CRYSTALLOGRAPHIC COMMUNICATIONS

Received 27 October 2017
Accepted 15 November 2017

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; nitrile; isocyanide; $\mathrm{Br} \cdots \mathrm{Br}$ contacts.

CCDC references: 1525809; 1525810
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structures of 2,6-dibromo-4-methylbenzonitrile and 2,6-dibromo-4-methylphenyl isocyanide

Wayland E. Noland,* Jessica E. Shudy, Janel L. Rieger, Zoe H. Tu and Kenneth J. Tritch

Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, USA. *Correspondence e-mail: nolan001@umn.edu

In the title crystals, $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{~N}$, which are isomorphous, the steric bulk of the methyl group causes neighboring molecules to become mutually inclined. This prevents the formation of planar or nearly planar sheets, which were observed in the trichloro and tribromo analogs. Instead of $\mathrm{CN} / \mathrm{NC} \cdots \mathrm{Br}$ contacts, tetrameric $\mathrm{Br} \cdots \mathrm{Br}$ contacts are observed. These contacts form tetragonally puckered sheets parallel to (001). The CN/NC and methyl groups are grouped at the peaks and troughs. Both molecules lie across crystallographic mirror planes; thus, the methyl H atoms are disordered over two sets of sites with equal occupancy. The title nitrile is a redetermination. The refinement converged at $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=$ 0.020, whereas the original determination [Gleason \& Britton, (1976). Cryst. Struct. Commun. 5, 229-232] had $R=0.112$.

1. Chemical context

As part of an ongoing study of cyano-halo short contacts, the para- Br atom of 2,4,6-tribromobenzonitrile (van $\mathrm{Rij} \&$ Britton, 1972) was replaced by a methyl group (Gleason \& Britton, 1976), giving 2,6-dibromo-4-methylbenzonitrile (RCN). The methyl group was bulky enough to disrupt the planar sheet structure that was observed in the tribromo nitrile. As of the most recent update of the Cambridge Structural Database (CSD; Version 5.37, Feb 2017; Groom et al., 2016), RCN remains the only example of a 2,6 dihalobenzonitrile with a methyl group at the 4-position. Most of the examples with polyatomic 4-substituents are fluorinated benzonitriles, with applications including tuning the fluoride affinity of phosphoranes (Solyntjes et al., 2016), study of magnetostructural correlation (Thomson et al., 2012), and use as metal ligands (Díaz-Álvarez et al., 2006). The chlorinated and brominated entries are either bis(carbonitriles) [(I), Fig. 1; Britton, 1981; Hirshfeld, 1984; van Rij \& Britton, 1981] or 4-carboxy analogs [(II); Britton, 2012; Noland et al., 2017]. All of these 4 -substituents have stronger interactions than a methyl group, and exhibit different packing motifs than RCN.

$X=\mathrm{F}, \mathrm{Cl}$
(I)

(II)

(III)

(IV)

Figure 1
Contextual compounds.

The comparison of corresponding nitriles and isocyanides is a rare opportunity to explore the subtle differences between molecules that are both isomeric and isoelectronic. In the 2,6dihaloaryl series, there are only three prior examples in the CSD. The trichloro and tribromo pairs [(III); Pink et al., 2000; Britton et al., 2016] are polytypic, and the pentafluoro pair [(IV), Fig. 1; Bond et al., 2001; Lentz \& Preugschat, 1993] is isomorphous. The question arose as to whether RCN and its isocyanide (2,6-dibromo-4-methylphenyl isocyanide, RNC) would be isomorphous, polytypic, or polymorphic. A single crystal of RNC and a redetermination of RCN are presented.

RCN

RNC

2. Structural commentary

RNC and the redetermination of RCN are isomorphous with the original RCN structure (Gleason \& Britton, 1976). The molecular structures of RCN (Fig. 2a) and RNC (Fig. 2b) are nearly planar. The two crystals described herein were pseudoenantiomorphic, roughly being enantiomorphs with swapped cyano C and N atoms, hence the reflected ellipsoid orientations between RCN and RNC. For RCN, the mean deviation from the plane of best fit for the benzene ring ($\mathrm{C} 1-\mathrm{C} 4$) is 0.002 (3) \AA. For RNC, this deviation ($\mathrm{C} 11-\mathrm{C} 14$) is 0.001 (2) \AA. These planes are roughly parallel to $(33 \overline{2})$.

3. Supramolecular features

The methyl group is sufficiently bulky to prevent planar ribbons or inversion dimers of the types found in the tribromo

(b)

Figure 2
The molecular structures of (a) RCN and (b) RNC, with atom labeling and displacement ellipsoids at the 50% probability level. Unlabeled atoms are generated by the $\left(-\frac{1}{2}+y, \frac{1}{2}+x, z\right)$ and $\left(\frac{1}{2}-y,-\frac{1}{2}+x, z\right)$ symmetry operations, respectively. For the methyl H atoms, only one of the two mirror-related disorder sites is shown.

Table 1
Contact geometry ($\AA,{ }^{\circ}$).

$\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}$	$\mathrm{C}-\mathrm{Br}$	$\mathrm{Br} \cdots \mathrm{Br}$	$\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}$
$\mathrm{C} 2-\mathrm{Br} 2 \cdots \mathrm{Br} 2^{\mathrm{i}}$	$1.899(5)$	$3.5575(7)$	$96.8(2)$
$\mathrm{C} 2-\mathrm{Br} 2 \cdots \mathrm{Br} 2^{\mathrm{ii}}$	$1.899(5)$	$3.5575(7)$	$176.41(7)$
$\mathrm{C} 12-\mathrm{Br} 12 \cdots \mathrm{Br} 12^{\mathrm{i}}$	$1.895(4)$	$3.575(1)$	$97.8(1)$
$\mathrm{C} 12-\mathrm{Br} 12 \cdots \mathrm{Br} 12^{\mathrm{ii}}$	$1.895(4)$	$3.575(1)$	$175.7(1)$

Symmetry codes: (i) $1-y, x, 1-z$; (ii) $y, 1-x, 1-z$.
analogs. Instead, neighboring molecules of RCN and RNC adopt a mutually inclined arrangement. The inclination between best-fit planes for adjacent molecules of RCN is 38.3 (3) ${ }^{\circ}$, and $41.0(2)^{\circ}$ for RNC. This molecular arrangement prevents $\mathrm{CN} \cdots \mathrm{Br}$ and $\mathrm{NC} \cdots \mathrm{Br}$ contacts, but is probably affected by the formation of $R_{4}^{4}(4)$ rings of $\mathrm{Br} \cdots \mathrm{Br}$ contacts (Table 1). Each Br atom participates both as a donor (narrow $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}$ angle) and an acceptor (wide $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}$ angle). Each molecule participates in two such $R_{4}^{4}(4)$ rings, forming $R_{4}^{4}(24)$ rings. The result is a tetragonally puckered sheet structure parallel to (001) (Fig. 3). This is similar to the sheet structure reported for 2,6-dibromobenzonitrile (Britton et al., 2000), although without the methyl group, the sheets were nearly planar. As future work, we plan to find whether this packing motif changes when the Br atoms are replaced with I atoms.

4. Synthesis and crystallization

The synthesis of RCN and RNC is shown in Fig. 4.
2,6-Dibromo-4-methylaniline (V) was prepared from 4-methylaniline based on the work of Olivier (1926).
$\mathbf{R C N}$ was prepared from (V) (980 mg) via the Sandmeyer cyanation procedure described by Britton et al. (2016; Fig. 4), as a \tan powder $(898 \mathrm{mg}, 88 \%)$. M.p. $434-435 \mathrm{~K}$ (lit. 429431 K ; Gleason \& Britton, 1976); $R_{\mathrm{f}}=0.49\left(\mathrm{SiO}_{2}\right.$ in $2: 1$ hexane-ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.490$ $(s, 2 \mathrm{H}, \mathrm{H} 3 A), 2.380(s, 3 \mathrm{H}, \mathrm{H} 6 A-C) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 147.1(\mathrm{C} 4), 133.2(\mathrm{C} 3), 126.6(\mathrm{C} 2), 116.6(\mathrm{C} 1$ or C 5$)$, 116.1 (C5 or C1), 21.7 (C6); IR (KBr, cm^{-1}) 3062, 2231, 1582,

Figure 3
The sheet structure of RNC, viewed along [0 $\overline{1} 3]$. The $\mathrm{Br} \cdots \mathrm{Br}$ contacts are represented as pink dotted lines.

Table 2
Experimental details.

	RCN	RNC
Crystal data		
Chemical formula	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{~N}$	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{~N}$
$M_{\text {r }}$	274.95	274.95
Crystal system, space group	Tetragonal, $P \overline{4} 2{ }_{1} m$	Tetragonal, $P \overline{4} 2{ }_{1} m$
Temperature (K)	123	173
a, c (A$)$	14.6731 (5), 3.9727 (1)	14.690 (5), 4.0703 (15)
$V\left(\AA^{3}\right)$	855.32 (6)	878.3 (7)
Z	4	4
Radiation type	$\mathrm{Cu} K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	11.46	9.16
Crystal size (mm)	$0.50 \times 0.07 \times 0.04$	$0.40 \times 0.14 \times 0.08$
Data collection		
Diffractometer	Bruker Venture PHOTON-II	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 1996)	Multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}, T_{\text {max }}$	0.314, 0.754	0.255, 0.746
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	8444, 904, 902	10248, 1074, 1001
$R_{\text {int }}$	0.039	0.045
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.624	0.652
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.020, 0.057, 1.27	0.023, 0.051, 1.14
No. of reflections	904	1074
No. of parameters	60	59
H -atom treatment	H -atom parameters constrained	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.37,-0.32$	$0.30,-0.51$
Absolute structure	Flack x determined using 348 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)	Flack x determined using 381 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)
Absolute structure parameter	-0.02 (3)	-0.024 (13)

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

1451, 1197, 857, 747; MS (EI, m / z) $[M]^{+}$calculated for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{~N} 274.8763$, found 274.8766 .

2,6-Dibromo-4-methylformanilide (VI) was prepared from (V) (997 mg) via the formylation procedure described by Britton et al. (2016), performed at 60% scale, with dichloromethane instead of tetrahydrofuran. The filter cake was recrystallized from toluene, giving white needles $(1.00 \mathrm{~g}$, $91 \%)$. M.p. $505-506 \mathrm{~K} ; R_{\mathrm{f}}=0.27\left(\mathrm{SiO}_{2}\right.$ in $2: 1$ hexane-ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} ; 2$ conformers obs.) δ $9.993(s, 1 \mathrm{H}$; major), $9.743(d, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}$; minor), $8.270(s$, 1 H ; major), 8.021 ($d, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}$; minor), 7.623 ($s, 2 \mathrm{H}$; minor), 7.571 ($s, 2 \mathrm{H}$; major), $2.303\left(s, 3 \mathrm{H}\right.$; both); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} ; 2$ conformers obs.) $\delta 164.5$ (1 C ; minor), 159.6 (1C; major), 140.9 (1 C ; minor), 140.7 (1 C ; major), 133.0 (2C; minor), 132.6 (2C; major), 131.9 (1C; minor), 131.8 (1C; major), 123.3 (2C; minor), 123.2 (2C; major), 19.8 (1C; both); IR (KBr, cm^{-1}) 3247, 2927, 1656, 1511, 1152, 1060, 840, 747, 684; MS (ESI, m / z) $[M-H]^{-}$calculated for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{NO}$ 289.8822, found 289.8814.

RNC was prepared from (VI) (254 mg) via the amide dehydration procedure described by Britton et al. (2016), performed at 15% scale, as a beige powder ($190 \mathrm{mg}, 81 \%$). M.p. $401-402 \mathrm{~K} ; R_{\mathrm{f}}=0.53\left(\mathrm{SiO}_{2}\right.$ in 3:1 hexane-ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.456(s, 2 \mathrm{H}, \mathrm{H} 13), 2.346(s, 3 \mathrm{H}$, H16A-C); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 172.7$ (C15), 142.9 (C14), 133.2 (C13), 126.0 (C11), 120.8 (C12), 21.2 (C16); IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3061,2922,2850,2118,1654,1586,1451,1384$,

1064, 857, 748, 701; MS (EI, m/z) [M] calculated for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{~N} 274.8783$, found 274.8784.

Figure 4
The synthesis of RCN and RNC.

Crystallization: RCN and RNC crystals were grown by slow evaporation of dichloromethane solutions under ambient conditions. Crystals were collected by suction filtration when a small portion of the original solvent remained, and then they were washed with pentane.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. A direct-methods solution was calculated, followed by full-matrix least squares/differenceFourier cycles. All H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95$ or $0.98 \AA)$ and refined as riding atoms with $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\text {eq }}(\mathrm{C})$ for aryl H atoms and $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms. Because the molecules lie across mirror planes, the methyl H atoms are disordered across two sets of sites with $1: 1$ occupancy.

Acknowledgements

The authors thank Victor G. Young, Jr. (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystallographic determination, the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this project, and Doyle Britton (deceased July 7, 2015) for providing the basis of this project. This work was taken in large part from the PhD thesis of KJT (Tritch, 2017).

References

Bond, A. D., Davies, J. E., Griffiths, J. \& Rawson, J. M. (2001). Acta Cryst. E57, o231-o233.
Britton, D. (1981). Cryst. Struct. Commun. 10, 1501-1508.

Britton, D. (2012). J. Chem. Crystallogr. 42, 851-855.
Britton, D., Noland, W. E. \& Pinnow, M. J. (2000). Acta Cryst. B56, 822-827.
Britton, D., Noland, W. E. \& Tritch, K. J. (2016). Acta Cryst. E72, 178183.

Bruker (2012). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
Díaz-Álvarez, A. E., Crochet, P., Zablocka, M., Cadierno, V., Duhayon, C., Gimeno, J. \& Majoral, J.-P. (2006). New J. Chem. 30, 1295-1306.
Gleason, W. B. \& Britton, D. (1976). Cryst. Struct. Commun. 5, 229232.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hirshfeld, F. L. (1984). Acta Cryst. B40, 484-492.
Lentz, D. \& Preugschat, D. (1993). Acta Cryst. C49, 52-54.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Noland, W. E., Rieger, J. L., Tu, Z. H. \& Tritch, K. J. (2017). Acta Cryst. E73, 1743-1746.
Olivier, S. C. J. (1926). Recl Trav. Chim. Pays Bas, 45, 296-306.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Pink, M., Britton, D., Noland, W. E. \& Pinnow, M. J. (2000). Acta Cryst. C56, 1271-1273.
Rij, C. van \& Britton, D. (1981). Cryst. Struct. Commun. 10, 175178.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Solyntjes, S., Neumann, B., Stammler, H.-G., Ignat'ev, N. \& Hoge, B. (2016). Eur. J. Inorg. Chem. 2016, 3999-4010.

Thomson, R. I., Pask, C. M., Lloyd, G. O., Mito, M. \& Rawson, J. M. (2012). Chem. Eur. J. 18, 8629-8633.

Tritch, K. J. (2017). PhD thesis, University of Minnesota, Minneapolis, MN, USA.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2017). E73, 1913-1916 [https://doi.org/10.1107/S2056989017016395]

Crystal structures of 2,6-dibromo-4-methylbenzonitrile and 2,6-dibromo-4methylphenyl isocyanide

Wayland E. Noland, Jessica E. Shudy, Janel L. Rieger, Zoe H. Tu and Kenneth J. Tritch

Computing details

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

3,5-Dibromo-4-methylbenzonitrile (RCN)

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{~N}$
$M_{r}=274.95$
Tetragonal, $P \overline{4} 2_{1} m$
$a=14.6731$ (5) \AA
$c=3.9727$ (1) \AA
$V=855.32(6) \AA^{3}$
$Z=4$
$F(000)=520$
$D_{\mathrm{x}}=2.135 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker Venture PHOTON-II diffractometer
Radiation source: ImuS micro-focus φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.314, T_{\max }=0.754$
8444 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.057$
$S=1.27$
904 reflections
60 parameters
0 restraints
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

Melting point: 434 K
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 2980 reflections
$\theta=4.3-74.0^{\circ}$
$\mu=11.46 \mathrm{~mm}^{-1}$
$T=123 \mathrm{~K}$
Needle, colourless
$0.50 \times 0.07 \times 0.04 \mathrm{~mm}$

904 independent reflections
902 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=74.2^{\circ}, \theta_{\text {min }}=6.0^{\circ}$
$h=-18 \rightarrow 18$
$k=-17 \rightarrow 17$
$l=-4 \rightarrow 4$

```
\(w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+2.1952 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }=0.001\)
\(\Delta \rho_{\text {max }}=0.37 \mathrm{e} \AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.32\) e \(\AA^{-3}\)
Extinction correction: SHELXL2014
    (Sheldrick, 2015b),
    \(\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}\)
Extinction coefficient: 0.0055 (4)
```

> Absolute structure: Flack x determined using 348 quotients $\left[\left(I^{+}\right)-\left(I^{\prime}\right)\right] /\left[\left(I^{+}\right)+\left(I^{\prime}\right)\right]$ (Parsons et al., $2013)$

Absolute structure parameter: - 0.02 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
C1	$0.2722(3)$	$0.7722(3)$	$0.357(2)$	$0.0156(13)$	
C2	$0.2985(3)$	$0.6837(4)$	$0.2695(13)$	$0.0177(10)$	
Br2	$0.41762(3)$	$0.64354(3)$	$0.38319(19)$	$0.0222(2)$	
C3	$0.2404(3)$	$0.6240(3)$	$0.1067(15)$	$0.0185(9)$	
H3A	0.2605	0.5645	0.0486	0.022^{*}	
C4	$0.1517(3)$	$0.6517(3)$	$0.0283(18)$	$0.0189(15)$	
C5	$0.3328(4)$	$0.8328(4)$	$0.532(2)$	$0.0223(17)$	
N1	$0.3806(3)$	$0.8806(3)$	$0.676(2)$	$0.0309(17)$	
C6	$0.0866(3)$	$0.5866(3)$	$-0.138(2)$	$0.0212(13)$	0.5
H6A	0.0306	0.6190	-0.1991	0.032^{*}	0.5
H6B	0.0720	0.5369	0.0175	0.032^{*}	0.5
H6C	0.1148	0.5615	-0.3417	0.032^{*}	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0183(18)$	$0.0183(18)$	$0.010(3)$	$-0.003(2)$	$0.000(2)$	$0.000(2)$
C 2	$0.015(2)$	$0.019(2)$	$0.019(3)$	$0.0001(19)$	$0.0034(19)$	$0.0025(19)$
Br 2	$0.0147(3)$	$0.0236(3)$	$0.0282(3)$	$0.00002(17)$	$-0.0017(2)$	$0.0042(3)$
C3	$0.018(2)$	$0.015(2)$	$0.022(2)$	$-0.0001(17)$	$0.002(3)$	$-0.003(2)$
C4	$0.018(2)$	$0.018(2)$	$0.020(4)$	$-0.005(3)$	$0.0031(18)$	$0.0031(18)$
C5	$0.022(2)$	$0.022(2)$	$0.024(4)$	$-0.002(3)$	$0.000(2)$	$0.000(2)$
N1	$0.031(2)$	$0.031(2)$	$0.030(4)$	$-0.009(3)$	$-0.003(2)$	$-0.003(2)$
C6	$0.023(2)$	$0.023(2)$	$0.017(3)$	$-0.005(3)$	$0.000(2)$	$0.000(2)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 2^{\mathrm{i}}$	$1.399(6)$	$\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}$	$1.398(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.399(6)$	$\mathrm{C} 4-\mathrm{C} 6$	$1.505(10)$
$\mathrm{C} 1-\mathrm{C} 5$	$1.437(10)$	$\mathrm{C} 5-\mathrm{N} 1$	$1.145(11)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.383(8)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9800
$\mathrm{C} 2-\mathrm{Br} 2$	$1.899(5)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9800
$\mathrm{C} 3-\mathrm{C} 4$	$1.398(6)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	0.9800
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9500		

$\mathrm{C} 2 \mathrm{i}-\mathrm{C} 1-\mathrm{C} 2$	$116.8(7)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	$120.3(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	$121.6(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	$120.3(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	$121.6(3)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 1$	$179.0(9)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$122.3(5)$	$\mathrm{C} 4-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br} 2$	$118.8(4)$	$\mathrm{C} 4-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 2$	$118.9(4)$	$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.6(5)$	$\mathrm{C} 4-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.2	$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.2	$\mathrm{H} 6 \mathrm{~B}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3$	$119.5(6)$		
		$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.7(9)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$178.5(5)$	
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3{ }^{\mathrm{i}}$	$1.9(11)$	
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 2$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	$-178.0(6)$	
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 2$	$178.7(7)$	$-179.7(4)$	$-0.5(9)$

Symmetry code: (i) $y-1 / 2, x+1 / 2, z$.
2,6-Dibromo-4-methylphenyl isocyanide (RNC)

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{~N}$

$M_{r}=274.95$
Tetragonal, $P \overline{4} 2{ }_{1} m$
$a=14.690$ (5) \AA
$c=4.0703(15) \AA$
$V=878.3(7) \AA^{3}$
$Z=4$
$F(000)=520$
$D_{\mathrm{x}}=2.079 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: sealed tube
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.255, T_{\text {max }}=0.746$
10248 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.051$
$S=1.14$
1074 reflections
59 parameters
0 restraints
Hydrogen site location: inferred from
neighbouring sites

Melting point: 401 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2995 reflections
$\theta=2.8-26.9^{\circ}$
$\mu=9.16 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Needle, colourless
$0.40 \times 0.14 \times 0.08 \mathrm{~mm}$

1074 independent reflections
1001 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=27.6^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-18 \rightarrow 19$
$k=-19 \rightarrow 19$
$l=-5 \rightarrow 5$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0267 P)^{2}+0.0073 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e} \AA^{-3}$
Absolute structure: Flack x determined using 381 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)

Absolute structure parameter: - 0.024 (13)

supporting information

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$	Occ. (<1)
Br12	$0.64344(3)$	$0.58324(2)$	$0.38265(14)$	$0.03268(14)$	
N11	$0.8281(2)$	$0.6719(2)$	$0.5307(11)$	$0.0278(11)$	
C11	$0.7708(2)$	$0.7292(2)$	$0.3538(15)$	$0.0228(11)$	
C12	$0.6845(3)$	$0.7013(3)$	$0.2671(9)$	$0.0245(8)$	
C13	$0.6256(2)$	$0.7587(2)$	$0.0981(10)$	$0.0243(8)$	
H13A	0.5664	0.7382	0.0402	0.029^{*}	
C14	$0.6535(3)$	$0.8465(3)$	$0.0132(13)$	$0.0237(11)$	
C15	$0.8753(3)$	$0.6247(3)$	$0.6829(18)$	$0.0474(18)$	
C16	$0.5894(3)$	$0.9106(3)$	$-0.1624(14)$	$0.0328(12)$	0.5
H16A	0.5318	0.8793	-0.2065	0.049^{*}	0.5
H16B	0.6169	0.9300	-0.3703	0.049^{*}	0.5
H16C	0.5781	0.9640	-0.0241	0.049^{*}	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br12	$0.0337(2)$	$0.02125(19)$	$0.0431(2)$	$-0.00062(15)$	$0.0071(2)$	$0.0013(2)$
N11	$0.0268(15)$	$0.0268(15)$	$0.030(3)$	$0.009(2)$	$0.0005(13)$	$-0.0005(13)$
C11	$0.0238(15)$	$0.0238(15)$	$0.021(3)$	$0.0067(19)$	$0.0031(16)$	$-0.0031(16)$
C12	$0.0267(19)$	$0.0202(18)$	$0.027(2)$	$0.0008(16)$	$0.0080(16)$	$-0.0028(15)$
C13	$0.0214(17)$	$0.0240(17)$	$0.0273(19)$	$0.0001(14)$	$0.0017(18)$	$-0.0043(19)$
C14	$0.0245(16)$	$0.0245(16)$	$0.022(3)$	$0.007(2)$	$0.0038(14)$	$-0.0038(14)$
C15	$0.048(2)$	$0.048(2)$	$0.046(5)$	$0.016(3)$	$-0.002(2)$	$0.002(2)$
C16	$0.0329(18)$	$0.0329(18)$	$0.033(3)$	$0.009(3)$	$-0.0013(18)$	$0.0013(18)$

Geometric parameters $\left({ }^{A},{ }^{o}\right)$

$\mathrm{Br} 12-\mathrm{C} 12$	$1.896(4)$	$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	0.9500
$\mathrm{~N} 11-\mathrm{C} 15$	$1.161(8)$	$\mathrm{C} 14-\mathrm{C} 13^{\mathrm{i}}$	$1.396(4)$
$\mathrm{N} 11-\mathrm{C} 11$	$1.391(7)$	$\mathrm{C} 14-\mathrm{C} 16$	$1.511(7)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.379(5)$	$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	0.9800
$\mathrm{C} 11-\mathrm{C} 12^{\mathrm{i}}$	$1.379(5)$	$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	0.9800
$\mathrm{C} 12-\mathrm{C} 13$	$1.389(6)$	$\mathrm{C} 16-\mathrm{H} 16 \mathrm{C}$	0.9800
$\mathrm{C} 13-\mathrm{C} 14$	$1.396(4)$		
$\mathrm{C} 15-\mathrm{N} 11-\mathrm{C} 11$	$178.9(6)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 13^{\mathrm{i}}$	$118.7(5)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 12^{\mathrm{i}}$	$118.7(5)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 16$	$120.6(2)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{N} 11$	$120.6(3)$	$\mathrm{C} 13^{\mathrm{i}}-\mathrm{C} 14-\mathrm{C} 16$	$120.6(2)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{N} 11$	$120.6(3)$	$\mathrm{C} 14-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	109.5

$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$121.3(4)$	$\mathrm{C} 14-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	109.5
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{Br} 12$	$120.0(3)$	$\mathrm{H} 16 \mathrm{~A}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	109.5
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{Br} 12$	$118.7(3)$	$\mathrm{C} 14-\mathrm{C} 16-\mathrm{H} 16 \mathrm{C}$	109.5
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$120.0(4)$	$\mathrm{H} 16 \mathrm{~A}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{C}$	109.5
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	$\mathrm{H} 16 \mathrm{~B}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{C}$	109.5	
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$			
	120.0	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-0.1(6)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-0.5(8)$	$\mathrm{Br} 12-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$179.2(3)$
$\mathrm{N} 11-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$178.2(4)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 13^{\mathrm{i}}$	$0.7(7)$
$\mathrm{C} 12 \mathrm{C} 11-\mathrm{C} 12-\mathrm{Br} 12$	$-179.8(3)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 16$	$-178.3(4)$
$\mathrm{N} 11-\mathrm{C} 11-\mathrm{C} 12-\mathrm{Br} 12$	$-1.1(7)$		

Symmetry code: (i) $-y+3 / 2,-x+3 / 2, z$.

