
Crystal size (mm)	$0.35 \times 0.18 \times 0.13$	$0.41 \times 0.21 \times 0.03$
Data collection		
Diffractometer	Rigaku R-AXIS RAPIDII	Rigaku R-AXIS RAPIDII
Absorption correction	Numerical (NUMABS; Higashi, 1999)	Numerical (NUMABS; Higashi, 1999)
T_{\min}, T_{\max}	0.896, 0.949	0.925, 0.990
No. of measured, independent and	17752, 2789, 2537	12358, 3666, 2755
observed $[I > 2\sigma(I)]$ reflections		
R _{int}	0.021	0.122
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.704	0.704
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.030, 0.079, 1.11	0.052, 0.149, 1.01
No. of reflections	2789	3666
No. of parameters	176	197
No. of restraints	8	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.54, -0.24	0.52, -0.45

Computer programs: RAPID-AUTO (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2015).

Figure 5

A packing diagram of compound (II) viewed along the *a* axis, showing the layer structure formed by $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds (dashed lines).

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, last update May 2017; Groom *et al.*, 2016) for organic cocrystals of pyridinium-2-carboxylate (twitterionic form) gave six structures. For organic co-crystals of quinolinium-2carboxylate (twitterionic form), eight structures were found.

5. Synthesis and crystallization

Single crystals of compound (I) were obtained by slow evaporation of an acetonitrile solution (200 ml) of chloranilic acid (250 mg) with 2-carboxypridine (310 mg) at room temperature. Single crystals of compound (II) were obtained by slow evaporation from a methanol solution (150 ml) of chloranilic acid (310 mg) with 2-carboxyquinoline (520 mg) at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The water molecule in compound (I) was found to be disordered over two sites in a difference-Fourier map. The occupancies were refined to 0.52 (2) and 0.48 (2) and then they were fixed at 0.5. The H atom in the carboxy group of the base molecule was also found in a difference-Fourier map to be disordered between the adjacent carboxy groups, which are related by an inversion centre, and the occupancy was set to be 0.5. Since the N-bound H atom refined reasonably with an occupancy of 1, the occupancy of the H atom of the acid molecule was set to be 0.5 to balance the total charge of the compound. All other H atoms were found in a difference-Fourier map. The N-bound H atom was refined freely, while the positions of O-bound H atoms were refined, with O-H = 0.84 (2) Å and $U_{iso}(H) = 1.5U_{eq}(O)$. For the water H atoms, distant restraints of $H \cdots H = 1.37$ (4) Å were also applied. C-bound H atoms were positioned geometrically (C-H = 0.95 Å) and were treated as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

All H atoms in compound (II) were found in a difference-Fourier map. The O- and N-bound H atoms in the acid and base molecules were refined freely. The water H atoms were refined with O-H = 0.84 (2) Å. C-bound H atoms were positioned geometrically (C-H = 0.95 Å) and were treated as riding with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$.

References

Asaji, T., Seliger, J., Žagar, V. & Ishida, H. (2010). Magn. Reson. Chem. 48, 531-536.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gotoh, K., Nagoshi, H. & Ishida, H. (2009). Acta Cryst. E65, o614.
- Gotoh, K., Tabuchi, Y., Akashi, H. & Ishida, H. (2006). Acta Cryst. E62, 04420-04421.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Marfo-Owusu, E. & Thompson, A. L. (2014). X-ray Struct. Anal. Online, **30**, 55–56.
- Marfo-Owusu, E. & Thompson, A. L. (2016). X-ray Struct. Anal. Online, **32**, 49–50.
- Molčanov, K. & Kojić-Prodić, B. (2010). CrystEngComm, 12, 925–939.
- Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Seliger, J., Žagar, V., Gotoh, K., Ishida, H., Konnai, A., Amino, D. & Asaji, T. (2009). *Phys. Chem. Chem. Phys.* **11**, 2281–2286.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Tabuchi, Y., Takahashi, A., Gotoh, K., Akashi, H. & Ishida, H. (2005). *Acta Cryst.* E**61**, 04215–04217.
- Wang, B.-Q., Yan, H.-B., Huang, Z.-Q., Zhang, Y.-H. & Sun, J. (2015). *Acta Cryst.* C71, 247–251.
- Zaman, Md. B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585–589.

Acta Cryst. (2017). E73, 1840-1844 [https://doi.org/10.1107/S2056989017015997]

Crystal structures of two 1:2 dihydrate compounds of chloranilic acid with 2carboxypyridine and 2-carboxyquinoline

Kazuma Gotoh and Hiroyuki Ishida

Computing details

For both structures, data collection: *RAPID-AUTO* (Rigaku, 2006); cell refinement: *RAPID-AUTO* (Rigaku, 2006); data reduction: *RAPID-AUTO* (Rigaku, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2010) and *PLATON* (Spek, 2015).

Bis(2-carboxypyridinium) chloranilate dihydrate-bis(pyridinium-2-carboxylate) chloranilic acid dihydrate (1/1) (I)

Crystal data

```
2C_6H_{5.5}NO_20.5+C_6HCl_2O_4-2H_2O_4

M_r = 491.24

Monoclinic, P2_1/c

a = 15.1028 (10) Å

b = 3.6851 (3) Å

c = 17.5689 (13) Å

\beta = 101.871 (3)^{\circ}

V = 956.89 (12) Å^3

Z = 2
```

Data collection

Rigaku R-AXIS RAPIDII diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: numerical (*NUMABS*; Higashi, 1999) $T_{min} = 0.896, T_{max} = 0.949$ 17752 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.079$ S = 1.112789 reflections 176 parameters 8 restraints F(000) = 504.00 $D_x = 1.705 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 15838 reflections $\theta = 3.2-30.0^{\circ}$ $\mu = 0.40 \text{ mm}^{-1}$ T = 180 KBlock, brown $0.35 \times 0.18 \times 0.13 \text{ mm}$

2789 independent reflections 2537 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 30.0^\circ, \ \theta_{min} = 3.3^\circ$ $h = -21 \rightarrow 21$ $k = -5 \rightarrow 4$ $l = -24 \rightarrow 24$

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0445P)^2 + 0.3065P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\text{max}} = 0.54 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.48813 (2)	0.21752 (7)	0.32764 (2)	0.01728 (8)	
01	0.64061 (5)	0.6016 (2)	0.43110 (4)	0.02004 (16)	
O2	0.34886 (5)	0.1370 (2)	0.42588 (4)	0.02038 (17)	
H2	0.317 (2)	0.137 (9)	0.4593 (16)	0.031*	0.5
03	0.06134 (7)	0.3759 (3)	0.54909 (5)	0.0313 (2)	
Н3	0.018 (2)	0.445 (12)	0.516 (2)	0.047*	0.5
O4	-0.03494 (6)	0.1653 (3)	0.62162 (5)	0.0303 (2)	
O5A	0.19794 (11)	0.1042 (7)	0.48308 (10)	0.0265 (4)	0.5
H9A	0.1547 (18)	0.038 (11)	0.4493 (18)	0.040*	0.5
H10A	0.2453 (15)	0.043 (11)	0.4682 (18)	0.040*	0.5
O5B	0.20132 (11)	-0.1191 (6)	0.48529 (9)	0.0199 (3)	0.5
H9B	0.1501 (15)	-0.090 (9)	0.4587 (19)	0.030*	0.5
H10B	0.209 (2)	-0.347 (5)	0.4873 (19)	0.030*	0.5
N1	0.19857 (6)	0.0209 (3)	0.63805 (5)	0.01977 (18)	
C1	0.57374 (6)	0.5511 (3)	0.45987 (5)	0.01438 (18)	
C2	0.49294 (7)	0.3688 (3)	0.42158 (5)	0.01476 (18)	
C3	0.42138 (6)	0.3090 (3)	0.45734 (6)	0.01574 (19)	
C4	0.12231 (7)	0.0793 (3)	0.66495 (6)	0.01658 (19)	
C5	0.12193 (7)	0.0166 (3)	0.74206 (6)	0.0198 (2)	
Н5	0.068573	0.056090	0.761605	0.024*	
C6	0.20078 (8)	-0.1057 (3)	0.79117 (6)	0.0226 (2)	
H6	0.201710	-0.146932	0.844701	0.027*	
C7	0.27772 (7)	-0.1668 (3)	0.76174 (7)	0.0226 (2)	
H7	0.331694	-0.251819	0.794609	0.027*	
C8	0.27478 (7)	-0.1023 (3)	0.68384 (7)	0.0236 (2)	
H8	0.326860	-0.145258	0.662656	0.028*	
C9	0.04024 (8)	0.2152 (3)	0.60747 (6)	0.0210 (2)	
H1	0.1993 (12)	0.049 (5)	0.5876 (10)	0.039 (4)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.01956 (13)	0.02040 (13)	0.01184 (12)	-0.00159 (8)	0.00314 (8)	-0.00202 (8)
01	0.0170 (3)	0.0273 (4)	0.0174 (3)	-0.0029 (3)	0.0071 (3)	-0.0028 (3)
O2	0.0159 (3)	0.0286 (4)	0.0168 (3)	-0.0068 (3)	0.0037 (3)	-0.0038 (3)
O3	0.0340 (5)	0.0363 (5)	0.0200 (4)	-0.0003 (4)	-0.0028 (3)	0.0107 (4)

O4	0.0212 (4)	0.0433 (5)	0.0243 (4)	0.0042 (4)	-0.0003 (3)	0.0001 (4)
O5A	0.0152 (8)	0.0467 (13)	0.0185 (8)	-0.0033 (8)	0.0052 (6)	-0.0080 (8)
O5B	0.0160 (7)	0.0243 (9)	0.0188 (7)	-0.0013 (7)	0.0028 (5)	-0.0010 (7)
N1	0.0231 (4)	0.0215 (4)	0.0160 (4)	0.0002 (4)	0.0071 (3)	-0.0002 (3)
C1	0.0148 (4)	0.0154 (4)	0.0132 (4)	0.0008 (3)	0.0035 (3)	0.0012 (3)
C2	0.0171 (4)	0.0174 (4)	0.0100 (4)	-0.0015 (3)	0.0033 (3)	-0.0007 (3)
C3	0.0147 (4)	0.0186 (5)	0.0137 (4)	0.0012 (4)	0.0025 (3)	0.0021 (3)
C4	0.0177 (4)	0.0163 (4)	0.0151 (4)	-0.0002 (4)	0.0022 (3)	0.0005 (3)
C5	0.0183 (4)	0.0251 (5)	0.0166 (4)	0.0003 (4)	0.0052 (3)	0.0026 (4)
C6	0.0236 (5)	0.0271 (6)	0.0163 (4)	-0.0015 (4)	0.0018 (4)	0.0051 (4)
C7	0.0185 (5)	0.0209 (5)	0.0261 (5)	0.0010 (4)	-0.0009 (4)	0.0032 (4)
C8	0.0197 (5)	0.0245 (5)	0.0281 (5)	0.0025 (4)	0.0083 (4)	-0.0013 (4)
C9	0.0241 (5)	0.0207 (5)	0.0156 (4)	0.0022 (4)	-0.0017 (4)	-0.0013 (4)

Geometric parameters (Å, °)

Cl1—C2	1.7293 (9)	N1—H1	0.895 (18)
O1—C1	1.2330 (11)	C1—C2	1.4335 (13)
O2—C3	1.2875 (12)	$C1$ — $C3^{i}$	1.5307 (13)
O2—H2	0.830 (18)	C2—C3	1.3751 (13)
O3—C9	1.2801 (14)	C4—C5	1.3754 (13)
O3—H3	0.814 (17)	C4—C9	1.5139 (14)
O4—C9	1.2250 (15)	C5—C6	1.3939 (15)
О5А—Н9А	0.824 (18)	С5—Н5	0.9500
O5A—H10A	0.841 (18)	C6—C7	1.3840 (16)
O5B—H9B	0.824 (17)	С6—Н6	0.9500
O5B—H10B	0.849 (17)	С7—С8	1.3808 (16)
N1—C8	1.3406 (14)	С7—Н7	0.9500
N1C4	1.3492 (13)	C8—H8	0.9500
C3—O2—H2	105 (2)	N1—C4—C9	117.38 (9)
С9—О3—Н3	115 (3)	C5—C4—C9	122.95 (9)
H9A—O5A—H10A	107 (3)	C4—C5—C6	119.20 (9)
H9B—O5B—H10B	105 (3)	C4—C5—H5	120.4
C8—N1—C4	122.23 (9)	C6—C5—H5	120.4
C8—N1—H1	116.7 (11)	C7—C6—C5	119.83 (10)
C4—N1—H1	120.9 (11)	С7—С6—Н6	120.1
O1—C1—C2	124.63 (9)	С5—С6—Н6	120.1
O1-C1-C3 ⁱ	117.08 (9)	C8—C7—C6	118.95 (10)
C2-C1-C3 ⁱ	118.29 (8)	С8—С7—Н7	120.5
C3—C2—C1	122.26 (8)	С6—С7—Н7	120.5
C3—C2—C11	120.12 (8)	N1	120.11 (10)
C1—C2—Cl1	117.62 (7)	N1—C8—H8	119.9
O2—C3—C2	124.19 (9)	C7—C8—H8	119.9
O2—C3—C1 ⁱ	116.38 (8)	O4—C9—O3	128.74 (11)
C2-C3-C1 ⁱ	119.43 (8)	O4—C9—C4	118.74 (10)
N1—C4—C5	119.67 (9)	O3—C9—C4	112.51 (10)

O1—C1—C2—C3	177.79 (10)	N1—C4—C5—C6	0.18 (17)
$C3^{i}$ — $C1$ — $C2$ — $C3$	-1.60 (16)	C9—C4—C5—C6	-179.46 (10)
O1-C1-C2-Cl1	-1.39 (14)	C4—C5—C6—C7	-0.86 (17)
C3 ⁱ —C1—C2—C11	179.22 (7)	C5—C6—C7—C8	0.46 (18)
C1—C2—C3—O2	-177.81 (10)	C4—N1—C8—C7	-1.34 (17)
Cl1—C2—C3—O2	1.35 (15)	C6—C7—C8—N1	0.62 (18)
$C1-C2-C3-C1^{i}$	1.61 (16)	N1-C4-C9-O4	157.55 (11)
Cl1—C2—C3—C1 ⁱ	-179.22 (7)	C5—C4—C9—O4	-22.81 (16)
C8—N1—C4—C5	0.93 (17)	N1-C4-C9-O3	-23.17 (14)
C8—N1—C4—C9	-179.41 (10)	C5—C4—C9—O3	156.48 (11)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1…O5A	0.895 (17)	1.843 (17)	2.7380 (19)	179 (2)
N1—H1···O5 <i>B</i>	0.895 (17)	1.907 (17)	2.7417 (18)	154.4 (17)
O2—H2···O5 <i>B</i>	0.83 (3)	2.12 (3)	2.8111 (19)	141 (3)
O3—H3…O3 ⁱⁱ	0.82 (3)	1.62 (4)	2.4352 (14)	174 (4)
O5 <i>A</i> —H9 <i>A</i> ···O4 ⁱⁱⁱ	0.82 (3)	2.11 (3)	2.927 (2)	170 (3)
O5 <i>B</i> —H9 <i>B</i> ···O4 ⁱⁱⁱ	0.82 (3)	2.02 (3)	2.8159 (19)	162 (3)
O5A—H10A…O2	0.84 (3)	1.90 (3)	2.6762 (19)	154 (4)
O5 <i>B</i> —H10 <i>B</i> ···O1 ^{iv}	0.85 (2)	2.60 (3)	3.095 (2)	119 (2)
C8—H8····Cl1 ^{iv}	0.95	2.78	3.6524 (12)	154
C8—H8····O1 ^{iv}	0.95	2.47	3.1871 (14)	132

Symmetry codes: (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*, -*y*, -*z*+1; (iv) -*x*+1, -*y*, -*z*+1.

chloranilic acid-2-carboxyquinoline (1/2) dihydrate (II)

Crystal data	
$2C_{10}H_7NO_2 \cdot C_6H_2Cl_2O_4 \cdot 2H_2O$	Z = 1
$M_r = 591.36$	F(000) = 304.00
Triclinic, P1	$D_{\rm x} = 1.565 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
a = 4.4745 (2) Å	Cell parameters from 9714 reflections
b = 10.5448 (8) Å	$\theta = 3.0 - 30.1^{\circ}$
c = 13.6111 (6) Å	$\mu = 0.32 \text{ mm}^{-1}$
$\alpha = 96.652 \ (4)^{\circ}$	T = 200 K
$\beta = 94.109 \ (3)^{\circ}$	Platelet, brown
$\gamma = 99.009 \ (4)^{\circ}$	$0.41 \times 0.21 \times 0.03 \text{ mm}$
V = 627.38 (6) Å ³	
Data collection	
Rigaku R-AXIS RAPIDII	3666 independent reflections
diffractometer	2755 reflections with $I > 2\sigma(I)$
Detector resolution: 10.000 pixels mm ⁻¹	$R_{\rm int} = 0.122$
ω scans	$\theta_{\rm max} = 30.0^\circ, \ \theta_{\rm min} = 3.0^\circ$
Absorption correction: numerical	$h = -6 \rightarrow 6$
(NUMABS; Higashi, 1999)	$k = -14 \rightarrow 14$
$T_{\min} = 0.925, \ T_{\max} = 0.990$	$l = -19 \rightarrow 19$
12358 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.052$	map
$wR(F^2) = 0.149$	Hydrogen site location: inferred from
S = 1.00	neighbouring sites
3666 reflections	H atoms treated by a mixture of independent
197 parameters	and constrained refinement
2 restraints	$w = 1/[\sigma^2(F_o^2) + (0.0879P)^2]$
Primary atom site location: structure-invariant	where $P = (F_0^2 + 2F_c^2)/3$
direct methods	$(\Delta/\sigma)_{ m max} < 0.001$
	$\Delta ho_{ m max} = 0.52 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.49390 (9)	0.23664 (4)	-0.02842 (3)	0.04300 (16)	
O1	0.0319 (3)	0.08081 (12)	-0.17653 (8)	0.0426 (3)	
O2	0.4150 (3)	0.11710 (11)	0.15510 (9)	0.0391 (3)	
O3	-0.1769 (3)	0.36216 (11)	0.47121 (9)	0.0372 (3)	
O4	-0.0712 (3)	0.16160 (11)	0.43604 (9)	0.0425 (3)	
05	0.3938 (3)	0.07471 (12)	0.33231 (9)	0.0406 (3)	
N1	0.3233 (3)	0.41970 (12)	0.60390 (9)	0.0298 (3)	
C1	0.0207 (3)	0.04635 (14)	-0.09469 (11)	0.0317 (3)	
C2	0.2276 (3)	0.10762 (14)	-0.00985 (11)	0.0320 (3)	
C3	0.2197 (3)	0.06514 (14)	0.07971 (11)	0.0313 (3)	
C4	0.2151 (3)	0.29703 (14)	0.56909 (11)	0.0305 (3)	
C5	0.3274 (3)	0.19702 (15)	0.61140 (11)	0.0336 (3)	
Н5	0.250293	0.109195	0.586437	0.040*	
C6	0.5493 (4)	0.22680 (15)	0.68906 (12)	0.0342 (3)	
H6	0.622423	0.159293	0.719133	0.041*	
C7	0.6694 (3)	0.35659 (14)	0.72449 (11)	0.0312 (3)	
C8	0.9050 (4)	0.39332 (16)	0.80217 (12)	0.0363 (3)	
H8	0.985438	0.328869	0.834065	0.044*	
C9	1.0170 (4)	0.52094 (18)	0.83147 (13)	0.0411 (4)	
H9	1.175836	0.545100	0.883608	0.049*	
C10	0.8980 (4)	0.61764 (17)	0.78463 (13)	0.0418 (4)	
H10	0.980263	0.706066	0.805678	0.050*	
C11	0.6677 (4)	0.58722 (15)	0.70983 (13)	0.0372 (3)	
H11	0.587483	0.653070	0.679646	0.045*	
C12	0.5532 (3)	0.45558 (14)	0.67897 (10)	0.0294 (3)	
C13	-0.0333 (3)	0.27243 (14)	0.48397 (11)	0.0315 (3)	
H1	0.252 (5)	0.481 (2)	0.5760 (17)	0.055 (6)*	
H2	0.359 (7)	0.083 (3)	0.216 (2)	0.092 (10)*	

H3	0.255 (4)	0.086 (2)	0.3667 (15)	0.054 (6)*
H4	0.560 (4)	0.111 (2)	0.3651 (17)	0.063 (7)*

Atomic	displacement	parameters	(\mathring{A}^2)
111011110	anspiacement	parameters	(11)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0402 (2)	0.0380 (2)	0.0465 (2)	-0.00570 (16)	-0.00095 (18)	0.00725 (17)
O1	0.0451 (7)	0.0452 (7)	0.0354 (6)	0.0008 (5)	-0.0026 (5)	0.0093 (5)
O2	0.0388 (6)	0.0380 (6)	0.0359 (6)	-0.0005 (5)	-0.0079 (5)	0.0012 (4)
O3	0.0376 (6)	0.0319 (6)	0.0427 (6)	0.0068 (4)	-0.0017 (5)	0.0089 (4)
O4	0.0403 (6)	0.0368 (6)	0.0471 (6)	0.0091 (5)	-0.0071 (5)	-0.0052 (5)
05	0.0400 (7)	0.0419 (7)	0.0357 (6)	0.0047 (5)	-0.0066 (5)	-0.0029 (5)
N1	0.0302 (6)	0.0269 (6)	0.0326 (6)	0.0053 (5)	0.0020 (5)	0.0055 (5)
C1	0.0292 (7)	0.0304 (7)	0.0353 (7)	0.0061 (5)	-0.0004 (6)	0.0039 (6)
C2	0.0287 (7)	0.0274 (7)	0.0384 (7)	0.0022 (5)	-0.0010 (6)	0.0032 (5)
C3	0.0298 (7)	0.0278 (7)	0.0354 (7)	0.0064 (5)	-0.0016 (6)	0.0007 (5)
C4	0.0297 (7)	0.0291 (7)	0.0330 (7)	0.0046 (5)	0.0044 (6)	0.0045 (5)
C5	0.0347 (7)	0.0273 (7)	0.0384 (7)	0.0043 (5)	0.0005 (6)	0.0051 (5)
C6	0.0357 (7)	0.0301 (7)	0.0378 (7)	0.0059 (6)	0.0020 (6)	0.0089 (6)
C7	0.0299 (7)	0.0315 (7)	0.0325 (7)	0.0047 (5)	0.0039 (6)	0.0054 (5)
C8	0.0347 (7)	0.0388 (8)	0.0353 (7)	0.0063 (6)	0.0011 (6)	0.0060 (6)
C9	0.0358 (8)	0.0453 (9)	0.0382 (8)	0.0033 (7)	-0.0036 (7)	-0.0030 (7)
C10	0.0402 (8)	0.0329 (8)	0.0484 (9)	0.0026 (6)	0.0006 (7)	-0.0046 (7)
C11	0.0376 (8)	0.0289 (7)	0.0443 (8)	0.0061 (6)	0.0027 (7)	0.0014 (6)
C12	0.0281 (6)	0.0287 (7)	0.0311 (6)	0.0044 (5)	0.0042 (6)	0.0021 (5)
C13	0.0293 (7)	0.0311 (7)	0.0339 (7)	0.0037 (5)	0.0024 (6)	0.0058 (5)

Geometric parameters (Å, °)

C11—C2	1.7174 (15)	C4—C13	1.517 (2)
O1—C1	1.2130 (18)	C5—C6	1.370 (2)
O2—C3	1.3070 (17)	С5—Н5	0.9500
O2—H2	0.98 (3)	C6—C7	1.405 (2)
O3—C13	1.2453 (18)	С6—Н6	0.9500
O4—C13	1.2512 (18)	С7—С8	1.413 (2)
О5—НЗ	0.821 (16)	C7—C12	1.420 (2)
O5—H4	0.848 (16)	C8—C9	1.363 (2)
N1—C4	1.3270 (19)	C8—H8	0.9500
N1—C12	1.3722 (19)	C9—C10	1.415 (3)
N1—H1	0.88 (2)	С9—Н9	0.9500
C1—C2	1.447 (2)	C10—C11	1.368 (2)
C1-C3 ⁱ	1.507 (2)	C10—H10	0.9500
C2—C3	1.348 (2)	C11—C12	1.406 (2)
C4—C5	1.401 (2)	C11—H11	0.9500
C3—O2—H2	111.3 (18)	С7—С6—Н6	119.8
H3—O5—H4	108 (2)	C6—C7—C8	123.01 (14)
C4—N1—C12	122.93 (13)	C6—C7—C12	118.61 (13)

C4—N1—H1	119.1 (16)	C8—C7—C12	118.37 (14)
C12—N1—H1	117.9 (16)	C9—C8—C7	120.18 (15)
O1—C1—C2	123.09 (14)	С9—С8—Н8	119.9
O1-C1-C3 ⁱ	118.94 (13)	С7—С8—Н8	119.9
C2-C1-C3 ⁱ	117.97 (13)	C8—C9—C10	120.32 (15)
C3—C2—C1	122.39 (13)	С8—С9—Н9	119.8
C3—C2—Cl1	120.62 (11)	С10—С9—Н9	119.8
C1—C2—Cl1	116.98 (11)	C11—C10—C9	121.78 (15)
O2—C3—C2	122.30 (14)	C11—C10—H10	119.1
O2—C3—C1 ⁱ	118.13 (13)	С9—С10—Н10	119.1
C2-C3-C1 ⁱ	119.57 (12)	C10-C11-C12	118.00 (15)
N1-C4-C5	120.22 (13)	C10-C11-H11	121.0
N1-C4-C13	116.94 (13)	C12—C11—H11	121.0
C5—C4—C13	122.84 (13)	N1—C12—C11	120.39 (13)
C6—C5—C4	119.50 (14)	N1—C12—C7	118.27 (13)
С6—С5—Н5	120.2	C11—C12—C7	121.34 (14)
С4—С5—Н5	120.2	O3—C13—O4	128.04 (14)
C5—C6—C7	120.39 (14)	O3—C13—C4	117.19 (13)
С5—С6—Н6	119.8	O4—C13—C4	114.76 (13)
O1 $C1$ $C2$ $C3$	-177 42 (15)	C12 $C7$ $C9$ $C0$	-0.4(2)
01 - 01 - 02 - 03	-1/7.43(13)	$C12 - C^{2} - C^{3} - C^{3}$	-0.4(2)
$C_{3} - C_{1} - C_{2} - C_{3}$	2.8(2)	$C^{-}_{-}C$	0.2(3)
$C_{1} = C_{1} = C_{2} = C_{1}$	1.2(2)	$C_{0} = C_{10} = C_{11} = C_{12}$	0.3(3)
$C_1 = C_2 = C_1$	-1/8.00(10)	$C_{4} = C_{10} = C_{11} = C_{12}$	-1.0(3)
C1 = C2 = C3 = O2	1/7.00(13) 1.6(2)	C4 = N1 = C12 = C11	1//.18(14)
C1 - C2 - C3 - C2	-1.0(2)	$C_{4} = N_{1} = C_{12} = C_{12}$	-3.2(2)
$CI = C2 = C3 = CI^{2}$	-2.8(2)	C10 - C11 - C12 - N1	-1/9.05(14)
C12 = C1 = C1	1/6.01(10)	C_{10} C_{11} C_{12} C_{12} C_{13} C_{14}	0.7(2)
$C_{12} = N_1 = C_4 = C_3$	2.4(2) -178 24 (12)	C_{0} C_{1} C_{12} N_{1}	1.3(2) -170.66(12)
C12 - N1 - C4 - C13	-1/8.34(12)	$C_{0} = C_{1} = C_{12} = C_{11}$	-179.00(13)
N1 - C4 - C5 - C6	0.1(2)	$C_{0} - C_{1} - C_{12} - C_{11}$	-1/8.84(14)
$C_{13} - C_{4} - C_{5} - C_{6}$	-1/9.12(14)	C_{0} C_{12} C_{12} C_{12} C_{13}	0.0(2)
$C_{+} = C_{-} = C_{-$	1.0(2) -177.05(14)	101 - 04 - 013 - 03	17.0(2)
$C_{5} = C_{6} = C_{7} = C_{12}$	-1/7.93(14)	C_{3} C_{4} C_{13} C_{3} C_{4} C_{13} C_{4} C_{13} C_{4}	159.4/(14)
$C_{5} = C_{0} = C_{1} = C_{12}$	1.0(2)	131 - 04 - 013 - 04	-10.30(14)
U-U/-U0-U9	1/0.31 (10)	UJ-U4-UI3-U4	19.3 (2)

Symmetry code: (i) -x, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
N1—H1…O3 ⁱⁱ	0.88 (2)	1.91 (2)	2.7724 (17)	167 (2)
O2—H2…O5	0.98 (3)	1.59 (3)	2.5092 (17)	155 (3)
O5—H3…O4	0.82 (2)	2.01 (2)	2.8072 (19)	164 (2)
O5—H4···O4 ⁱⁱⁱ	0.85 (2)	1.82 (2)	2.6632 (19)	171 (2)

			supportin	supporting information		
C6—H6…O1 ^{iv}	0.95	2.54	3.392 (2)	150		
С6—Н6…О5 ^v	0.95	2.47	3.211 (2)	134		

Symmetry codes: (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) *x*+1, *y*, *z*+1; (v) -*x*+1, -*y*, -*z*+1.