



ISSN 2056-9890

Received 13 September 2017 Accepted 19 September 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

**Keywords:** crystal structure; polymorph; tetrazole-containing compounds; hydrogen bonding;  $\pi$ - $\pi$  interactions.

CCDC reference: 1575392

**Supporting information**: this article has supporting information at journals.iucr.org/e

# A monoclinic polymorph of 1,2-bis[(1-methyl-1*H*-tetrazol-5-yl)sulfanyl]ethane (BMTTE)

#### Saray Argibay-Otero, Olaya Gómez-Paz and Rosa Carballo\*

Departamento de Química Inorgánica, Facultade de Química, Instituto de Investigación Sanitaria Galicia Sur – Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain. \*Correspondence e-mail: rcrial@uvigo.es

The synthesis and crystal structure of a monoclinic  $(P2_1/c)$  polymorph of the title compound,  $C_6H_{10}S_2N_8$ , are reported. The molecule has pseudo-twofold rotational symmetry, with the tetrazole rings being inclined to one another by 5.50 (6)°. In the crystal, molecules are linked by  $C-H\cdots$ N hydrogen bonds, forming chains propagating along [101] and enclosing  $R_2^2(20)$  ring motifs. The chains are linked by offset  $\pi-\pi$  interactions involving the tetrazole rings [intercentroid distances vary from 3.3567 (7) to 3.4227 (7) Å], forming layers parallel to the *ac* plane. The crystal structure of the triclinic polymorph ( $P\overline{1}$ ) has been described previously [Li *et al.* (2011). Acta Cryst. E**67**, o1669].

#### 1. Chemical context

Organic compounds such as the title compound (BMTTE) are frequently used as flexible ligands for the preparation of coordination polymers (Wang *et al.*, 2010). A triclinic polymorph of the title compound has been described previously by Li *et al.*, (2011). Here we describe the spectroscopic characterization and crystal structure of a new monoclinic polymorph of BMTTE, obtained by recrystallization and slow evaporation from a solution in CH<sub>3</sub>CN. Such compounds have been used in coordination chemistry (Zhao *et al.*, 2008) and in materials design (Wang *et al.*, 2009, 2010).



#### 2. Structural commentary

The molecule structure of the title compound, Fig. 1, shows N–N and C–S bond distances and S–C–C–S and C–S–C–C torsion angles similar to the values observed in the triclinic form (Li *et al.*, 2011). As shown by the molecular overlap of the two polymorphs (Fig. 2), drawn with *Mercury* (Macrae *et al.*, 2008), there is only a slight difference in their geometry. The tetrazole rings (N1–N4/C1 and N5–N8/C4) are inclined to one another by 5.50 (6)° in the title polymorph and by 1.9 (2)° in the triclinic polymorph. While there are only small differences in the geometric parameters between the two





### research communications



Figure 1

Molecular structure of the title compound, the monoclinic polymorph of BMTTE, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.



Figure 2

A molecular structure overlap (*Mercury*; Macrae *et al.*, 2008) of the title monoclinic polymorph of BMTTE (blue) and the triclinic polymorph (red; Li *et al.*, 2011).

polymorphic forms, they are enough to produce a different crystal packing.

#### 3. Supramolecular features

In the crystal, molecules are linked by  $C-H\cdots N$  hydrogen bonds, forming chains propagating along [101] and enclosing

| Table 1       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - \mathbf{H} \cdots A$              | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $C11 - H11B \cdot \cdot \cdot N8^{i}$  | 0.98 | 2.39                    | 3.3533 (13)  | 168                                  |
| $C12 - H12B \cdot \cdot \cdot N4^{ii}$ | 0.98 | 2.36                    | 3.3183 (13)  | 165                                  |

Symmetry codes: (i) -x + 1, -y, -z; (ii) -x + 2, -y, -z + 1.

 $R_2^2(20)$  ring motifs (Fig. 3 and Table 1). The chains are linked by offset  $\pi - \pi$  interactions involving the tetrazole rings, forming layers parallel to the *ac* plane, as shown in Fig. 4. The numerical details of these interactions are:  $Cg1 \cdots Cg1^i =$ 3.365 (1) Å,  $\alpha = 0^\circ$ , interplanar distance = 3.2056 (4) Å, offset = 1.024 Å;  $Cg1 \cdots Cg2^{ii} = 3.423$  (1) Å,  $\alpha = 5.5$  (1)°, interplanar distances = 3.278 (4) and 3.321 (4) Å, offset = 0.83 Å; and  $Cg2 \cdots Cg2^{iii} = 3.4227$  (7) Å,  $\alpha = 0^\circ$ , interplanar distance = 3.1346 (4) Å, offset = 1.201 Å; Cg1 and Cg2 are the centroids of the tetrazole rings N1–N4/C1 and N5–N8/C4, respectively; symmetry codes: (i) -x + 1, -y, -z; (ii) x - 1, y, z; (iii) -x + 2, -y, -z + 1.

As a result of these interactions, the molecules are packed very efficiently so that the Kitaigorodskii (1973) index is 72%. The crystal packing in the crystal of the triclinic polymorph is very similar, with a Kitaigorodskii index of 69% (*PLATON*; Spek, 2009).

#### 4. Database survey

A search of the Cambridge Structural Database (CSD; version 5.38, last update May 2017; Groom *et al.*, 2016) for the skeleton of the title compound gave 11 hits. Apart from the crystal structure of the triclinic polymorph of the title compound (CSD refcode EVAWUU; Li *et al.*, 2011), and that of a diphenyl substituted compound, 1,2-bis(1-phenyl-1*H*-tetrazol-5-ylsulfanyl)ethane (IXAVUY; Wang *et al.*, 2004), all the others involve coordination compounds of BMTTE.



Figure 3

A partial view of the crystal packing of the title compound, showing details of the  $C-H \cdots N$  hydrogen bonds (dashed lines, see Table 1).





Crystal packing of the title compound, showing details of the C-H···N hydrogen bonds (dashed lines, see Table 1) and examples of the  $\pi$ - $\pi$  interactions (blue double-headed arrows).

#### 5. Synthesis and crystallization

The title compound, (BMTTE), was synthesized by a slightly modified version of the procedure described by Li et al. (2011). 5-Mercapto-1-methyltetrazole (9.29 g, 0.08 mol) was added to a solution of sodium hydroxide (3.26 g, 0.08 mol) in EtOH (110 ml). The mixture was stirred at room temperature for one day. Dichloroethane (3.2 ml, 0.04 mol) in 6 ml of EtOH was then added dropwise and the mixture was refluxed for 18 h. The resulting white solid was filtered, washed with H<sub>2</sub>O and dried in vacuo (yield 88%; m.p. 417-419 K). Analysis calculated for C<sub>6</sub>H<sub>10</sub>S<sub>2</sub>N<sub>8</sub>: N 43.38, C 27.90, H 3.90%; Found: N 42.31, C 27.85, H 3.28%. IR (cm<sup>-1</sup>): 1469m, 1442m (1408m, 1391*m*)  $\nu$ (ring); 1276*m*, 1222*m*,  $\omega$ (CH–CH<sub>2</sub>); 1169*m*,  $\delta$ (CH); 1144m, 1078m, 1026m, δ(ring); 728m, 716m, γ(CH); 698s,  $\nu$ (C-S). <sup>1</sup>H NMR (400 MHz, dmso- $d_6$ )  $\delta$  in ppm: 3.93 (s, 6H, Hb), 3.66 (s, 4H, Ha). MS-ESI: m/z (%) = 259 (100)  $[C_6H_{10}S_2N_8+H^+]$ . Colourless prismatic crystals were obtained by slow evaporation of a solution in acetonitrile.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were included in calculated positions and treated as riding: C-H =0.98–0.99 Å with  $U_{iso}(H) = 1.5U_{eq}(C-methyl)$  and  $1.2U_{eq}(C)$ for other H atoms.

#### **Funding information**

Funding for this research was provided by: Ministry of Economy, Industry and Competitiveness (Spain) and

| Гable  | 2               |  |
|--------|-----------------|--|
| Experi | mental details. |  |

| Crystal data                                                                |                                            |
|-----------------------------------------------------------------------------|--------------------------------------------|
| Chemical formula                                                            | $C_6H_{10}N_8S_2$                          |
| Mr                                                                          | 258.34                                     |
| Crystal system, space group                                                 | Monoclinic, $P2_1/c$                       |
| Temperature (K)                                                             | 100                                        |
| a, b, c (Å)                                                                 | 8.2456 (10), 13.7471 (17),<br>9.6878 (12)  |
| β (°)                                                                       | 92 643 (4)                                 |
| $V(\dot{A}^3)$                                                              | 1097.0(2)                                  |
| 7                                                                           | 1057.0 (2)                                 |
| Radiation type                                                              |                                            |
| $(\text{mm}^{-1})$                                                          | 0.47                                       |
| $\mu$ (mm) $\Gamma$                                                         | 0.47<br>0.25 × 0.22 × 0.10                 |
| Crystal size (mm)                                                           | 0.25 × 0.22 × 0.19                         |
| Data collection                                                             |                                            |
| Diffractometer                                                              | Bruker D8 Venture Photon 100<br>CMOS       |
| Absorption correction                                                       | Multi-scan ( <i>SADABS</i> ; Bruker, 2014) |
| $T_{\min}, T_{\max}$                                                        | 0.697, 0.746                               |
| No. of measured, independent and                                            | 23909, 2725, 2620                          |
| observed $[I > 2\sigma(I)]$ reflections                                     |                                            |
| Rint                                                                        | 0.024                                      |
| $(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$                    | 0.668                                      |
|                                                                             |                                            |
| Refinement                                                                  |                                            |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                         | 0.022, 0.057, 1.08                         |
| No. of reflections                                                          | 2725                                       |
| No. of parameters                                                           | 148                                        |
| H-atom treatment                                                            | H-atom parameters constrained              |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.36, -0.25                                |
| , ,                                                                         |                                            |

Computer programs: APEX3 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS2014 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

European Regional Development Fund (EU) (CTQ2015-71211-REDT and CTQ2015-7091-R).

#### References

- Bruker (2014). APEX3, SAINT and SADABS. Bruker ASX Inc., Madison, Wisconsin, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kitaigorodskii, A. I. (1973). *Physical Chemistry*, Vol. 29, *Molecular Crystals and Molecules*. New York: Academic Press.
- Li, C.-R., Chen, T. & Xia, Z.-Q. (2011). Acta Cryst. E67, 01669.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, W. T., Chen, S. P. & Gao, S. L. (2009). *Eur. J. Inorg. Chem.* pp. 3475–3480.
- Wang, X., Hu, H. & Tian, A. (2010). Cryst. Growth Des. 10, 4786–4794.
- Wang, W., Liu, H.-M., Zheng, Y. & Zhang, W.-Q. (2004). Acta Cryst. E60, 01279–01280.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84–100.

## supporting information

Acta Cryst. (2017). E73, 1523-1525 [https://doi.org/10.1107/S205698901701341X]

A monoclinic polymorph of 1,2-bis[(1-methyl-1*H*-tetrazol-5-yl)sulfanyl]ethane (BMTTE)

### Saray Argibay-Otero, Olaya Gómez-Paz and Rosa Carballo

**Computing details** 

Data collection: *APEX3* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: *SHELXS2014* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

1,2-Bis[(1-methyl-1H-tetrazol-5-yl)sulfanyl]ethane

| Crystal data                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{6}H_{10}N_{8}S_{2}$ $M_{r} = 258.34$ Monoclinic, $P2_{1}/c$ $a = 8.2456 (10) \text{ Å}$ $b = 13.7471 (17) \text{ Å}$ $c = 9.6878 (12) \text{ Å}$ $\beta = 92.643 (4)^{\circ}$ $V = 1097.0 (2) \text{ Å}^{3}$ $Z = 4$ $F(000) = 536$          | $D_x = 1.564 \text{ Mg m}^{-3}$<br>Melting point: 144 K<br>Mo K $\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 9507 reflections<br>$\theta = 2.5-28.3^{\circ}$<br>$\mu = 0.47 \text{ mm}^{-1}$<br>T = 100  K<br>Prism, colourless<br>$0.25 \times 0.22 \times 0.19 \text{ mm}$                                                                       |
| Data collection                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                 |
| Bruker D8 Venture Photon 100 CMOS<br>diffractometer<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>(SADABS; Bruker, 2014)<br>$T_{\min} = 0.697, T_{\max} = 0.746$<br>23909 measured reflections<br><i>Refinement</i>    | 2725 independent reflections<br>2620 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.024$<br>$\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.5^{\circ}$<br>$h = -10 \rightarrow 11$<br>$k = -18 \rightarrow 18$<br>$l = -12 \rightarrow 12$                                                                                                                                  |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.022$<br>$wR(F^2) = 0.057$<br>S = 1.08<br>2725 reflections<br>148 parameters<br>0 restraints<br>Primary atom site location: structure-invariant<br>direct methods | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0262P)^2 + 0.493P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.36$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.25$ e Å <sup>-3</sup> |

Extinction correction: (SHELXL2014; Sheldrick, 2015), Fc\*=kFc[1+0.001xFc<sup>2</sup> $\lambda^3$ /sin(2 $\theta$ )]<sup>-1/4</sup> Extinction coefficient: 0.0376 (18)

Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x            | у            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|--------------|---------------|-----------------------------|
| S1   | 0.46814 (3)  | 0.19617 (2)  | 0.21662 (2)   | 0.01218 (8)                 |
| S2   | 0.99483 (3)  | 0.22655 (2)  | 0.31188 (3)   | 0.01382 (8)                 |
| N1   | 0.32833 (10) | 0.04027 (6)  | 0.08604 (8)   | 0.01158 (16)                |
| N2   | 0.33462 (11) | -0.05843 (6) | 0.08543 (9)   | 0.01445 (17)                |
| N3   | 0.44707 (11) | -0.08272 (6) | 0.17676 (9)   | 0.01511 (18)                |
| N4   | 0.51615 (11) | -0.00275 (6) | 0.23918 (9)   | 0.01383 (17)                |
| N5   | 1.15565 (10) | 0.07099 (6)  | 0.42528 (8)   | 0.01085 (16)                |
| N6   | 1.16663 (10) | -0.02693 (6) | 0.41075 (9)   | 0.01411 (17)                |
| N7   | 1.06184 (11) | -0.05083 (6) | 0.31273 (9)   | 0.01451 (17)                |
| N8   | 0.98081 (11) | 0.02894 (6)  | 0.26071 (9)   | 0.01352 (17)                |
| C1   | 0.44014 (11) | 0.07287 (7)  | 0.18059 (10)  | 0.01056 (18)                |
| C2   | 0.66415 (11) | 0.19192 (7)  | 0.31250 (10)  | 0.01208 (19)                |
| H2A  | 0.6649       | 0.2392       | 0.3896        | 0.014*                      |
| H2B  | 0.6818       | 0.1262       | 0.3520        | 0.014*                      |
| C3   | 0.79982 (12) | 0.21624 (7)  | 0.21671 (10)  | 0.01285 (19)                |
| H3A  | 0.7747       | 0.2784       | 0.1687        | 0.015*                      |
| H3B  | 0.8064       | 0.1647       | 0.1458        | 0.015*                      |
| C4   | 1.04182 (11) | 0.10381 (7)  | 0.33269 (10)  | 0.01087 (18)                |
| C11  | 0.21707 (12) | 0.09470 (7)  | -0.00653 (10) | 0.0147 (2)                  |
| H11A | 0.1360       | 0.1277       | 0.0476        | 0.022*                      |
| H11B | 0.1624       | 0.0499       | -0.0721       | 0.022*                      |
| H11C | 0.2781       | 0.1431       | -0.0572       | 0.022*                      |
| C12  | 1.25381 (12) | 0.12395 (7)  | 0.52931 (10)  | 0.0152 (2)                  |
| H12A | 1.3335       | 0.1642       | 0.4838        | 0.023*                      |
| H12B | 1.3105       | 0.0776       | 0.5914        | 0.023*                      |
| H12C | 1.1834       | 0.1656       | 0.5827        | 0.023*                      |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$    |
|----|--------------|--------------|--------------|--------------|--------------|-------------|
| S1 | 0.01044 (12) | 0.00922 (12) | 0.01639 (13) | 0.00092 (8)  | -0.00455 (8) | 0.00048 (8) |
| S2 | 0.01144 (13) | 0.00868 (12) | 0.02066 (14) | -0.00105 (8) | -0.00666 (9) | 0.00047 (8) |
| N1 | 0.0121 (4)   | 0.0099 (4)   | 0.0125 (4)   | 0.0000 (3)   | -0.0017 (3)  | 0.0000 (3)  |
| N2 | 0.0164 (4)   | 0.0100 (4)   | 0.0170 (4)   | 0.0008 (3)   | 0.0007 (3)   | -0.0005 (3) |
| N3 | 0.0153 (4)   | 0.0120 (4)   | 0.0178 (4)   | 0.0002 (3)   | -0.0007 (3)  | 0.0006 (3)  |

# supporting information

| N4  | 0.0140 (4) | 0.0111 (4) | 0.0162 (4) | 0.0013 (3)  | -0.0020 (3) | 0.0019 (3)  |
|-----|------------|------------|------------|-------------|-------------|-------------|
| N5  | 0.0110 (4) | 0.0094 (4) | 0.0119 (4) | 0.0003 (3)  | -0.0017 (3) | 0.0007 (3)  |
| N6  | 0.0156 (4) | 0.0100 (4) | 0.0168 (4) | 0.0010 (3)  | 0.0019 (3)  | 0.0010 (3)  |
| N7  | 0.0161 (4) | 0.0115 (4) | 0.0159 (4) | -0.0002 (3) | 0.0007 (3)  | -0.0003 (3) |
| N8  | 0.0150 (4) | 0.0109 (4) | 0.0145 (4) | -0.0013 (3) | -0.0014 (3) | -0.0010 (3) |
| C1  | 0.0091 (4) | 0.0114 (4) | 0.0111 (4) | 0.0003 (3)  | -0.0007 (3) | 0.0007 (3)  |
| C2  | 0.0107 (4) | 0.0114 (4) | 0.0136 (4) | 0.0000 (3)  | -0.0051 (3) | 0.0002 (3)  |
| C3  | 0.0108 (4) | 0.0120 (4) | 0.0153 (4) | -0.0006 (3) | -0.0048 (3) | 0.0015 (3)  |
| C4  | 0.0095 (4) | 0.0115 (4) | 0.0114 (4) | -0.0008 (3) | -0.0006 (3) | 0.0004 (3)  |
| C11 | 0.0137 (5) | 0.0152 (5) | 0.0144 (5) | 0.0018 (4)  | -0.0056 (4) | 0.0008 (4)  |
| C12 | 0.0152 (5) | 0.0157 (5) | 0.0140 (4) | -0.0022 (4) | -0.0062 (4) | -0.0003 (4) |
|     |            |            |            |             |             |             |

Geometric parameters (Å, °)

| S1—C1     | 1.7438 (10) | N7—N8         | 1.3681 (12) |
|-----------|-------------|---------------|-------------|
| S1—C2     | 1.8276 (10) | N8—C4         | 1.3290 (12) |
| S2—C4     | 1.7409 (10) | C2—C3         | 1.5232 (14) |
| S2—C3     | 1.8218 (10) | C2—H2A        | 0.9900      |
| N1—C1     | 1.3461 (12) | C2—H2B        | 0.9900      |
| N1—N2     | 1.3578 (12) | C3—H3A        | 0.9900      |
| N1-C11    | 1.4594 (12) | С3—Н3В        | 0.9900      |
| N2—N3     | 1.2956 (12) | C11—H11A      | 0.9800      |
| N3—N4     | 1.3663 (12) | C11—H11B      | 0.9800      |
| N4—C1     | 1.3278 (12) | C11—H11C      | 0.9800      |
| N5-C4     | 1.3459 (12) | C12—H12A      | 0.9800      |
| N5—N6     | 1.3569 (12) | C12—H12B      | 0.9800      |
| N5-C12    | 1.4580 (12) | C12—H12C      | 0.9800      |
| N6—N7     | 1.2964 (12) |               |             |
|           |             |               |             |
| C1—S1—C2  | 100.16 (4)  | H2A—C2—H2B    | 108.2       |
| C4—S2—C3  | 99.77 (5)   | C2—C3—S2      | 111.39 (7)  |
| C1—N1—N2  | 108.09 (8)  | С2—С3—Н3А     | 109.4       |
| C1—N1—C11 | 129.71 (8)  | S2—C3—H3A     | 109.4       |
| N2-N1-C11 | 122.19 (8)  | С2—С3—Н3В     | 109.4       |
| N3—N2—N1  | 106.31 (8)  | S2—C3—H3B     | 109.4       |
| N2—N3—N4  | 111.44 (8)  | НЗА—СЗ—НЗВ    | 108.0       |
| C1—N4—N3  | 105.18 (8)  | N8—C4—N5      | 108.99 (8)  |
| C4—N5—N6  | 108.14 (8)  | N8—C4—S2      | 127.81 (8)  |
| C4—N5—C12 | 129.88 (8)  | N5-C4-S2      | 123.14 (7)  |
| N6-N5-C12 | 121.97 (8)  | N1—C11—H11A   | 109.5       |
| N7—N6—N5  | 106.38 (8)  | N1-C11-H11B   | 109.5       |
| N6—N7—N8  | 111.37 (8)  | H11A—C11—H11B | 109.5       |
| C4—N8—N7  | 105.12 (8)  | N1—C11—H11C   | 109.5       |
| N4—C1—N1  | 108.98 (9)  | H11A-C11-H11C | 109.5       |
| N4—C1—S1  | 128.32 (8)  | H11B-C11-H11C | 109.5       |
| N1-C1-S1  | 122.69 (7)  | N5-C12-H12A   | 109.5       |
| C3—C2—S1  | 109.91 (7)  | N5-C12-H12B   | 109.5       |
| С3—С2—Н2А | 109.7       | H12A—C12—H12B | 109.5       |

### supporting information

| S1—C2—H2A | 109.7 | N5—C12—H12C   | 109.5 |
|-----------|-------|---------------|-------|
| C3—C2—H2B | 109.7 | H12A—C12—H12C | 109.5 |
| S1—C2—H2B | 109.7 | H12B—C12—H12C | 109.5 |

Hydrogen-bond geometry (Å, °)

| D—H···A                              | D—H  | H···A | D····A      | D—H···A |
|--------------------------------------|------|-------|-------------|---------|
| C11—H11 <i>B</i> ····N8 <sup>i</sup> | 0.98 | 2.39  | 3.3533 (13) | 168     |
| C12—H12 $B$ ···N4 <sup>ii</sup>      | 0.98 | 2.36  | 3.3183 (13) | 165     |

Symmetry codes: (i) –*x*+1, –*y*, –*z*; (ii) –*x*+2, –*y*, –*z*+1.