

Received 1 July 2017 Accepted 21 August 2017

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; manganese; pyridine *N*-oxide ligand.

CCDC references: 1570001; 1570000; 1569999

Supporting information: this article has supporting information at journals.iucr.org/e

Manganese(II) chloride complexes with pyridine N-oxide (PNO) derivatives and their solid-state structures

Linda Kang,^a Genevieve Lynch,^{b*} Will Lynch^a and Clifford Padgett^a

^aDepartment of Chemistry and Physics, Armstrong State University, Savannah, Georgia 31419, USA, and ^bSt Vincent's Academy, Savannah, Georgia 31401, USA. *Correspondence e-mail: will.lynch@armstrong.edu

Three manganese(II) N-oxide complexes have been synthesized from the reaction of manganese(II) chloride with either pyridine N-oxide (PNO), 2-methylpyridine N-oxide (2MePNO) or 3-methylpyridine N-oxide (3MePNO). The compounds were synthesized from methanolic solutions of MnCl₂·4H₂O and the respective N-oxide, and subsequently characterized structurally by single-crystal X-ray diffraction. The compounds are *catena*-poly[[aquachloridomanganese(II)]-di-µchlorido-[aquachloridomanganese(II)]-bis(μ -pyridine N-oxide)], [MnCl₂(C₅H₅-NO)(H₂O)]_n or $[MnCl_2(PNO)(H_2O)]_n$ (I), catena-poly[[aquachloridomanganese(II)]-di- μ -chlorido-[aquachloridomanganese(II)]-bis(μ -2-methylpyridine *N*-oxide)], $[MnCl_2(C_6H_7NO)(H_2O)]_n$ or $[MnCl_2(2MePNO)(H_2O)]_n$ (II), and bis(µ-3-methylpyridine N-oxide)bis[diaquadichloridomanganese(II)], [Mn₂Cl₄- $(C_6H_7NO)_2(H_2O)_4$] or $[MnCl_2(3MePNO)(H_2O)_2]_2$ (III). The Mn^{II} atoms are found in pseudo-octahedral environments for each of the three complexes. Compound I forms a coordination polymer with alternating pairs of bridging *N*-oxide and chloride ligands. The coordination environment is defined by two PNO bridging O atoms, two chloride bridging atoms, a terminal chloride, and a terminal water. Compound II also forms a coordination polymer with a similar metal cation; however, the coordination polymer is bridged between Mn^{II} atoms by both a single chloride and 2MePNO. The distorted octahedrally coordinated metal cation is defined by two bridging 2MePNO trans to each other, two chlorides, also trans to one another in the equatorial (polymeric) plane, and a terminal chloride and terminal water. Finally, complex III forms a dimer with two bridging 3MePNOs, two terminal chlorides and two terminal waters forming the six-coordinate metal environment. All three compounds exhibit hydrogen bonding between the coordinating water(s) and terminal chlorides.

1. Chemical context

The utility of aromatic *N*-oxides to facilitate organic oxotransfer reactions has been well documented over the years (see, for example, Eppenson, 2003). Many of these reactions are actually catalyzed by transition metal interactions with the *N*-oxide ligands (see, for example, Moustafa *et al.*, 2014). Furthermore, *N*-oxide metal interactions have recently attracted much interest in a variety of other areas, including metal organic frameworks (MOFs) (Hu *et al.*, 2014). These MOFs synthesized using *N*-oxide derivatives take advantage of the multiple binding modes of the sp^3 O atom and the ease of modification of the organic backbone of the *N*-oxide. The utility of the MOFs has been examined in areas such as catalysis (Liu *et al.*, 2014) and sensors (Hu *et al.*, 2014). The constructs extend to the supramolecular study of coordination polymers that have been found in this type of complex because of their incredible versatility as ligands (Sarma & Baruah, 2011).

In this context, we report the synthesis and solid-state structures of three pyridine *N*-oxide manganese(II) complexes. Notably, we used the ligands pyridine *N*-oxide, 2-methylpyridine *N*-oxide, and 3-methylpyridine *N*-oxide to study the impact of substitution of the pyridine on the two- and three-dimensional solid-state structures. The pyridine *N*-oxide (PNO) and 2-methylpyridine *N*-oxide (2MePNO) complexes form coordination polymers with subtle differences. The 3-methylpyridine *N*-oxide (3MePNO), however, forms a dimeric complex.

2. Structural commentary

Complex I exhibits the repeating motif of $[MnCl_2-(PNO)(H_2O)]_n$ and crystallizes in the triclinic space group $P\overline{1}$, containing two formula units per unit cell (Fig. 1). The coordination sphere around each Mn^{II} atom is a distorted octahedron, with the equatorial atoms being two bridging chlorides alternating with two bridging pyridine *N*-oxide (PNO) molecules (Fig. 2). In the equatorial plane, the bridging chlorides and the bridging pyridine *N*-oxides are *cis* to one another. The axial positions are a terminal chloride and a water molecule. The Mn1–O1 bond length is 2.177 (3) Å, whereas the Mn1–O1^{vii} bond length is slightly longer at 2.182 (3) Å for the bridging PNO [symmetry code (vii) -x + 1, -y + 1, -z + 1]. The bridging chlorides are found to have

Figure 1

A view of compound I, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y+1, -z + 1]

Mn-Cl2 distances of 2.5240 (19) and 2.532 (19) Å, respectively. Axially, the water is located 2.250 (3) Å from the Mn^{II} cation and the terminal chloride is at 2.479 (2) Å. The bond angles around the equator are severely compressed at the two bridging *N*-oxides, with the O1-Mn1-O1ⁱ angle observed at 72.03 (10)°. The remaining three angles are found to all be similar at 95.58 (7) (Cl2-Mn1-Cl2ⁱ), 96.80 (8) (O1-Mn1-Cl2), and 94.69 (9)° (O1^{vii}-Mn1-Cl2^{vii}). Axially, the bond angle from the water through manganese(II) and the terminal chloride (O2-Mn1-Cl1) is nearly linear at 177.36 (8)°.

Complex II, $[MnCl_2(2MePNO)(H_2O)]_n$, possesses a metal environment similar to complex I and crystallizes in the orthorhombic space group $P2_12_12_1$. The major difference in structure II is in the bridging network, where the chlorides and *N*-oxides are *trans* to one another rather than *cis* as in I (Figs. 3 and 4). The pseudo-octahedral environment includes an Mn1-Cl1 bond length of 2.516 (4) Å and an Mn1-O1 (*N*-

01

CI1

C1

N1

C5

CI2

CI1ⁱⁱ

01

C3

C2

C4

A view of compound **II**, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x - 1, $y + \frac{3}{2}$, $-z + \frac{3}{2}$; (ii) -x, $y + \frac{3}{2}$, $-z + \frac{3}{2}$.]

research communications

Table 1 Hydrogen-bond g	eometry (Å, °) for I .		
$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	

Symmetry	codes: ((i) $-r$	$-\nu \pm 1$	-7 ± 1.1	(ii) r v -	1 7
Symmetry	Coucs. ($1) - \lambda$	$-y \pm 1$,	-4 + 1, 1	(n) <i>x</i> , <i>y</i> =	• 1, 4.

0.83(2)

0.82(2)

 $O2-H2A\cdots Cl1^{i}$

 $O2-H2B\cdots Cl1^{ii}$

oxide) bond length of 2.170 (6) Å, with a Cl1-Mn1-O1 bond angle of $84.37 (19)^\circ$. The bond angle across the Cl atoms, Cl1-Mn1-Cl1^{viii}, is 174.02 (5)° and across the O atoms of 2MePNO, O1-Mn1-O1^{ix}, is 173.12 (6)°; a slight compression is observed across the bridges [symmetry codes: (viii) -x - 1, $y + \frac{3}{2}$, $-z + \frac{3}{2}$, (ix) -x, $y + \frac{3}{2}$, $-z + \frac{3}{2}$]. The axial (nonbridging) Mn1-Cl2 bond length is 2.503 (4) Å, while the axial water is found at a distance of 2.268 (6) Å from the metal center.

2.53 (2)

2.52(3)

3.348 (4)

3.232(4)

The dimeric complex III, $[MnCl_2(3MePNO)(OH_2)_2]_2$, crystallizes in the triclinic $P\overline{1}$ space group, with the inversion center sitting in the center of the dimer (Fig. 5). The 3-methyl derivative does not form a coordination polymer but discrete dimeric molecules. The structure possesses two bridging 3MePNO ligands, four terminal chlorides, and four terminal waters. Two waters and two chlorides are in the equatorial plane coincident with the N-oxide bridge, and the other equivalents are axial in the pseudo-octahedral geometry around the Mn^{II} atoms. The Mn1-Cl1 and Mn1-Cl2 bond lengths are 2.4601 (5) and 2.4903 (19) Å, respectively, with a Cl1-Mn1-Cl2 bond angle of 98.32 (4)°. The bridging *N*-oxide is at a distance of 2.1791 (18) Å from Mn1–O1, with an $O1-Mn1-O1^{vii}$ bond angle of 71.86 (7)° [symmetry code: (vii) -x + 1, -y + 1, -z + 1]. The Mn1-O2(water) and Mn1-O3(water) bond lengths are 2.245 (2) and 2.1696 (17) Å, respectively, with an O2-Mn1-O3 bond angle of $85.83 (7)^{\circ}$.

The formation of the polymeric structure in I and II versus the dimer in III is likely due to the steric influence of the methyl group in the 3-position in 3MePNO and the core constituents. One can define the Mn₂ 'N-oxide diamond core' in each of the structures as follows: I is alternating Mn₂Cl₂ and Mn₂O₂ (oxygen bridges via PNO) cores, II is Mn₂ClO (oxygen bridge via 2MePNO) and III Mn₂O₂ (oxygen bridges via 3MePNO). In I, the unsubstituted pyridine N-oxide group

Table 2 Hydrogen-bond geometry (Å, °) for II.

 $D - H \cdot \cdot \cdot A$

168 (4)

147(4)

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} O2 - H2A \cdots Cl2^{iii} \\ O2 - H2B \cdots Cl2^{iv} \end{array}$	0.90 0.89	2.49 2.26	3.205 (7) 3.145 (7)	137 169

Symmetry codes: (iii) x, y + 1, z; (iv) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

does not generate as much steric strain, allowing for polymer formation. In **II**, the core is formed to permit alternating up and down pyridine N-oxides with the 2-methyl substituents also facing in opposite directions. This limits the steric interactions and the N-oxide slightly tilts out of the polymeric core line to allow the methyl group to effect less steric interactions. In III, the methyl group appears to inhibit polymer formation due to the position of this bulky substituent. Subsequently, when the polymer is not formed, an extra water molecule is required to fill the sixth coordination site on the metal cation occupied by a bridging atom in I and II.

3. Supramolecular features

The packing of I forms a coordination polymer of alternating bis-bridges of two chlorides and two pyridine N-oxides in the *a*-axis direction (Fig. 2). The aromatic rings stack at 6.860 (7) Å, outside of π -stacking distance due to the alternating chloride and pyridine N-oxide bridges. The single water molecule is locked into weak hydrogen-bonding interactions in two different modes. One hydrogen-bond interaction (H2A) is located down the bridge to the terminal chloride (Cl1), on the adjacent Mn^{II} atom, and the O2-H2A···Cl1ⁱ distance is 2.53 (2) Å. The other hydrogen-bond interaction (H2B) is across to the next polymeric chain with Cl1; the O2- $H2B \cdot \cdot \cdot Cl1^{ii}$ distance is 2.52 (3) Å (see Table 1 for hydrogenbond details and symmetry codes).

Complex II packs as a coordination polymer in the adirection similar to I (Fig. 4). However, as I has alternating pyridine N-oxide and chloride bridges (placing these ligands cis to one another), II has a single 2-methylpyridine N-oxide

Figure 4

Crystal packing diagram of compound \mathbf{II} , viewed along the *b* axis. H atoms have been omitted for clarity.

A view of the molecular structure of compound III, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x - 1, -y + 1, -z + 1.]

Table 3Hydrogen-bond geometry (Å, $^{\circ}$) for III.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O2 - H2B \cdots Cl1^{v} \\ O3 - H3A \cdots Cl2^{vi} \end{array}$	0.80 (2)	2.38 (2)	3.147 (3)	161 (2)
	0.86 (2)	2.28 (2)	3.120 (2)	167 (2)

Symmetry codes: (v) -x, -y + 1, -z + 1; (vi) -x, -y, -z + 1.

and a single chloride in each bridge. Similar to **I**, the hydrogenbonding interactions are to a terminal chloride (Cl2) on the adjacent Mn^{II} atom. There are two observed interactions, *viz*. $O2-H2A\cdots Cl2^{iii}$ with a distance of 2.49 Å and $O2-H2B\cdots Cl2^{iv}$ with a distance of 2.26 Å (see Table 2 for hydrogen-bond details and symmetry codes). The $H2A\cdots Cl2$ interaction is in the coordination polymer and the $H2B\cdots Cl2$ interaction is across the polymeric chains. Similar to **I**, the aromatic rings stack too far apart to be interacting in the *a* direction, at a distance of 6.862 (11) Å.

As noted above, compound III does not form a coordination polymer but is observed in the solid state as a dimer with two water molecules for each Mn^{II} atom (*versus* one aqua equivalent in I and II) (Fig. 5). The aromatic inter-centroid distance is longer than in the other two molecules, at 7.902 (7) Å. In compound III, a single water molecule

 Table 4

 Experimental details

hydrogen bonds from the equatorial plane of one dimer to an axial chloride on another dimer. Conversely, the axial water hydrogen bonds to an equatorial chloride on a different dimer. These interactions are found to be $O2-H2B\cdots Cl1^{\nu}$ [distance 2.38 (2) Å] and $O3-H3A\cdots Cl2^{\nu i}$ [distance 2.28 (2) Å] (see Table 3 for hydrogen-bond details and symmetry codes).

4. Database survey

A search in the Cambridge Structural Database (CSD; Groom *et al.*, 2016) for aromatic *N*-oxides bound to manganese returned 87 entries. Similar *N*-oxides with simple counter-ions in the list include 4,4'-dipyridine *N*,*N*'-dioxide [FIVHAU (Ma *et al.*, 2005) and XOHQUH (Jiu *et al.*, 2008)], 1,2-bis(4-pyridyl)ethane *N*,*N*'-dioxide (TOJDAY and TOJDIG; Sun *et al.*, 2008), and 1,3-bis(4-pyridyl)propane *N*,*N*'-dioxide (Zhang *et al.*, 2003). Similarly, two derivatives of 3,5-dimethylpyridine *N*-oxide are found in the CSD (GIWQAF and GIWQEJ; Shi *et al.*, 2007)

5. Synthesis and crystallization

The title compounds were all synthesized in a similar manner. 0.200 g of $MnCl_2$ ·4H₂O (1.01 mmol) was dissolved in a

Experimental details.			
	I	П	Ш
Crystal data			
Chemical formula	$[MnCl_2(C_5H_5NO)(H_2O)]$	$[MnCl_2(C_6H_7NO)(H_2O)]$	$[Mn_2Cl_4(C_6H_7NO)_2(H_2O)_4]$
M _r	238.96	252.98	541.99
Crystal system, space group	Triclinic, P1	Orthorhombic, $P2_12_12_1$	Triclinic, P1
Temperature (K)	173	173	173
a, b, c (Å)	6.897 (2), 7.050 (1), 9.853 (3)	6.862 (2), 7.491 (2), 18.047 (5)	7.902 (7), 8.026 (7), 9.893 (8)
$lpha,eta,\gamma(^\circ)$	101.042 (7), 109.559 (10), 94.196 (6)	90, 90, 90	98.033 (1), 99.272 (7), 113.634 (11)
$V(\text{\AA}^3)$	438.2 (2)	927.7 (4)	552.6 (8)
Z	2	4	1
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	2.06	1.96	1.65
Crystal size (mm)	$0.29 \times 0.18 \times 0.13$	$0.2 \times 0.2 \times 0.1$	$0.85\times0.50\times0.28$
Data collection			
Diffractometer	Rigaku XtalLab mini CCD	Rigaku XtalLab mini CCD	Rigaku XtalLab mini CCD
Absorption correction	Multi-scan (<i>REQAB</i> ; Rigaku, 1998)	Multi-scan (<i>REQAB</i> ; Rigaku, 1998)	Multi-scan (<i>REQAB</i> ; Rigaku, 1998)
T_{\min}, T_{\max}	0.613, 0.765	0.563, 0.737	0.482, 0.630
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4655, 2004, 1770	8438, 2109, 1800	5837, 2553, 2375
R _{int}	0.040	0.051	0.072
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.651	0.649	0.652
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.080, 1.14	0.051, 0.100, 1.12	0.031, 0.087, 1.07
No. of reflections	2004	2109	2553
No. of parameters	108	112	135
No. of restraints	2	0	4
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.40, -0.44	0.95, -0.73	0.56, -0.41
Absolute structure	_	Refined as an inversion twin	_
Absolute structure parameter	-	0.44 (8)	-

Computer programs: CrystalClearSM Expert (Rigaku, 2011), SHELXT (Sheldrick, 2015a), SHELXL2017 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

research communications

minimal amount of methanol, approximately 10 ml. Two stoichiometric equivalents of the appropriate *N*-oxide were also dissolved in approximately 20 ml of methanol (PNO: 0.191 g, 2.02 mmol; 2MePNO: 0.220 g, 2.02 mmol; 3MePNO: 0.220 g, 2.02 mmol). The solutions were stirred for approximately 10 min; during each reaction, a brown solution was observed upon mixing. The reaction solution was then allowed to sit and brown crystals were grown by slow evaporation in the near quantitative yields reported below based on the manganese(II) chloride starting material. The FT–IR spectra of the complexes all exhibit broad absorbances in the 3400–3000 cm⁻¹ region due to the ν (O–H) of the coordinating water molecules, as well as the characteristic ν (N–O) of the *N*-oxide pyridyl moiety in the 1250–1150 cm⁻¹ region noted previously (Mautner *et al.*, 2017).

Compound I, Mn(PNO)Cl₂·H₂O, yield 0.215 g (90.3%). Selected IR bands (ATR, FT–IR, KBr composite, cm⁻¹): 3364 (*m*, *br*), 3235 (*m*, *br*), 3068 (*m*, *br*), 1660 (*w*), 1471 (*w*), 1214 (*m*), 1205 (*m*), 1023 (*s*), 831 (*s*), 780 (*s*), 674 (*s*), 556 (*s*). Elemental analysis for MnCl₂C₅H₇NO₂, calculated (%): C 25.13, H 2.95, N 5.86; found (%): C 25.22, H 2.96, N 5.87.

Compound **II**, Mn(2MePNO)Cl₂·H₂O, yield 0.227 g (87.9%). Selected IR bands (ATR, FT–IR, KBr composite, cm⁻¹): 3410 (*m*, *br*), 3247(*m*, *br*), 3073(*m*, *br*), 1716 (*w*), 1619 (*w*), 1578 (*w*), 1421 (*m*), 1264 (*m*), 1154 (*m*), 1029 (*s*), 831 (*s*), 799 (*s*), 684 (*s*), 584 (*s*). Elemental analysis for MnCl₂-C₆H₉NO₂, calculated (%): C 28.48, H 3.59, N 5.53; found (%): C 28.75, H 3.53, N 5.28.

Compound III, $Mn_2(3MePNO)_2Cl_4 \cdot 4H_2O$, yield 0.231 g (89.5%). Selected IR bands (ATR, FT–IR, KBr composite, cm⁻¹): 3374 (*m*, *br*), 3251 (*m*, *br*), 3094 (*m*, *br*), 1663 (*w*), 1614(*w*), 1492 (*m*), 1261 (*m*), 1164 (*m*), 1019 (*s*), 946 (*s*), 750 (*s*), 672 (*s*). Elemental analysis for $Mn_2Cl_4C_{12}H_{22}N_2O_6$, calculated (%): C 26.59, H 4.09, N 5.16; found (%): C 26.53, H 4.04, N 5.21.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All carbon-bound H atoms were positioned geometrically and refined as riding, with C-H =0.95 or 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C)$ for C(H) and CH₃ groups, respectively. In order to ensure chemically meaningful O–H distances for the bound water molecules in compound **I**, the H2A–O2 and H2B–O2 distances were restrained to a target value of 0.84 (2) Å (using a DFIX command in *SHELXL2017*; Sheldrick, 2015*b*). In compound **II**, water H atoms were refined as riding, with the O-H distance constrained to 0.892 Å and $U_{iso}(H) =$ $1.5U_{eq}(O)$ using an AFIX 7 command, and in compound **III**, H2A-O2, H2B-O2, H3A-O3, and H3B-O3 were restrained using DFIX as for compound **I**. A rotating-group model was applied for the methyl groups. Structure refinement of **II** exhibits inversion twinning. Several crystals were tried and the centrosymmetric space group *Pnma* was tested. In all cases, there was a significant reduction in the *R* value for the inversion twinning $P2_12_12_1$ solution.

Acknowledgements

The authors would like to thank Armstrong State University, Department of Chemistry and Physics, for financial support of this work.

References

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Eppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157-202.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hu, Z. C., Deibert, B. J. & Li, J. (2014). Chem. Soc. Rev. 43, 5815–5840.
- Jiu, J., Blake, A. J., Champness, N. R., Hubberstey, P., Wilson, C. & Schröder, M. (2008). *Inorg. Chem.* 47, 8652–8664.
- Liu, J., Chen, L., Cui, H., Zhang, Y., Zhang, L. & Su, C.-Y. (2014). *Chem. Soc. Rev.* 43, 6011–6061.
- Ma, B.-Q., Sun, H.-L. & Gao, S. (2005). Inorg. Chem. 44, 837-839.
- Mautner, F. A., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2017). *Polyhedron*, **134**, 126–134.
- Moustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, **33**, 5402–5413.
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2011). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.
- Sarma, R. & Baruah, J. B. (2011). Solid State Sci. 13, 1692-1700.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shi, J.-M., Liu, Z., Li, W.-N., Zhao, H. Y. & Liu, L.-D. (2007). J. Coord. Chem. 60, 1077–1082.
- Sun, H.-L., Wang, Z.-M., Gao, S. & Batten, S. R. (2008). CrystEngComm, 10, 1796–1802.
- Zhang, L.-P., Lu, W.-J. & Mak, T. C. (2003). Chem. Commun. 22, 2830–2831.

Acta Cryst. (2017). E73, 1434-1438 [https://doi.org/10.1107/S2056989017012038]

Manganese(II) chloride complexes with pyridine *N*-oxide (PNO) derivatives and their solid-state structures

Linda Kang, Genevieve Lynch, Will Lynch and Clifford Padgett

Computing details

For all structures, data collection: CrystalClearSM Expert (Rigaku, 2011); cell refinement: CrystalClearSM Expert (Rigaku, 2011); data reduction: CrystalClearSM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2017* (Sheldrick, 2015*b*); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

catena-poly[[aquachloridomanganese(II)]-di-µ-chlorido-[aquachloridomanganese(II)]-bis(µ-pyridine N-oxide)]
(I)

Crystal data

 $[MnCl_2(C_5H_5NO)(H_2O)]$ $M_r = 238.96$ Triclinic, $P\overline{1}$ a = 6.897 (2) Å b = 7.050 (1) Å c = 9.853 (3) Å a = 101.042 (7)° $\beta = 109.559$ (10)° $\gamma = 94.196$ (6)° V = 438.2 (2) Å³

Data collection

Rigaku XtalLab mini CCD diffractometer ω scans Absorption correction: multi-scan (REQAB; Rigaku, 1998) $T_{\min} = 0.613, T_{\max} = 0.765$ 4655 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.080$ S = 1.142004 reflections 108 parameters 2 restraints Primary atom site location: dual Z = 2 F(000) = 238 $D_x = 1.811 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1189 reflections $\theta = 2.3-27.5^{\circ}$ $\mu = 2.06 \text{ mm}^{-1}$ T = 173 K Prism, clear brown $0.29 \times 0.18 \times 0.13 \text{ mm}$

2004 independent reflections 1770 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 27.6^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -8 \rightarrow 8$ $k = -9 \rightarrow 9$ $l = -12 \rightarrow 12$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + 0.444P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.40$ e Å⁻³ $\Delta\rho_{min} = -0.44$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Mnl	0.24478 (6)	0.51944 (6)	0.49588 (4)	0.02748 (12)
C11	0.21608 (12)	0.81797 (10)	0.39668 (9)	0.04150 (19)
O1	0.5727 (3)	0.6094 (3)	0.63106 (19)	0.0327 (4)
N1	0.6425 (3)	0.6894 (3)	0.7767 (2)	0.0283 (5)
C1	0.6940 (6)	0.5762 (5)	0.8731 (3)	0.0493 (8)
H1	0.681940	0.441595	0.840110	0.059*
Cl2	0.10246 (10)	0.65268 (10)	0.69397 (7)	0.03317 (16)
O2	0.2634 (4)	0.2541 (3)	0.5927 (3)	0.0447 (5)
H2A	0.146 (4)	0.218 (6)	0.594 (5)	0.081 (16)*
H2B	0.305 (7)	0.162 (5)	0.551 (5)	0.087 (16)*
C2	0.7655 (7)	0.6608 (6)	1.0222 (4)	0.0655 (11)
H2	0.802254	0.582800	1.090313	0.079*
C3	0.7826 (6)	0.8564 (6)	1.0704 (3)	0.0543 (9)
Н3	0.829678	0.913307	1.171227	0.065*
C4	0.7299 (6)	0.9692 (5)	0.9693 (4)	0.0532 (9)
H4	0.742760	1.104037	1.001068	0.064*
C5	0.6577 (5)	0.8836 (5)	0.8203 (3)	0.0421 (7)
H5	0.619974	0.959566	0.750808	0.051*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Mn1	0.0228 (2)	0.0328 (2)	0.0259 (2)	0.00479 (16)	0.00858 (16)	0.00467 (16)
Cl1	0.0478 (4)	0.0329 (4)	0.0481 (4)	0.0073 (3)	0.0188 (4)	0.0156 (3)
01	0.0230 (9)	0.0460 (12)	0.0238 (9)	0.0052 (8)	0.0062 (8)	-0.0006 (8)
N1	0.0232 (11)	0.0371 (12)	0.0233 (10)	0.0033 (9)	0.0078 (9)	0.0052 (9)
C1	0.076 (2)	0.0386 (17)	0.0325 (15)	0.0152 (16)	0.0152 (16)	0.0124 (13)
Cl2	0.0307 (3)	0.0377 (4)	0.0267 (3)	0.0016 (3)	0.0102 (3)	-0.0016 (3)
O2	0.0553 (16)	0.0394 (13)	0.0420 (13)	0.0117 (11)	0.0186 (12)	0.0115 (10)
C2	0.094 (3)	0.073 (3)	0.0290 (16)	0.031 (2)	0.0135 (19)	0.0204 (17)
C3	0.057 (2)	0.071 (3)	0.0249 (15)	0.0074 (18)	0.0091 (15)	-0.0009 (15)
C4	0.067 (2)	0.0425 (19)	0.0391 (17)	-0.0022 (17)	0.0151 (17)	-0.0064 (15)
C5	0.054 (2)	0.0388 (17)	0.0325 (15)	0.0027 (14)	0.0149 (14)	0.0075 (13)

Geometric parameters (Å, °)

2.479 (2)	C1—C2	1.376 (5)
2.177 (3)	O2—H2A	0.833 (19)
2.182 (2)	O2—H2B	0.819 (19)
	2.479 (2) 2.177 (3) 2.182 (2)	2.479 (2) C1—C2 2.177 (3) O2—H2A 2.182 (2) O2—H2B

	25224(10)	C2 U2	0.0200
Mini-Cl2"	2.5324 (19)	C2—H2	0.9300
Mn1—Cl2	2.5240 (19)	C2—C3	1.353 (5)
Mn1—O2	2.250 (3)	С3—Н3	0.9300
O1—N1	1.341 (3)	C3—C4	1.364 (5)
N1—C1	1.331 (4)	C4—H4	0.9300
N1—C5	1.339 (4)	C4—C5	1.377 (4)
C1—H1	0.9300	С5—Н5	0.9300
Cl1—Mn1—Cl2	93.43 (6)	C5—N1—O1	118.0 (2)
Cl1—Mn1—Cl2 ⁱⁱ	92.57 (6)	N1—C1—H1	120.4
O1 ⁱ —Mn1—C11	95.12 (8)	N1—C1—C2	119.1 (3)
O1—Mn1—Cl1	93.65 (7)	C2—C1—H1	120.4
O1-Mn1-O1 ⁱ	72.02 (10)	Mn1—Cl2—Mn1 ⁱⁱ	84.42 (7)
O1—Mn1—Cl2 ⁱⁱ	165.77 (6)	Mn1—O2—H2A	108 (3)
O1 ⁱ —Mn1—Cl2 ⁱⁱ	94.69 (9)	Mn1—O2—H2B	116 (3)
O1 ⁱ —Mn1—Cl2	166.32 (5)	H2A—O2—H2B	110 (4)
O1—Mn1—Cl2	96.81 (8)	C1—C2—H2	119.7
O1—Mn1—O2	86.96 (9)	C3—C2—C1	120.5 (3)
O1 ⁱ —Mn1—O2	87.46 (10)	С3—С2—Н2	119.7
Cl2—Mn1—Cl2 ⁱⁱ	95.58 (7)	С2—С3—Н3	120.4
O2—Mn1—Cl1	177.42 (7)	C2—C3—C4	119.1 (3)
O2-Mn1-Cl2 ⁱⁱ	87.40 (8)	С4—С3—Н3	120.4
O2—Mn1—Cl2	84.01 (9)	C3—C4—H4	120.0
Mn1—O1—Mn1 ⁱ	107.98 (10)	C3—C4—C5	120.1 (3)
N1—O1—Mn1	123.78 (14)	C5—C4—H4	120.0
N1-O1-Mn1 ⁱ	126.50 (16)	N1—C5—C4	119.1 (3)
C1—N1—O1	119.9 (2)	N1—C5—H5	120.5
C1—N1—C5	122.0 (3)	С4—С5—Н5	120.5

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H···A
O2—H2A···Cl1 ⁱⁱ	0.83 (2)	2.53 (2)	3.348 (4)	168 (4)
O2—H2B···Cl1 ⁱⁱⁱ	0.82 (2)	2.52 (3)	3.232 (4)	147 (4)

Symmetry codes: (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*, *y*-1, *z*.

catena-Poly[[aquachloridomanganese(II)]-di- μ -chlorido-[aquachloridomanganese(II)]-bis(μ -2-methylpyridine N-oxide)] (II)

Crystal data	
$[MnCl_2(C_6H_7NO)(H_2O)]$	Z = 4
$M_r = 252.98$	F(000) = 508
Orthorhombic, $P2_12_12_1$	$D_{\rm x} = 1.811 { m Mg m^{-3}}$
a = 6.862 (2) Å	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
b = 7.491 (2) Å	Cell parameters from 2686 reflections
c = 18.047 (5) Å	$\theta = 2.7 - 27.5^{\circ}$
$V = 927.7 (4) Å^3$	$\mu = 1.96 \text{ mm}^{-1}$

T = 173 KPrism, colorless

Data collection Rigaku XtalLab mini CCD 2109 independent reflections diffractometer 1800 reflections with $I > 2\sigma(I)$ ω scans $R_{\rm int} = 0.051$ Absorption correction: multi-scan $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$ $h = -8 \rightarrow 8$ (REQAB; Rigaku, 1998) $T_{\rm min} = 0.563, T_{\rm max} = 0.737$ $k = -9 \rightarrow 9$ 8438 measured reflections $l = -23 \rightarrow 23$ Refinement Refinement on F^2 H-atom parameters constrained Least-squares matrix: full $w = 1/[\sigma^2(F_0^2) + (0.004P)^2 + 2.3909P]$ $R[F^2 > 2\sigma(F^2)] = 0.051$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.100$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.95 \text{ e } \text{\AA}^{-3}$ S = 1.122109 reflections $\Delta \rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3}$ Absolute structure: Refined as an inversion 112 parameters 0 restraints twin. Primary atom site location: dual Absolute structure parameter: 0.44 (8) Hydrogen site location: mixed

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a 2-component inversion twin.

 $0.2 \times 0.2 \times 0.1 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Mn1	0.5059 (2)	0.73290 (15)	0.50137 (7)	0.0197 (2)	
Cl1	0.2537 (3)	0.6800(2)	0.40260 (8)	0.0226 (3)	
01	0.7561 (8)	0.7085 (6)	0.42855 (19)	0.0179 (9)	
N1	0.7503 (11)	0.7249 (7)	0.3544 (2)	0.0199 (11)	
C1	0.7553 (14)	0.5782 (9)	0.3112 (3)	0.0276 (15)	
Cl2	0.5309 (3)	0.4110 (3)	0.53742 (11)	0.0325 (5)	
O2	0.4833 (8)	1.0223 (7)	0.4655 (3)	0.0265 (12)	
H2A	0.546895	1.093811	0.497004	0.040*	
H2B	0.358601	1.056880	0.464095	0.040*	
C2	0.7532 (15)	0.6041 (10)	0.2345 (3)	0.0321 (16)	
H2	0.758660	0.503891	0.202342	0.038*	
C3	0.7436 (16)	0.7719 (11)	0.2056 (4)	0.0370 (18)	
Н3	0.740766	0.787849	0.153377	0.044*	
C4	0.7378 (16)	0.9180 (10)	0.2515 (4)	0.0371 (19)	
H4	0.731159	1.035141	0.231495	0.044*	
C5	0.7418 (15)	0.8925 (9)	0.3261 (3)	0.0283 (16)	
Н5	0.738625	0.992359	0.358479	0.034*	
C6	0.7629 (17)	0.4059 (10)	0.3484 (4)	0.040 (2)	

H6A	0.757534	0.310158	0.311520	0.048*
H6B	0.651845	0.395059	0.382265	0.048*
H6C	0.884583	0.396660	0.376629	0.048*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0171 (4)	0.0266 (5)	0.0154 (4)	-0.0028 (5)	0.0017 (4)	-0.0008 (4)
Cl1	0.0212 (7)	0.0300 (9)	0.0167 (6)	0.0003 (10)	0.0004 (8)	-0.0069 (6)
01	0.020 (2)	0.025 (3)	0.0089 (16)	-0.005 (3)	-0.002(2)	-0.0013 (16)
N1	0.019 (2)	0.029 (3)	0.012 (2)	0.002 (3)	0.002 (3)	-0.001 (2)
C1	0.028 (4)	0.028 (4)	0.026 (3)	0.003 (5)	-0.001 (4)	-0.005 (3)
Cl2	0.0377 (12)	0.0234 (10)	0.0365 (11)	-0.0021 (10)	0.0037 (9)	0.0050 (8)
O2	0.015 (3)	0.048 (3)	0.016 (2)	-0.009 (3)	0.002 (2)	-0.003 (2)
C2	0.036 (4)	0.046 (5)	0.015 (3)	0.007 (6)	0.002 (4)	-0.004 (3)
C3	0.048 (5)	0.046 (5)	0.017 (3)	0.004 (6)	0.001 (4)	0.001 (3)
C4	0.060 (5)	0.027 (4)	0.024 (4)	0.002 (6)	0.003 (5)	0.005 (3)
C5	0.042 (4)	0.026 (4)	0.017 (3)	0.007 (5)	0.004 (4)	-0.002(3)
C6	0.061 (6)	0.029 (4)	0.029 (4)	0.007 (6)	0.001 (5)	0.000 (3)

Geometric parameters (Å, °)

Mn1—Cl1 ⁱ	2.514 (3)	O2—H2B	0.8947
Mn1—Cl1	2.516 (4)	С2—Н2	0.9500
Mn1—O1 ⁱⁱ	2.174 (5)	C2—C3	1.363 (10)
Mn1—O1	2.171 (6)	С3—Н3	0.9500
Mn1—Cl2	2.503 (4)	C3—C4	1.374 (10)
Mn1—O2	2.268 (6)	C4—H4	0.9500
O1—N1	1.345 (6)	C4—C5	1.360 (9)
N1—C1	1.348 (8)	С5—Н5	0.9500
N1—C5	1.357 (8)	С6—Н6А	0.9800
C1—C2	1.397 (9)	С6—Н6В	0.9800
C1—C6	1.456 (10)	С6—Н6С	0.9800
O2—H2A	0.8951		
Cll ⁱ —Mn1—Cl1	174.01 (5)	N1—C1—C6	117.1 (6)
O1 ⁱⁱ —Mn1—C11	84.38 (18)	C2—C1—C6	125.5 (7)
O1—Mn1—Cl1 ⁱ	84.49 (18)	Mn1—O2—H2A	110.9
$O1^{ii}$ —Mn1—Cl1 ⁱ	94.57 (18)	Mn1—O2—H2B	110.5
O1—Mn1—Cl1	95.84 (18)	H2A—O2—H2B	108.1
O1—Mn1—O1 ⁱⁱ	173.11 (6)	C1—C2—H2	119.7
O1—Mn1—Cl2	91.26 (14)	C3—C2—C1	120.5 (7)
O1 ⁱⁱ —Mn1—Cl2	95.58 (14)	C3—C2—H2	119.7
O1 ⁱⁱ —Mn1—O2	85.39 (19)	С2—С3—Н3	119.8
O1—Mn1—O2	87.78 (19)	C2—C3—C4	120.3 (6)
Cl2—Mn1—Cl1 ⁱ	91.40 (9)	С4—С3—Н3	119.8
Cl2—Mn1—Cl1	94.57 (9)	C3—C4—H4	120.5
O2—Mn1—Cl1	84.34 (16)	C5—C4—C3	119.0 (7)

O2—Mn1—Cl1 ⁱ	89.71 (16)	С5—С4—Н4	120.5
O2—Mn1—Cl2	178.46 (15)	N1—C5—C4	120.3 (6)
Mn1 ⁱⁱ —Cl1—Mn1	86.32 (13)	N1—C5—H5	119.9
Mn1—O1—Mn1 ⁱ	104.73 (19)	С4—С5—Н5	119.9
N1—O1—Mn1 ⁱ	125.7 (5)	С1—С6—Н6А	109.5
N1—O1—Mn1	124.9 (5)	С1—С6—Н6В	109.5
O1—N1—C1	120.1 (5)	C1—C6—H6C	109.5
O1—N1—C5	117.4 (5)	H6A—C6—H6B	109.5
C1—N1—C5	122.5 (5)	H6A—C6—H6C	109.5
N1—C1—C2	117.4 (7)	H6B—C6—H6C	109.5
Mn1-01-N1-C1	-102.4 (8)	C1—N1—C5—C4	0.0 (15)
Mn1 ⁱ —O1—N1—C1	105.6 (8)	C1—C2—C3—C4	0.7 (17)
Mn1-01-N1-C5	78.4 (9)	C2—C3—C4—C5	0.0 (17)
Mn1 ⁱ —O1—N1—C5	-73.7 (9)	C3-C4-C5-N1	-0.3 (17)
O1—N1—C1—C2	-178.6 (8)	C5—N1—C1—C2	0.6 (14)
O1—N1—C1—C6	1.2 (13)	C5—N1—C1—C6	-179.6 (10)
O1—N1—C5—C4	179.3 (9)	C6—C1—C2—C3	179.2 (11)
N1—C1—C2—C3	-1.0 (16)		

Symmetry codes: (i) x+1/2, -y+3/2, -z+1; (ii) x-1/2, -y+3/2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	D··· A	D—H···A
O2—H2A····Cl2 ⁱⁱⁱ	0.90	2.49	3.205 (7)	137
$O2$ — $H2B$ ···· $C12^{ii}$	0.89	2.26	3.145 (7)	169

Symmetry codes: (ii) *x*-1/2, -*y*+3/2, -*z*+1; (iii) *x*, *y*+1, *z*.

 $Bis(\mu$ -3-methylpyridine *N*-oxide)bis[diaquadichloridomanganese(II)] (III)

Crystal data	
$[Mn_2Cl_4(C_6H_7NO)_2(H_2O)_4]$	Z = 1
$M_r = 541.99$	F(000) = 274
Triclinic, $P\overline{1}$	$D_x = 1.629 \text{ Mg m}^{-3}$
a = 7.902 (7) Å	Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$
b = 8.026 (7) Å	Cell parameters from 5886 reflections
c = 9.893 (8) Å	$\theta = 2.8-27.5^{\circ}$
a = 98.033 (1)°	$\mu = 1.65 \text{ mm}^{-1}$
$\beta = 99.272$ (7)°	T = 173 K
$\gamma = 113.634$ (11)°	Prism, clear brown
V = 552.6 (8) Å ³	$0.85 \times 0.5 \times 0.28 \text{ mm}$
Data collection	
Rigaku XtalLab mini CCD	2553 independent reflections
diffractometer	2375 reflections with $I > 2\sigma(I)$
ω scans	$R_{int} = 0.072$
Absorption correction: multi-scan	$\theta_{max} = 27.6^\circ, \ \theta_{min} = 2.8^\circ$
(REQAB; Rigaku, 1998)	$h = -10 \rightarrow 10$
$T_{min} = 0.482, T_{max} = 0.630$	$k = -10 \rightarrow 10$
5837 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.031$	and constrained refinement
$wR(F^2) = 0.087$	$w = 1/[\sigma^2(F_o^2) + (0.031P)^2 + 0.023P]$
S = 1.07	where $P = (F_o^2 + 2F_c^2)/3$
2553 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
135 parameters	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
4 restraints	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
Primary atom site location: dual	
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Mn1	0.27031 (3)	0.40104 (3)	0.53553 (2)	0.02936 (11)
C11	0.14922 (6)	0.48607 (7)	0.73553 (4)	0.04342 (14)
Cl2	0.32299 (6)	0.13672 (6)	0.60668 (6)	0.04544 (15)
O1	0.56562 (15)	0.60090 (16)	0.62683 (12)	0.0345 (3)
O2	0.2605 (2)	0.6467 (2)	0.45620 (16)	0.0443 (3)
H2A	0.355 (3)	0.710 (3)	0.436 (2)	0.055 (7)*
H2B	0.167 (3)	0.639 (3)	0.404 (2)	0.062 (8)*
O3	0.00694 (17)	0.23434 (18)	0.37696 (14)	0.0395 (3)
H3A	-0.069 (3)	0.128 (2)	0.390 (2)	0.062 (7)*
H3B	-0.054 (4)	0.288 (4)	0.352 (3)	0.081 (10)*
N1	0.62886 (17)	0.71302 (18)	0.75570 (13)	0.0294 (3)
C1	0.6561 (2)	0.8903 (2)	0.77007 (17)	0.0342 (4)
H1	0.631326	0.934009	0.690425	0.041*
C2	0.7204 (3)	1.0102 (3)	0.90084 (19)	0.0415 (4)
C3	0.7538 (3)	0.9400 (3)	1.0169 (2)	0.0568 (6)
Н3	0.795802	1.016517	1.106619	0.068*
C4	0.7250 (4)	0.7571 (4)	0.9997 (2)	0.0611 (6)
H4	0.748138	0.710090	1.077885	0.073*
C5	0.6620 (3)	0.6431 (3)	0.8670 (2)	0.0472 (5)
Н5	0.642729	0.519251	0.854911	0.057*
C6	0.7494 (4)	1.2087 (3)	0.9131 (3)	0.0701 (7)
H6A	0.873126	1.282752	0.900126	0.105*
H6B	0.739622	1.256760	1.004510	0.105*
H6C	0.653880	1.213706	0.842403	0.105*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.02821 (16)	0.02780 (17)	0.03004 (17)	0.00959 (12)	0.00843 (11)	0.00651 (12)
Cl1	0.0471 (3)	0.0617 (3)	0.0309 (2)	0.0299 (2)	0.01431 (18)	0.0142 (2)

Cl2	0.0436 (3)	0.0349 (3)	0.0596 (3)	0.0137 (2)	0.0151 (2)	0.0236 (2)
01	0.0326 (6)	0.0310 (6)	0.0313 (6)	0.0074 (5)	0.0091 (5)	-0.0010 (5)
O2	0.0389 (7)	0.0414 (7)	0.0584 (9)	0.0185 (6)	0.0137 (6)	0.0231 (7)
03	0.0339 (6)	0.0322 (7)	0.0438 (7)	0.0079 (5)	0.0039 (5)	0.0080 (6)
N1	0.0295 (6)	0.0293 (7)	0.0271 (6)	0.0107 (5)	0.0061 (5)	0.0062 (5)
C1	0.0443 (9)	0.0307 (8)	0.0273 (7)	0.0159 (7)	0.0082 (6)	0.0067 (6)
C2	0.0484 (10)	0.0363 (9)	0.0336 (8)	0.0138 (8)	0.0112 (7)	0.0016 (7)
C3	0.0674 (13)	0.0598 (13)	0.0262 (9)	0.0158 (11)	0.0049 (9)	0.0014 (9)
C4	0.0766 (14)	0.0687 (15)	0.0355 (10)	0.0289 (12)	0.0028 (10)	0.0246 (10)
C5	0.0591 (11)	0.0424 (10)	0.0425 (10)	0.0236 (9)	0.0064 (9)	0.0186 (9)
C6	0.105 (2)	0.0393 (11)	0.0571 (14)	0.0257 (13)	0.0237 (14)	-0.0048 (10)

Geometric parameters (Å, °)

Mn1—Cl1	2.4602 (15)	C1—H1	0.9300
Mn1—Cl2	2.4900 (19)	C1—C2	1.381 (2)
Mn1—O1 ⁱ	2.2228 (17)	C2—C3	1.381 (3)
Mn1—O1	2.1792 (18)	C2—C6	1.500 (3)
Mn1—O2	2.246 (2)	С3—Н3	0.9300
Mn1—O3	2.1704 (17)	C3—C4	1.373 (4)
01—N1	1.3411 (19)	C4—H4	0.9300
O2—H2A	0.791 (15)	C4—C5	1.377 (3)
O2—H2B	0.802 (16)	С5—Н5	0.9300
O3—H3A	0.863 (16)	С6—Н6А	0.9600
O3—H3B	0.795 (17)	C6—H6B	0.9600
N1—C1	1.334 (2)	С6—Н6С	0.9600
N1—C5	1.340 (2)		
Cl1—Mn1—Cl2	98 31 (4)	C1—N1—O1	119 45 (13)
$\Omega_1 - Mn_1 - Cl_1$	95 44 (6)	C1 - N1 - C5	121.69 (16)
$O1^{i}$ Mn1 Cl1	165 45 (4)	C5-N1-O1	118 86 (16)
$O1^{i}$ Mn1-Cl2	89.66 (5)	N1-C1-H1	119.3
O1-Mn1-Cl2	93.11 (7)	N1-C1-C2	121.31 (16)
$01 - Mn1 - 01^{i}$	71.87 (7)	C2-C1-H1	119.3
$O1^{i}$ Mn1 $O2$	82.07 (6)	C1 - C2 - C3	117.8 (2)
01 - Mn1 - 02	81.64 (7)	C1 - C2 - C6	119.87 (19)
O2-Mn1-Cl1	89.20 (6)	$C_{3} - C_{2} - C_{6}$	122.4 (2)
O2—Mn1—Cl2	171.24 (4)	C2—C3—H3	120.0
O3—Mn1—Cl1	101.10(7)	C4—C3—C2	119.99 (19)
O3—Mn1—Cl2	97.13 (6)	C4—C3—H3	120.0
$O3$ — $Mn1$ — $O1^{i}$	89.88 (8)	C3—C4—H4	119.9
O3—Mn1—O1	159.02 (5)	C3—C4—C5	120.16 (18)
O3—Mn1—O2	85.76 (7)	С5—С4—Н4	119.9
Mn1—O1—Mn1 ⁱ	108.13 (7)	N1—C5—C4	119.10 (19)
N1—O1—Mn1	124.29 (9)	N1—C5—H5	120.5
N1—O1—Mn1 ⁱ	127.41 (10)	C4—C5—H5	120.5
Mn1—O2—H2A	114.4 (17)	С2—С6—Н6А	109.5
Mn1—O2—H2B	121.9 (18)	C2—C6—H6B	109.5

H2A—O2—H2B	112 (2)	С2—С6—Н6С	109.5
Mn1—O3—H3A	118.3 (16)	Н6А—С6—Н6В	109.5
Mn1—O3—H3B	116 (2)	Н6А—С6—Н6С	109.5
НЗА—ОЗ—НЗВ	109 (3)	H6B—C6—H6C	109.5

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2B····Cl1 ⁱⁱ	0.80 (2)	2.38 (2)	3.147 (3)	161 (2)
O3—H3A····Cl2 ⁱⁱⁱ	0.86 (2)	2.28 (2)	3.120 (2)	167 (2)

Symmetry codes: (ii) -x, -y+1, -z+1; (iii) -x, -y, -z+1.