



Received 14 August 2017 Accepted 27 September 2017

Edited by A. V. Yatsenko, Moscow State University, Russia

**Keywords:** crystal structure; X-ray diffraction analysis;  $\pi - \pi$  interactions; DFT calculations; energy of  $\pi - \pi$  interactions; Hirshfeld analysis; azo dye.

CCDC reference: 843227

**Supporting information**: this article has supporting information at journals.iucr.org/e





(*E*)-7-[(4-Nitrophenyl)diazenyl]-3a-(*p*-tolyl)-2,3,3a,4-tetrahydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazol-1-one 0.58-dimethyl sulfoxide 0.42acetonitrile solvate: crystal structure, Hirshfeld analysis and DFT estimation of the energy of intermolecular interactions

#### Vyacheslav S. Grinev,<sup>a,b</sup>\* Natalya V. Babkina<sup>a</sup> and Alevtina Yu. Yegorova<sup>a</sup>

<sup>a</sup>Institute of Chemistry, N.G. Chernyshevsky National Research Saratov State University, Astrakhanskaya ul. 83, Saratov 410012, Russian Federation, and <sup>b</sup>Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russian Federation. \*Correspondence e-mail: grinev@ibppm.ru

In the crystal structure of the title compound,  $C_{23}H_{19}N_5O_3 \cdot 0.58C_2H_6OS \cdot 0.42C_2H_3N$ , prepared by the azo coupling of the 4-nitrophenyldiazonium salt with 3a-(*p*-tolyl)-2,3,3a,4-tetrahydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazol-1-one, the azo molecules are linked by N-H···O hydrogen bonds into chains along the *a*-axis direction, and by the  $\pi$ - $\pi$  interaction into [101] chains. The dimethyl sulfoxide and acetonitrile solvent molecules occupy the same positions, with populations of 0.585 (3) and 0.415 (3), respectively. These molecules take part in C-H···O(N) and C-H··· $\pi$  contacts. The energy of the  $\pi$ - $\pi$  interactions was estimated using DFT calculations. The Hirshfeld molecular surface analysis revealed the positions of the most important intermolecular contacts, such as hydrogen bonds and  $\pi$ - $\pi$  interactions.

#### 1. Chemical context

Compounds prepared by azo coupling of aryldiazonium salts 3a-aryl-2,3,3a,4-tetrahydro-1H-benzo[d]pyrrolo[1,2-a]with imidazol-1-one (1) are crystalline substances with deep color varying from yellow to red, depending on the structure of the initial diazonium cation. Since several nucleophilic centers in 1 can be attacked by the electrophilic diazonium cation, it was of interest to study the effect of heteroatoms, as well as other molecular fragments, on the molecular reactivity. The presence of the secondary amino group allows the formation of triazene derivatives. However, the most likely site of electrophilic attack is a fused aromatic ring activated by N heteroatoms. The azo dye molecules constructed in this way can exist in two forms, E and Z, depending on the presence or absence of certain stabilizing factors: bulky substituents, intramolecular hydrogen bonds, non-covalent interactions, etc. One of the representatives of the synthesized series is 7-[(4nitrophenyl)diazenyl]-3a-(p-tolyl)-2,3,3a,4-tetrahydro-1Hbenzo[d]pyrrolo[1,2-a]imidazol-1-one (2), which was prepared from 4-nitrophenyldiazonium chloride and 1. For the final determination of the structure of the azo product, an X-ray diffraction study of a crystal grown from DMSO-acetonitrile solution as a mixed DMSO/acetonitrile solvate of 2 was performed.



2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1. The molecules of 2 have the *E*-configuration that was expected because of the *para* position of the nitro group in the aryldiazenyl fragment. Part of the molecule of 2, including the 4-nitrophenyl and benzimidazole fragments linked by the azo group, is close to planar, with the dihedral angle formed by two aromatic rings being 2.73  $(7)^{\circ}$ . The largest deviation from the mean plane of the benzimidazole ring system is 0.1300 (9) Å for C4. The 1*H*-imidazole ring adopts an envelope conformation with C4 atom as the flap, thus introducing some non-planarity into the conjugated part of the molecule. The pyrrolidone ring is twisted with respect to the C2-C3 bond, thus the environment of the N2 amide atom becomes non-planar and this atom deviates by 0.267 (1) Å from the plane formed by the three neighboring C atoms. As as result, the C1–N2 distance [1.3737 (17) Å] is larger than average for  $\gamma$ -lactams [1.347 (14) Å; Allen *et al.*, 1987]. The relatively long N2-C10 distance [1.4091 (17) Å] indicates weak  $\pi$ -conjugation and gives an insight into why substitution takes place at

#### 3. Supramolecular features

the 8 position.

In the crystal, molecules of **2** are linked by N-H···O hydrogen bonds into chains along the *a*-axis direction (Table 1, Fig. 2). These molecules are also linked by  $\pi$ - $\pi$  interactions between the aromatic rings of the benzimidazole fragments and 4-nitrophenyl substituents as well as between *p*-tolyl substituents (Table 2, Fig. 3), thus forming chains along the



Figure 1

The asymmetric unit of the title compound with overlapping solvent molecules of DMSO and acetonitrile. Displacement ellipsoids are drawn at the 50% probability level.

| Table 1                |         |  |
|------------------------|---------|--|
| Hydrogen-bond geometry | (Å, °). |  |

Cg1 is the centroid of the C11–C16 ring.

| $D - \mathbf{H} \cdots A$                                                                                                                 | $D-\mathrm{H}$                                   | $H \cdot \cdot \cdot A$                  | $D \cdots A$                                                   | $D - \mathbf{H} \cdot \cdot \cdot A$   |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|----------------------------------------------------------------|----------------------------------------|
| $N1 - H1N \cdots O1^{i}$ $C2 - H2A \cdots N1SB^{ii}$ $C2 - H2B \cdots O1S^{iii}$ $C2 - H2B \cdots N1SB^{iii}$ $C2 - H2SA \cdots Cg1^{ii}$ | 0.88 (2)<br>0.99<br>0.99<br>0.99<br>0.99<br>0.96 | 2.04 (2)<br>2.52<br>2.43<br>2.43<br>2.93 | 2.8550 (15)<br>3.43 (2)<br>3.348 (14)<br>3.37 (3)<br>3.766 (3) | 154.9 (19)<br>153<br>154<br>158<br>146 |
|                                                                                                                                           |                                                  |                                          |                                                                |                                        |

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y + 1, z.

[101] direction. Comparing geometric parameters related to these  $\pi$ - $\pi$  interactions (Table 2), one can conclude that those involving *p*-tolyl substituents are weaker. The dimethyl-sulfoxide and acetonitrile solvent molecules occupy the same positions with populations of 0.585 (3) and 0.415 (3), respectively. These molecules participate in intermolecular interactions as donors of H-atoms of the methyl groups of acetonitrile and DMSO, and as H-atom acceptors *via* the electronegative O and N atoms (Table 1).

#### 4. Hirshfeld surface analysis

Hirshfeld surface analysis (Hirshfeld, 1977) of the title crystal structure allows us to visualize intermolecular interactions. The contribution of the H···H intermolecular interactions amounts to 47.6%. The contributions of other important interactions are as follows: H···O (21.2%), H···C (11.2%) and H···N (5.1%). Other contacts C···O (3.9%), C···C (3.8%), C···N (3.6%), and H···S (2.1%) are less than 5%.





## research communications



Figure 3

Diagram showing  $\pi$ - $\pi$  interactions between molecules of 2 (*a*) between the aromatic rings of the benzimidazole group and the 4-nitrophenyl substituent, (*b*) between the aromatic rings of two *p*-tolyl substituents.

The Hirshfeld surface diagram,  $d_{norm}$ , with transparency (Fig. 4), indicates (in red) locations of the strongest intermolecular contacts with participation of atoms H6A, H2A and H2B (Fig. 4). The H···H, H···C, H···S and H···O contributions to the crystal packing are shown as two-dimensional fingerprint plots with blue dots (Fig. 5). The  $d_e$  (y axis) and  $d_i$  (x axis) values represent the closest external and internal distances (Å), respectively, from the given points on the Hirshfeld surface (Wolff *et al.*, 2012). The intermolecular hydrogen bonds are indicated by the H···O contacts (21.2%) on the dotted diagram (Fig. 5c). Two sharp spikes with  $d_e + d_i = \sim 2.0$  Å visualize the experimentally obtained value of 2.04 (2) Å for the H···O distance corresponding to a hydrogen bond between azo molecules. The C···C contacts (3.8%) reflect  $\pi$ - $\pi$  interactions between the mentioned above



Figure 4 Hirshfeld surface diagram for the asymmetric unit of the title compound.

aromatic rings (Figs. 4, 5*f*). In addition, there are some  $H \cdots \pi$  contacts  $(H \cdots C)$ , which are mostly located at hydrogen atoms of the CH<sub>3</sub> group of the *p*-tolyl substituent of one molecule and the  $\pi$ -system of the same substituent of the neighboring molecule (Fig. 5*e*).

#### 5. Quantum chemical DFT calculations

To compare the energies of the two types of intermolecular  $\pi$ - $\pi$  interactions found in the title crystal, we performed quantum chemical modeling of this system at the level of Density Functional Theory (DFT). All DFT calculations were made using GAUSSIAN09 package (Frisch *et al.*, 2010) and high-performance computing cluster of National Research Saratov State University. Crystallographic coordinates were used as a starting point, and full geometry optimization of monomer and dimers was performed using an mPW1B95 functional with a 6-31g(d) basis set. This hybrid meta density



#### Figure 5

Diagrams showing (a) the full two-dimensional fingerprint plot, and those delineated into (b)  $H \cdots H$ , (c)  $O \cdots H/H \cdots O$ , (d)  $N \cdots H/H \cdots N$ , (e)  $C \cdots H/H \cdots C$ , and (f)  $C \cdots C$  contacts.

| supermental and calculated parameters of x x interactions in =. |                                     |                                  |                         |                                 |                         |                               |                         |                                 |                           |
|-----------------------------------------------------------------|-------------------------------------|----------------------------------|-------------------------|---------------------------------|-------------------------|-------------------------------|-------------------------|---------------------------------|---------------------------|
| Rings                                                           | Energy<br>(kcal mol <sup>-1</sup> ) | Intercentroid<br>distance (Å)    |                         | Interplanar<br>distance (Å)     |                         | Ring offset (Å)               |                         | Angle (°)                       |                           |
| Benzimidazole/4-nitrophenyl<br><i>p</i> -Tolyl                  | -16.48<br>-3.07                     | exp<br>3.8290 (9)<br>4.3241 (13) | calcd<br>3.876<br>4.807 | exp<br>3.5025 (12)<br>3.628 (2) | calcd<br>3.485<br>3.740 | exp<br>1.547 (2)<br>2.353 (3) | calcd<br>1.698<br>3.018 | exp<br>23.814 (5)<br>32.963 (3) | calcd<br>25.977<br>38.920 |

**Table 2** Experimental and calculated parameters of  $\pi$ - $\pi$  interactions in 2

functional theory (HMDFT) method based on the modified Perdew and Wang exchange functional (mPW) and Becke's 1995 correlation functional (B95) gives good results for the systems with non-covalent interactions, such as hydrogen bonding and weak van der Waals interactions (Zhao & Truhlar, 2004). The energy of the  $\pi$ - $\pi$  interaction was estimated using the following simple equation:

$$E_{interaction} = E_{dimer} - 2 \times E_{monomer}$$

A comparison of some parameters of non-covalent interactions for the optimized geometry of **2** and for the crystallographic data is presented in Table 2. The chosen level of theory reproduces the geometrical parameters of the intermolecular interactions quite well. Thus, the energies of  $\pi$ - $\pi$ interactions of both types, between the aromatic rings of the

 Table 3

 Experimental details.

| Crystal data                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical formula                                 | $C_{23}H_{19}N_5O_3 \cdot 0.58C_2H_6OS - 0.4200 M N_5O_3 - 0.400 M N_5O_3 - 0.400 M N_5O_3 - 0.400 $ |
|                                                  | $0.42C_{2}H_{3}N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| M <sub>r</sub>                                   | 4/6.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Crystal system, space group                      | Triclinic, P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Temperature (K)                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a, b, c (A)                                      | 7.1755 (5), 10.7013 (8),<br>16.2586 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\alpha, \beta, \gamma$ (°)                      | 86.072 (3), 78.868 (2), 73.222 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $V(Å^3)$                                         | 1172.71 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Z                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Radiation type                                   | Μο Κα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\mu ({\rm mm}^{-1})$                            | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Crystal size (mm)                                | $0.27 \times 0.22 \times 0.21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Data collection                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Diffractometer                                   | Bruker APEXII CCD area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                  | detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Absorption correction                            | Multi-scan (SADABS; Bruker, 2008)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $T_{\min}, T_{\max}$                             | 0.963, 0.971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| No. of measured, independent and                 | 15024, 6820, 5126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| observed $[I > 2\sigma(I)]$ reflections          | ··· , ··· , · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Rint                                             | 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $(\sin \theta / \lambda)$ $(Å^{-1})$             | 0 704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (Shi onojmax (Pr                                 | 0.701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Refinement                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$              | 0.050, 0.134, 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| No. of reflections                               | 6820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| No. of parameters                                | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| No. of restraints                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| H-atom treatment                                 | H atoms treated by a mixture of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | independent and constrained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\Delta \rho = \Delta \rho + (e \text{ Å}^{-3})$ | 0.46 - 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                  | 0.10, 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Computer programs: *APEX2* (Bruker, 2011), *SAINT* (Bruker, 2009), *SHELXS97* and *SHELXL97* (Sheldrick, 2008), *OLEX2* (Dolomanov *et al.* and 2009), *publCIF* (Westrip, 2010).

benzimidazole fragment and of the 4-nitrophenyl substituent and between the two aromatic *p*-tolyl substituents at the 3apositions, can be estimated to be equal to -16.5 and -3.0 kcal mol-1, respectively.

#### 6. Database survey

Molecule 2 may be considered as being composed of two fragments, a heterocyclic core and the 4-nitrophenyldiazenyl substituent. The latter is relatively abundant and a search in the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016) returned eight hits [CSD refcodes: EMAWUL (Yazıcı et al., 2011), KEMFUE (Centore et al., 2006), LEZXAQ and LEZXUK (Šimůnek et al., 2007), PIDVAA (Kasyan et al., 2007), ROMNIR (Lu et al., 2009), TIVBOQ (Rodriguez et al., 2008), YEDYIQ (You et al., 2006)], but no heterocyclic compounds were found among them. The closest to the heterocyclic core of 2 is the previously reported 3a-phenyl-2,3,3a,4-tetrahydro-1H-pyrrolo[1,2-a]benzimidazol-1-one (CSD refcode CIGPEN01; Grinev and Egorova, 2013). Other examples of compounds containing the same heterocyclic core are disubstituted at the 2 position: 2-(4-isobutylphenyl)-2,3a-dimethyl-2,3,3a,4-tetrahydro-1Hpyrrolo[1,2-*a*]benzimidazol-1-one (CSD refcode AKURII; Patil et al., 2010) and 5a-p-tolyl-5a,5b,6,7,8,9,9a,10-octahydro-5H-isoindolo(2,1-a)benzimidazol-10-one – a substituted benzimidazolone ring fused with cyclohexane (CSD refcode ZENVUJ; Sillanpää et al., 1995). From comparison of the reported structure with literature data, one can notice that the N1-C5 bond length in the title structure is shorter than in the related heterocycles CIGPEN01 and AKURII. This is related to the  $\pi$ -acceptor properties of the nitrophenyldiazenyl group.

#### 7. Synthesis and crystallization

The synthesis of **2** was carried out according to the procedure, proposed by Gavkus *et al.*, 2012, starting from 4-nitroaniline and **1**. The product was isolated with 87% yield and recrystallized from acetonitrile as ruby-red prisms. A suitable single crystal was obtained by slow cooling of the saturated solution of **2** in DMSO-acetonitrile mixture at 1:1 ratio.

#### 8. Refinement

Crystal data, details of data collection and structure refinement details are summarized in Table 3. All non-H atoms, involving solvent molecules, were refined anisotropically. The N-H hydrogen atom was located from a difference map and refined isotropically. The C-H hydrogen atoms were positioned geometrically and refined using a riding model.

#### **Funding information**

This work was supported by the Russian Science Foundation (grant No. 15-13-10007 to Alevtina Yegorova).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Centore, R., Carella, A., Pugliese, A., Sirigu, A. & Tuzi, A. (2006). Acta Cryst. C62, 0531–0533.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Frisch, M. J., et al. (2010). GAUSSIAN09, Revision C. 01. Gaussian Inc., Wallingford, CT, USA.
- Gavkus, D. N., Maiorova, O. A., Borisov, M. Yu. & Egorova, A. Yu. (2012). Russ. J. Org. Chem. 48, 1229–1232.
- Grinev, V. S. & Egorova, A. Y. (2013). Acta Cryst. C69, 880-883.

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.
- Kasyan, O., Kalchenko, V., Böhmer, V. & Bolte, M. (2007). Acta Cryst. E63, o2346–o2348.
- Lu, R., Han, L., Zhang, M., Wang, B. & Wang, H. (2009). Acta Cryst. E65, 0344.
- Patil, N. T., Mutyala, A. K., Lakshmi, P. G. V. V., Gajula, B., Sridhar, B., Pottireddygari, G. R. & Rao, T. P. (2010). J. Org. Chem. 75, 5963–5975.
- Rodriguez, M. A., Zifer, T., Vance, A. L., Wong, B. M. & Leonard, F. (2008). Acta Cryst. E64, 0595.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sillanpää, R., Csende, F. & Stájer, G. (1995). Acta Cryst. C**51**, 2169–2171.
- Šimůnek, P., Svobodová, M., Bertolasi, V., Pretto, L., Lyčka, A. & Macháček, V. (2007). *New J. Chem.* **31**, 429–438.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth, Australia.
- Yazıcı, S., Albayrak, Ç., Gümrükçüoğlu, İ., Şenel, İ. & Büyükgüngör, O. (2011). J. Mol. Struct. 985, 292–298.
- You, X.-L., Zhang, Y. & Zhang, D.-C. (2006). Acta Cryst. E62, 0668–0670.
- Zhao, Y. & Truhlar, D. G. (2004). J. Phys. Chem. A, 108, 6908–6918.

## supporting information

## Acta Cryst. (2017). E73, 1590-1594 [https://doi.org/10.1107/S2056989017013937]

(*E*)-7-[(4-Nitrophenyl)diazenyl]-3a-(*p*-tolyl)-2,3,3a,4-tetrahydro-1*H*benzo[*d*]pyrrolo[1,2-*a*]imidazol-1-one 0.58-dimethyl sulfoxide 0.42-acetonitrile solvate: crystal structure, Hirshfeld analysis and DFT estimation of the energy of intermolecular interactions

## Vyacheslav S. Grinev, Natalya V. Babkina and Alevtina Yu. Yegorova

### **Computing details**

Data collection: *APEX2* (Bruker, 2011); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(*E*)-7-[(4-Nitrophenyl)diazenyl]-3a-(*p*-tolyl)-2,3,3a,4-tetrahydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazol-1-one 0.58-dimethyl sulfoxide 0.42-acetonitrile solvate

#### Crystal data

| Z = 2                                                                     |
|---------------------------------------------------------------------------|
| F(000) = 499                                                              |
| $D_{\rm x} = 1.349 {\rm Mg} {\rm m}^{-3}$                                 |
| Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å                     |
| Cell parameters from 679 reflections                                      |
| $\theta = 3-30^{\circ}$                                                   |
| $\mu = 0.14 \text{ mm}^{-1}$                                              |
| T = 100  K                                                                |
| Prism, red                                                                |
| $0.27 \times 0.22 \times 0.21 \text{ mm}$                                 |
|                                                                           |
|                                                                           |
| 15024 measured reflections                                                |
| 6820 independent reflections                                              |
| 5126 reflections with $I > 2\sigma(I)$                                    |
| $R_{\rm int} = 0.024$                                                     |
| $\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$ |
| $h = -10 \rightarrow 10$                                                  |
| $k = -15 \rightarrow 14$                                                  |
| $l = -22 \rightarrow 22$                                                  |
|                                                                           |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.050$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.134$                               | neighbouring sites                                         |
| S = 1.00                                        | H atoms treated by a mixture of independent                |
| 6820 reflections                                | and constrained refinement                                 |
| 350 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0632P)^2 + 0.525P]$           |
| 25 restraints                                   | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                     |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| direct methods                                  | $\Delta  ho_{ m max} = 0.46 \ { m e} \ { m \AA}^{-3}$      |
|                                                 | $\Delta \rho_{\rm min} = -0.50 \ {\rm e} \ {\rm \AA}^{-3}$ |

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | v            | Ζ            | $U_{\rm iso}^*/U_{\rm eq}$ | Occ. (<1) |
|-----|--------------|--------------|--------------|----------------------------|-----------|
| 01  | 0.17180 (14) | 0.76220 (11) | 0.30872 (7)  | 0.0229 (2)                 |           |
| O2  | 0.2794 (2)   | 0.02811 (13) | -0.10319 (9) | 0.0436 (4)                 |           |
| 03  | 0.5660 (2)   | 0.01862 (13) | -0.17906 (8) | 0.0428 (3)                 |           |
| N1  | 0.76692 (17) | 0.79781 (11) | 0.29851 (7)  | 0.0152 (2)                 |           |
| H1N | 0.876 (3)    | 0.810 (2)    | 0.3093 (13)  | 0.035 (5)*                 |           |
| N2  | 0.48636 (16) | 0.73034 (11) | 0.33286 (7)  | 0.0141 (2)                 |           |
| N3  | 0.70223 (19) | 0.43649 (12) | 0.08643 (7)  | 0.0200 (2)                 |           |
| N4  | 0.54027 (19) | 0.40565 (12) | 0.10212 (7)  | 0.0203 (2)                 |           |
| N5  | 0.4347 (3)   | 0.05826 (14) | -0.11836 (9) | 0.0330 (3)                 |           |
| C1  | 0.28738 (19) | 0.79333 (14) | 0.34383 (8)  | 0.0168 (3)                 |           |
| C2  | 0.2492 (2)   | 0.90348 (15) | 0.40379 (9)  | 0.0205 (3)                 |           |
| H2A | 0.2166       | 0.8749       | 0.4627       | 0.025*                     |           |
| H2B | 0.1403       | 0.9792       | 0.3914       | 0.025*                     |           |
| C3  | 0.44855 (19) | 0.93659 (13) | 0.38670 (9)  | 0.0168 (3)                 |           |
| H3A | 0.4570       | 0.9966       | 0.3379       | 0.020*                     |           |
| H3B | 0.4686       | 0.9767       | 0.4362       | 0.020*                     |           |
| C4  | 0.59959 (18) | 0.80249 (13) | 0.36856 (8)  | 0.0135 (2)                 |           |
| C5  | 0.77798 (19) | 0.70403 (13) | 0.24332 (8)  | 0.0145 (2)                 |           |
| C6  | 0.9259 (2)   | 0.65182 (14) | 0.17582 (8)  | 0.0181 (3)                 |           |
| H6A | 1.0456       | 0.6763       | 0.1641       | 0.022*                     |           |
| C7  | 0.8930 (2)   | 0.56275 (14) | 0.12611 (8)  | 0.0189 (3)                 |           |
| H7A | 0.9922       | 0.5261       | 0.0797       | 0.023*                     |           |
| C8  | 0.7174 (2)   | 0.52528 (13) | 0.14252 (8)  | 0.0172 (3)                 |           |
| C9  | 0.5690(2)    | 0.57522 (13) | 0.21261 (8)  | 0.0157 (3)                 |           |

| H9A  | 0.4504       | 0.5494       | 0.2253       | 0.019*      |           |
|------|--------------|--------------|--------------|-------------|-----------|
| C10  | 0.60410 (18) | 0.66223 (13) | 0.26114 (8)  | 0.0138 (2)  |           |
| C11  | 0.6773 (2)   | 0.73681 (13) | 0.44615 (8)  | 0.0166 (3)  |           |
| C12  | 0.8005 (2)   | 0.78988 (14) | 0.48057 (8)  | 0.0169 (3)  |           |
| H12A | 0.8305       | 0.8668       | 0.4564       | 0.020*      |           |
| C13  | 0.8798 (2)   | 0.73152 (15) | 0.54974 (9)  | 0.0215 (3)  |           |
| H13A | 0.9633       | 0.7692       | 0.5724       | 0.026*      |           |
| C14  | 0.8394 (3)   | 0.61915 (17) | 0.58628 (11) | 0.0332 (4)  |           |
| C15  | 0.7196 (4)   | 0.5662 (2)   | 0.55122 (14) | 0.0515 (6)  |           |
| H15A | 0.6917       | 0.4885       | 0.5749       | 0.062*      |           |
| C16  | 0.6385 (3)   | 0.62415 (19) | 0.48177 (12) | 0.0401 (5)  |           |
| H16A | 0.5560       | 0.5858       | 0.4589       | 0.048*      |           |
| C17  | 0.9234 (4)   | 0.5562 (2)   | 0.66234 (13) | 0.0463 (5)  |           |
| H17A | 0.9225       | 0.4646       | 0.6666       | 0.069*      |           |
| H17B | 0.8426       | 0.6022       | 0.7129       | 0.069*      |           |
| H17C | 1.0596       | 0.5610       | 0.6568       | 0.069*      |           |
| C18  | 0.5271 (2)   | 0.31506 (14) | 0.04503 (9)  | 0.0214 (3)  |           |
| C19  | 0.6755 (3)   | 0.26357 (16) | -0.02325 (9) | 0.0289 (3)  |           |
| H19A | 0.7968       | 0.2859       | -0.0327      | 0.035*      |           |
| C20  | 0.6442 (3)   | 0.17971 (17) | -0.07702(10) | 0.0320 (4)  |           |
| H20A | 0.7424       | 0.1453       | -0.1243      | 0.038*      |           |
| C21  | 0.4679 (3)   | 0.14689 (15) | -0.06083(10) | 0.0275 (3)  |           |
| C22  | 0.3205 (3)   | 0.19436 (15) | 0.00692 (10) | 0.0273 (3)  |           |
| H22A | 0.2010       | 0.1696       | 0.0168       | 0.033*      |           |
| C23  | 0.3516(2)    | 0.27924 (15) | 0.06024 (10) | 0.0249 (3)  |           |
| H23A | 0.2527       | 0.3131       | 0.1074       | 0.030*      |           |
| S1S  | 0.77680 (10) | 0.20694 (10) | 0.31863 (5)  | 0.0258 (3)  | 0.585 (3) |
| O1S  | 0.801 (2)    | 0.0884 (12)  | 0.3766 (7)   | 0.0334 (17) | 0.585 (3) |
| C1S  | 0.9536 (5)   | 0.1596 (4)   | 0.2247 (2)   | 0.0525 (11) | 0.585 (3) |
| H1SA | 1.0805       | 0.1651       | 0.2321       | 0.079*      | 0.585 (3) |
| H1SB | 0.9113       | 0.2167       | 0.1795       | 0.079*      | 0.585 (3) |
| HISC | 0.9634       | 0.0715       | 0.2118       | 0.079*      | 0.585 (3) |
| C2S  | 0.5644 (4)   | 0.2154 (3)   | 0.2752 (2)   | 0.0233 (6)  | 0.585 (3) |
| H2SA | 0.4507       | 0.2204       | 0.3185       | 0.035*      | 0.585 (3) |
| H2SB | 0.5891       | 0.1397       | 0.2419       | 0.035*      | 0.585 (3) |
| H2SC | 0.5403       | 0.2923       | 0.2402       | 0.035*      | 0.585 (3) |
| N1SB | 0.804 (5)    | 0.107 (2)    | 0.3821 (14)  | 0.036 (3)   | 0.415 (3) |
| C1SB | 0.7529 (9)   | 0.1442 (7)   | 0.3226 (4)   | 0.0437 (11) | 0.415 (3) |
| C2SB | 0.685 (2)    | 0.2100 (8)   | 0.2476 (6)   | 0.101 (4)   | 0.415 (3) |
| H2S1 | 0.7907       | 0.2424       | 0.2135       | 0.151*      | 0.415 (3) |
| H2S2 | 0.5678       | 0.2835       | 0.2639       | 0.151*      | 0.415 (3) |
| H2S3 | 0.6526       | 0.1483       | 0.2149       | 0.151*      | 0.415 (3) |
|      |              |              |              |             |           |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | U <sup>23</sup> |
|----|-------------|------------|------------|-------------|-------------|-----------------|
| 01 | 0.0135 (5)  | 0.0311 (6) | 0.0268 (5) | -0.0084 (4) | -0.0049 (4) | -0.0074 (4)     |
| O2 | 0.0700 (10) | 0.0360 (7) | 0.0395 (7) | -0.0281 (7) | -0.0255 (7) | 0.0013 (6)      |

# supporting information

| 03   | 0.0742 (10) | 0.0321 (7)  | 0.0254 (6)  | -0.0148 (7)  | -0.0157 (6)  | -0.0063 (5) |
|------|-------------|-------------|-------------|--------------|--------------|-------------|
| N1   | 0.0126 (5)  | 0.0217 (6)  | 0.0142 (5)  | -0.0085 (4)  | -0.0030 (4)  | -0.0009 (4) |
| N2   | 0.0124 (5)  | 0.0180 (5)  | 0.0143 (5)  | -0.0068 (4)  | -0.0037 (4)  | -0.0023 (4) |
| N3   | 0.0273 (6)  | 0.0175 (6)  | 0.0159 (5)  | -0.0057 (5)  | -0.0064 (5)  | 0.0002 (4)  |
| N4   | 0.0296 (6)  | 0.0182 (6)  | 0.0152 (5)  | -0.0078 (5)  | -0.0074 (5)  | -0.0006 (4) |
| N5   | 0.0608 (10) | 0.0216 (7)  | 0.0228 (7)  | -0.0140 (7)  | -0.0196 (7)  | 0.0026 (5)  |
| C1   | 0.0131 (6)  | 0.0214 (7)  | 0.0169 (6)  | -0.0066 (5)  | -0.0021 (5)  | -0.0014 (5) |
| C2   | 0.0149 (6)  | 0.0245 (7)  | 0.0225 (7)  | -0.0052 (5)  | -0.0022 (5)  | -0.0077 (6) |
| C3   | 0.0175 (6)  | 0.0181 (6)  | 0.0171 (6)  | -0.0062 (5)  | -0.0059 (5)  | -0.0025 (5) |
| C4   | 0.0124 (5)  | 0.0178 (6)  | 0.0135 (6)  | -0.0080 (5)  | -0.0038 (4)  | -0.0009 (5) |
| C5   | 0.0137 (6)  | 0.0177 (6)  | 0.0133 (6)  | -0.0048 (5)  | -0.0052 (4)  | 0.0019 (5)  |
| C6   | 0.0145 (6)  | 0.0250 (7)  | 0.0156 (6)  | -0.0073 (5)  | -0.0031 (5)  | 0.0016 (5)  |
| C7   | 0.0182 (6)  | 0.0228 (7)  | 0.0133 (6)  | -0.0029 (5)  | -0.0015 (5)  | -0.0007 (5) |
| C8   | 0.0211 (6)  | 0.0170 (6)  | 0.0140 (6)  | -0.0047 (5)  | -0.0054 (5)  | 0.0003 (5)  |
| C9   | 0.0168 (6)  | 0.0171 (6)  | 0.0146 (6)  | -0.0060 (5)  | -0.0046 (5)  | 0.0005 (5)  |
| C10  | 0.0127 (5)  | 0.0163 (6)  | 0.0127 (6)  | -0.0041 (5)  | -0.0031 (4)  | 0.0007 (5)  |
| C11  | 0.0176 (6)  | 0.0192 (6)  | 0.0153 (6)  | -0.0069 (5)  | -0.0060 (5)  | 0.0004 (5)  |
| C12  | 0.0178 (6)  | 0.0194 (6)  | 0.0162 (6)  | -0.0082 (5)  | -0.0049 (5)  | -0.0001 (5) |
| C13  | 0.0246 (7)  | 0.0247 (7)  | 0.0197 (7)  | -0.0098 (6)  | -0.0106 (5)  | 0.0001 (5)  |
| C14  | 0.0520 (11) | 0.0288 (8)  | 0.0300 (8)  | -0.0189 (8)  | -0.0262 (8)  | 0.0108 (7)  |
| C15  | 0.0889 (17) | 0.0467 (11) | 0.0498 (12) | -0.0506 (12) | -0.0491 (12) | 0.0314 (10) |
| C16  | 0.0626 (12) | 0.0416 (10) | 0.0396 (10) | -0.0394 (10) | -0.0355 (9)  | 0.0208 (8)  |
| C17  | 0.0751 (15) | 0.0387 (10) | 0.0420 (11) | -0.0259 (10) | -0.0427 (11) | 0.0187 (8)  |
| C18  | 0.0346 (8)  | 0.0171 (6)  | 0.0144 (6)  | -0.0080 (6)  | -0.0088 (6)  | 0.0016 (5)  |
| C19  | 0.0455 (10) | 0.0283 (8)  | 0.0166 (7)  | -0.0192 (7)  | -0.0002 (6)  | -0.0026 (6) |
| C20  | 0.0537 (11) | 0.0285 (8)  | 0.0158 (7)  | -0.0175 (8)  | -0.0014 (7)  | -0.0033 (6) |
| C21  | 0.0514 (10) | 0.0172 (7)  | 0.0191 (7)  | -0.0114 (7)  | -0.0175 (7)  | 0.0026 (5)  |
| C22  | 0.0363 (9)  | 0.0213 (7)  | 0.0295 (8)  | -0.0092 (6)  | -0.0172 (7)  | 0.0017 (6)  |
| C23  | 0.0309 (8)  | 0.0211 (7)  | 0.0239 (7)  | -0.0053 (6)  | -0.0104 (6)  | -0.0023 (6) |
| S1S  | 0.0239 (4)  | 0.0302 (5)  | 0.0298 (4)  | -0.0135 (3)  | -0.0133 (3)  | 0.0054 (3)  |
| O1S  | 0.0293 (17) | 0.039 (4)   | 0.038 (3)   | -0.015 (2)   | -0.021 (2)   | 0.020 (3)   |
| C1S  | 0.0248 (15) | 0.059 (2)   | 0.056 (2)   | -0.0019 (15) | 0.0106 (14)  | 0.0246 (19) |
| C2S  | 0.0258 (13) | 0.0254 (14) | 0.0225 (14) | -0.0121 (11) | -0.0089 (10) | 0.0073 (10) |
| N1SB | 0.040 (4)   | 0.040 (5)   | 0.035 (3)   | -0.018 (3)   | -0.017 (3)   | 0.001 (3)   |
| C1SB | 0.062 (3)   | 0.036 (3)   | 0.049 (3)   | -0.027 (2)   | -0.027 (2)   | 0.009 (2)   |
| C2SB | 0.212 (13)  | 0.060 (5)   | 0.073 (6)   | -0.066 (7)   | -0.095 (7)   | 0.028 (4)   |
|      |             |             |             |              |              |             |

Geometric parameters (Å, °)

| 01—C1  | 1.2219 (16) | C13—H13A | 0.9500    |
|--------|-------------|----------|-----------|
| O2—N5  | 1.224 (2)   | C14—C15  | 1.378 (2) |
| O3—N5  | 1.228 (2)   | C14—C17  | 1.512 (2) |
| N1—C5  | 1.3670 (17) | C15—C16  | 1.396 (2) |
| N1—C4  | 1.4787 (17) | C15—H15A | 0.9500    |
| N1—H1N | 0.88 (2)    | C16—H16A | 0.9500    |
| N2—C1  | 1.3737 (17) | C17—H17A | 0.9800    |
| N2-C10 | 1.4091 (17) | C17—H17B | 0.9800    |
| N2—C4  | 1.4828 (16) | C17—H17C | 0.9800    |
|        |             |          |           |

| NT2 NT4                                          | 1 2729 (19)              | C19 C22                     | 1 202 (2)            |
|--------------------------------------------------|--------------------------|-----------------------------|----------------------|
| N3—N4                                            | 1.2/28 (18)              | C18 - C23                   | 1.393 (2)            |
| N3-C8                                            | 1.4012 (18)              |                             | 1.399 (2)            |
| N4—C18                                           | 1.4214 (18)              | C19—C20                     | 1.386 (2)            |
| N5—C21                                           | 1.4727 (19)              | С19—Н19А                    | 0.9500               |
| C1—C2                                            | 1.5109 (19)              | C20—C21                     | 1.381 (3)            |
| C2—C3                                            | 1.5409 (19)              | C20—H20A                    | 0.9500               |
| C2—H2A                                           | 0.9900                   | C21—C22                     | 1.381 (2)            |
| С2—Н2В                                           | 0.9900                   | C22—C23                     | 1.388 (2)            |
| C3—C4                                            | 1.5354 (19)              | C22—H22A                    | 0.9500               |
| С3—НЗА                                           | 0.9900                   | C23—H23A                    | 0.9500               |
| C3—H3B                                           | 0.9900                   | S1S-01S                     | 1.517 (11)           |
| C4—C11                                           | 1 5231 (18)              | S1S-C2S                     | 1 776 (3)            |
| C5-C6                                            | 1 3912 (19)              | S1S-C1S                     | 1.776(3)<br>1 785(4) |
| $C_{5}$ $C_{10}$                                 | 1.3912(19)<br>1.4162(18) |                             | 0.0500               |
| C6_C7                                            | 1.4102(10)               |                             | 0.9599               |
|                                                  | 1.566 (2)                |                             | 0.9601               |
|                                                  | 0.9500                   | CIS—HISC                    | 0.9600               |
| C/C8                                             | 1.4021 (19)              | C2S—H2SA                    | 0.9598               |
| С7—Н7А                                           | 0.9500                   | C2S—H2SB                    | 0.9600               |
| C8—C9                                            | 1.4160 (19)              | C2S—H2SC                    | 0.9601               |
| C9—C10                                           | 1.3659 (18)              | N1SB—C1SB                   | 1.108 (16)           |
| С9—Н9А                                           | 0.9500                   | C1SB—C2SB                   | 1.460 (8)            |
| C11—C16                                          | 1.379 (2)                | C2SB—H2SB                   | 1.1778               |
| C11—C12                                          | 1.3936 (18)              | C2SB—H2SC                   | 1.1738               |
| C12—C13                                          | 1.3874 (19)              | C2SB—H2S1                   | 0.9800               |
| C12—H12A                                         | 0.9500                   | C2SB—H2S2                   | 0.9800               |
| C13—C14                                          | 1.386 (2)                | C2SB—H2S3                   | 0.9800               |
|                                                  |                          |                             |                      |
| C5—N1—C4                                         | 109.49 (10)              | C15—C14—C13                 | 117.95 (14)          |
| C5—N1—H1N                                        | 120.1 (14)               | C15—C14—C17                 | 120.77 (16)          |
| C4—N1—H1N                                        | 118.6 (13)               | C13—C14—C17                 | 121.28 (15)          |
| C1 - N2 - C10                                    | 126 55 (11)              | C14-C15-C16                 | 121 51 (16)          |
| C1 - N2 - C4                                     | 112 88 (11)              | $C_{14}$ $C_{15}$ $H_{15A}$ | 119.2                |
| C10 - N2 - C4                                    | 112.00(11)<br>110.00(10) | C16-C15-H15A                | 119.2                |
| N4 N2 C8                                         | 110.00(10)<br>114.52(12) | $C_{11}$ $C_{16}$ $C_{15}$  | 119.2<br>120.37(15)  |
| $N_{1} = N_{2} = C_{0}$                          | 114.32(12)<br>112.05(12) | $C_{11} = C_{16} = C_{15}$  | 120.37 (13)          |
| $\frac{1}{10} - \frac{1}{10} + \frac{1}{10} = 0$ | 113.33(12)<br>122.77(14) | C15 $C16$ $U16A$            | 119.0                |
| 02 - N5 - 03                                     | 123.77(14)               | C13-C10-H10A                | 119.8                |
| 02-N5-C21                                        | 118.60 (16)              | C14 - C17 - H17A            | 109.5                |
| 03—N5—C21                                        | 117.63 (16)              |                             | 109.5                |
| 01—C1—N2                                         | 123.73 (13)              | H17A—C17—H17B               | 109.5                |
| 01—C1—C2                                         | 129.41 (13)              | C14—C17—H17C                | 109.5                |
| N2—C1—C2                                         | 106.85 (11)              | H17A—C17—H17C               | 109.5                |
| C1—C2—C3                                         | 102.37 (11)              | H17B—C17—H17C               | 109.5                |
| C1—C2—H2A                                        | 111.3                    | C23—C18—C19                 | 120.23 (14)          |
| C3—C2—H2A                                        | 111.3                    | C23—C18—N4                  | 115.52 (14)          |
| C1—C2—H2B                                        | 111.3                    | C19—C18—N4                  | 124.25 (14)          |
| C3—C2—H2B                                        | 111.3                    | C20—C19—C18                 | 119.51 (16)          |
| H2A—C2—H2B                                       | 109.2                    | C20—C19—H19A                | 120.2                |
| C4—C3—C2                                         | 102.76 (11)              | C18—C19—H19A                | 120.2                |

| С4—С3—Н3А                  | 111.2                    | C21—C20—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.97 (16)         |
|----------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| С2—С3—НЗА                  | 111.2                    | C21—C20—H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.5               |
| C4—C3—H3B                  | 111.2                    | С19—С20—Н20А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.5               |
| С2—С3—Н3В                  | 111.2                    | C22—C21—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 122.72 (14)         |
| НЗА—СЗ—НЗВ                 | 109.1                    | C22—C21—N5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118.46 (15)         |
| N1—C4—N2                   | 101.19 (10)              | C20—C21—N5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118.82 (16)         |
| N1—C4—C11                  | 109.81 (10)              | C21—C22—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.16 (15)         |
| $N_{2}$ C4 C11             | 113 51 (11)              | C21—C22—H22A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.9               |
| N1 - C4 - C3               | 116 20 (11)              | $C_{23}$ $C_{22}$ $H_{22A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.9               |
| $N_2 C_4 C_3$              | 102.46(10)               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.9<br>120.30(15) |
| 112 - C4 - C3              | 102.40(10)               | $C_{22} = C_{23} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.39 (13)         |
| N1 C5 C6                   | 112.90(11)<br>120.84(12) | $C_{22} = C_{23} = H_{23} A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.0               |
| NI = C5 = C10              | 129.84 (12)              | $C10 - C23 - \Pi 23A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.8               |
| NI = CS = CI0              | 110.23 (11)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 105.3 (5)           |
|                            | 119.90 (12)              | UIS—SIS—CIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 106.9 (6)           |
| C/C6C5                     | 117.82 (12)              | C2S—S1S—C1S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96.38 (17)          |
| С7—С6—Н6А                  | 121.1                    | S1S—C1S—H1SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.8               |
| С5—С6—Н6А                  | 121.1                    | S1S—C1S—H1SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.3               |
| C6—C7—C8                   | 121.87 (13)              | H1SA—C1S—H1SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5               |
| С6—С7—Н7А                  | 119.1                    | S1S—C1S—H1SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.3               |
| С8—С7—Н7А                  | 119.1                    | H1SA—C1S—H1SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5               |
| N3—C8—C7                   | 115.87 (12)              | H1SB—C1S—H1SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5               |
| N3—C8—C9                   | 123.65 (12)              | S1S—C2S—H2SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111.1               |
| C7—C8—C9                   | 120.48 (12)              | S1S—C2S—H2SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.6               |
| C10—C9—C8                  | 116.92 (12)              | H2SA—C2S—H2SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5               |
| С10—С9—Н9А                 | 121.5                    | S1S—C2S—H2SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107.8               |
| С8—С9—Н9А                  | 121.5                    | H2SA—C2S—H2SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5               |
| C9-C10-N2                  | 130.64 (12)              | H2SB—C2S—H2SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5               |
| C9-C10-C5                  | 122.94(12)               | N1SB—C1SB—C2SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 172.7 (15)          |
| $N_{2}$ $-C_{10}$ $-C_{5}$ | 106.39(11)               | C1SB = C2SB = H2SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93 7                |
| $C_{16}$ $C_{11}$ $C_{12}$ | 118 43 (13)              | C1SB = C2SB = H2SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130.4               |
| $C_{16}$ $C_{11}$ $C_{4}$  | 173, 11, (12)            | H2SB C2SB H2SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83.6                |
| $C_{10} = C_{11} = C_{4}$  | 125.11(12)<br>118.40(12) | $\begin{array}{c} 1125D \\ \hline \\ C1SP \\ \hline \\ C2SP \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2SC \\ \hline \\ H2S$ | 100 5               |
| $C_{12} = C_{11} = C_{4}$  | 110.40(12)<br>120.64(12) | C1SD = C2SD = H2S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.5               |
| $C_{13} = C_{12} = C_{11}$ | 120.04 (13)              | $\begin{array}{c} C1SD \\ \hline \\ C2SD  | 109.5               |
| C13—C12—H12A               | 119.7                    | $H_2S1 \longrightarrow C_2SB \longrightarrow H_2S_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5               |
| CII—CI2—HIZA               | 119.7                    | C1SB—C2SB—H2S3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5               |
| C14—C13—C12                | 121.10 (13)              | H2S1—C2SB—H2S3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5               |
| C14—C13—H13A               | 119.5                    | H2S2—C2SB—H2S3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5               |
| C12—C13—H13A               | 119.5                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| C8—N3—N4—C18               | -179.71 (11)             | N1C5C10C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 175.62 (12)         |
| C10—N2—C1—O1               | 27.6 (2)                 | C6—C5—C10—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.8 (2)            |
| C4—N2—C1—O1                | 168.43 (13)              | N1-C5-C10-N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.58 (14)          |
| C10—N2—C1—C2               | -151.40 (13)             | C6C5C10N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 179.04 (11)         |
| C4—N2—C1—C2                | -10.58 (15)              | N1-C4-C11-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -115.12 (17)        |
| O1—C1—C2—C3                | -150.17 (15)             | N2—C4—C11—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2.7 (2)            |
| N2-C1-C2-C3                | 28.76 (14)               | C3-C4-C11-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 113.40 (17)         |
| C1 - C2 - C3 - C4          | -35 31 (13)              | N1-C4-C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61 98 (16)          |
| $C_1 C_2 C_3 - C_7$        | -16.28(12)               | N2  C4  C11  C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 174 42 (12)         |
| CJ-IN1-C4-IN2              | 10.20 (13)               | 112-04-011-012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/4.42 (12)         |

| C5—N1—C4—C11  | 103.95 (12)  | C3—C4—C11—C12   | -69.49 (15)  |
|---------------|--------------|-----------------|--------------|
| C5—N1—C4—C3   | -126.30 (12) | C16—C11—C12—C13 | -0.9 (2)     |
| C1—N2—C4—N1   | -132.55 (11) | C4—C11—C12—C13  | -178.10 (13) |
| C10—N2—C4—N1  | 14.76 (13)   | C11—C12—C13—C14 | 0.2 (2)      |
| C1—N2—C4—C11  | 109.88 (13)  | C12-C13-C14-C15 | 0.7 (3)      |
| C10—N2—C4—C11 | -102.81 (12) | C12-C13-C14-C17 | -179.21 (18) |
| C1—N2—C4—C3   | -12.25 (14)  | C13—C14—C15—C16 | -0.9 (4)     |
| C10—N2—C4—C3  | 135.06 (11)  | C17—C14—C15—C16 | 179.0 (2)    |
| C2-C3-C4-N1   | 138.38 (11)  | C12—C11—C16—C15 | 0.7 (3)      |
| C2—C3—C4—N2   | 29.10 (12)   | C4-C11-C16-C15  | 177.80 (19)  |
| C2—C3—C4—C11  | -93.40 (12)  | C14—C15—C16—C11 | 0.2 (4)      |
| C4—N1—C5—C6   | -169.39 (13) | N3—N4—C18—C23   | -179.91 (12) |
| C4—N1—C5—C10  | 12.44 (14)   | N3—N4—C18—C19   | -0.5 (2)     |
| N1—C5—C6—C7   | -175.73 (13) | C23—C18—C19—C20 | 1.9 (2)      |
| C10—C5—C6—C7  | 2.29 (19)    | N4-C18-C19-C20  | -177.45 (14) |
| C5—C6—C7—C8   | -0.1 (2)     | C18—C19—C20—C21 | -1.3 (3)     |
| N4—N3—C8—C7   | -179.04 (12) | C19—C20—C21—C22 | 0.1 (3)      |
| N4—N3—C8—C9   | 1.62 (19)    | C19—C20—C21—N5  | 179.70 (15)  |
| C6—C7—C8—N3   | 178.86 (12)  | O2—N5—C21—C22   | -1.3 (2)     |
| C6—C7—C8—C9   | -1.8 (2)     | O3—N5—C21—C22   | 178.84 (14)  |
| N3—C8—C9—C10  | -179.31 (12) | O2—N5—C21—C20   | 179.07 (15)  |
| C7—C8—C9—C10  | 1.4 (2)      | O3—N5—C21—C20   | -0.8 (2)     |
| C8—C9—C10—N2  | 178.58 (13)  | C20—C21—C22—C23 | 0.5 (2)      |
| C8—C9—C10—C5  | 0.86 (19)    | N5-C21-C22-C23  | -179.14 (13) |
| C1—N2—C10—C9  | -44.5 (2)    | C21—C22—C23—C18 | 0.2 (2)      |
| C4—N2—C10—C9  | 173.73 (13)  | C19—C18—C23—C22 | -1.3 (2)     |
| C1—N2—C10—C5  | 133.46 (13)  | N4-C18-C23-C22  | 178.05 (13)  |
| C4—N2—C10—C5  | -8.26 (14)   |                 |              |

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.

| D—H      | H···A                                                           | D···A                                                                                                                                                                 | D—H…A                                                                                                  |
|----------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 0.88 (2) | 2.04 (2)                                                        | 2.8550 (15)                                                                                                                                                           | 154.9 (19)                                                                                             |
| 0.99     | 2.52                                                            | 3.43 (2)                                                                                                                                                              | 153                                                                                                    |
| 0.99     | 2.43                                                            | 3.348 (14)                                                                                                                                                            | 154                                                                                                    |
| 0.99     | 2.43                                                            | 3.37 (3)                                                                                                                                                              | 158                                                                                                    |
| 0.96     | 2.93                                                            | 3.766 (3)                                                                                                                                                             | 146                                                                                                    |
|          | <i>D</i> —H<br>0.88 (2)<br>0.99<br>0.99<br>0.99<br>0.99<br>0.96 | D—H         H···A           0.88 (2)         2.04 (2)           0.99         2.52           0.99         2.43           0.99         2.43           0.96         2.93 | DHH…AD…A0.88 (2)2.04 (2)2.8550 (15)0.992.523.43 (2)0.992.433.348 (14)0.992.433.37 (3)0.962.933.766 (3) |

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*-1, *y*+1, *z*.