CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 13 September 2017
Accepted 19 September 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; polymorph; tetra-zole-containing compounds; hydrogen bonding; $\pi-\pi$ interactions.

CCDC reference: 1575392

Supporting information: this article has supporting information at journals.iucr.org/e

A monoclinic polymorph of 1,2-bis[(1-methyl-1H-tetrazol-5-yl)sulfanyl]ethane (BMTTE)

Saray Argibay-Otero, Olaya Gómez-Paz and Rosa Carballo*

Departamento de Química Inorgánica, Facultade de Química, Instituto de Investigación Sanitaria Galicia Sur Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain. *Correspondence e-mail: rcrial@uvigo.es

The synthesis and crystal structure of a monoclinic $\left(P 2_{1} / c\right)$ polymorph of the title compound, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~S}_{2} \mathrm{~N}_{8}$, are reported. The molecule has pseudo-twofold rotational symmetry, with the tetrazole rings being inclined to one another by $5.50(6)^{\circ}$. In the crystal, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming chains propagating along [101] and enclosing $R_{2}^{2}(20)$ ring motifs. The chains are linked by offset $\pi-\pi$ interactions involving the tetrazole rings [intercentroid distances vary from 3.3567 (7) to 3.4227 (7) \AA], forming layers parallel to the ac plane. The crystal structure of the triclinic polymorph $(P \overline{1})$ has been described previously [Li et al. (2011). Acta Cryst. E67, o1669].

1. Chemical context

Organic compounds such as the title compound (BMTTE) are frequently used as flexible ligands for the preparation of coordination polymers (Wang et al., 2010). A triclinic polymorph of the title compound has been described previously by Li et al., (2011). Here we describe the spectroscopic characterization and crystal structure of a new monoclinic polymorph of BMTTE, obtained by recrystallization and slow evaporation from a solution in $\mathrm{CH}_{3} \mathrm{CN}$. Such compounds have been used in coordination chemistry (Zhao et al., 2008) and in materials design (Wang et al., 2009, 2010).

2. Structural commentary

The molecule structure of the title compound, Fig. 1, shows $\mathrm{N}-\mathrm{N}$ and $\mathrm{C}-\mathrm{S}$ bond distances and $\mathrm{S}-\mathrm{C}-\mathrm{C}-\mathrm{S}$ and $\mathrm{C}-\mathrm{S}-$ $\mathrm{C}-\mathrm{C}$ torsion angles similar to the values observed in the triclinic form (Li et al., 2011). As shown by the molecular overlap of the two polymorphs (Fig. 2), drawn with Mercury (Macrae et al., 2008), there is only a slight difference in their geometry. The tetrazole rings ($\mathrm{N} 1-\mathrm{N} 4 / \mathrm{C} 1$ and $\mathrm{N} 5-\mathrm{N} 8 / \mathrm{C} 4$) are inclined to one another by $5.50(6)^{\circ}$ in the title polymorph and by $1.9(2)^{\circ}$ in the triclinic polymorph. While there are only small differences in the geometric parameters between the two

Figure 1
Molecular structure of the title compound, the monoclinic polymorph of BMTTE, with atom labelling. Displacement ellipsoids are drawn at the 50\% probability level.

Figure 2
A molecular structure overlap (Mercury; Macrae et al., 2008) of the title monoclinic polymorph of BMTTE (blue) and the triclinic polymorph (red; Li et al., 2011).
polymorphic forms, they are enough to produce a different crystal packing.

3. Supramolecular features

In the crystal, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming chains propagating along [101] and enclosing

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{~N} 8^{\mathrm{i}}$	0.98	2.39	$3.3533(13)$	168
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{~N} 4^{\mathrm{ii}}$	0.98	2.36	$3.3183(13)$	165

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $-x+2,-y,-z+1$.
$R_{2}^{2}(20)$ ring motifs (Fig. 3 and Table 1). The chains are linked by offset $\pi-\pi$ interactions involving the tetrazole rings, forming layers parallel to the $a c$ plane, as shown in Fig. 4. The numerical details of these interactions are: $C g 1 \cdots C g 1^{i}=$ $3.365(1) \AA, \alpha=0^{\circ}$, interplanar distance $=3.2056(4) \AA$, offset $=1.024 \AA ; C g 1 \cdots C g 2^{\text {ii }}=3.423(1) \AA, \alpha=5.5(1)^{\circ}$, interplanar distances $=3.278$ (4) and 3.321 (4) \AA, offset $=0.83 \AA$; and $C g 2 \cdots C g 2^{\text {iii }}=3.4227(7) \AA, \alpha=0^{\circ}$, interplanar distance $=$ 3.1346 (4) \AA, offset $=1.201 \AA ; C g 1$ and $C g 2$ are the centroids of the tetrazole rings $\mathrm{N} 1-\mathrm{N} 4 / \mathrm{C} 1$ and $\mathrm{N} 5-\mathrm{N} 8 / \mathrm{C} 4$, respectively; symmetry codes: (i) $-x+1,-y,-z$; (ii) $x-1, y, z$; (iii) $-x+2$, $-y,-z+1$.

As a result of these interactions, the molecules are packed very efficiently so that the Kitaigorodskii (1973) index is 72%. The crystal packing in the crystal of the triclinic polymorph is very similar, with a Kitaigorodskii index of 69% (PLATON; Spek, 2009).

4. Database survey

A search of the Cambridge Structural Database (CSD; version 5.38, last update May 2017; Groom et al., 2016) for the skeleton of the title compound gave 11 hits. Apart from the crystal structure of the triclinic polymorph of the title compound (CSD refcode EVAWUU; Li et al., 2011), and that of a diphenyl substituted compound, 1,2-bis(1-phenyl- 1 H -tetrazol-5-ylsulfanyl)ethane (IXAVUY; Wang et al., 2004), all the others involve coordination compounds of BMTTE.

Figure 3
A partial view of the crystal packing of the title compound, showing details of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (dashed lines, see Table 1).

Figure 4
Crystal packing of the title compound, showing details of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (dashed lines, see Table 1) and examples of the $\pi-\pi$ interactions (blue double-headed arrows).

5. Synthesis and crystallization

The title compound, (BMTTE), was synthesized by a slightly modified version of the procedure described by Li et al. (2011). 5-Mercapto-1-methyltetrazole ($9.29 \mathrm{~g}, 0.08 \mathrm{~mol}$) was added to a solution of sodium hydroxide ($3.26 \mathrm{~g}, 0.08 \mathrm{~mol}$) in EtOH $(110 \mathrm{ml})$. The mixture was stirred at room temperature for one day. Dichloroethane ($3.2 \mathrm{ml}, 0.04 \mathrm{~mol}$) in 6 ml of EtOH was then added dropwise and the mixture was refluxed for 18 h . The resulting white solid was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried in vacuo (yield 88%; m.p. 417-419 K). Analysis calculated for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~S}_{2} \mathrm{~N}_{8}$: N 43.38, C 27.90, H 3.90\%; Found: N 42.31, C 27.85 , H 3.28%. IR (cm^{-1}): $1469 m, 1442 m$ ($1408 m$, $1391 m) \nu($ ring $) ; 1276 m, 1222 m, \omega\left(\mathrm{CH}-\mathrm{CH}_{2}\right) ; 1169 m, \delta(\mathrm{CH})$; $1144 m, 1078 m, 1026 m, \delta$ (ring); $728 m, 716 m, \gamma(\mathrm{CH}) ; 698 s$, $\nu(\mathrm{C}-\mathrm{S}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, dmso- d_{6}) δ in ppm: $3.93(s, 6 \mathrm{H}$, $\mathrm{H} b), 3.66(s, 4 \mathrm{H}, \mathrm{H} a)$. MS-ESI: $m / z(\%)=259(100)$ $\left[\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~S}_{2} \mathrm{~N}_{8}+\mathrm{H}^{+}\right]$. Colourless prismatic crystals were obtained by slow evaporation of a solution in acetonitrile.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C -bound H atoms were included in calculated positions and treated as riding: $\mathrm{C}-\mathrm{H}=$ $0.98-0.99 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}$-methyl $)$ and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

Funding information

Funding for this research was provided by: Ministry of Economy, Industry and Competitiveness (Spain) and

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{8} \mathrm{~S}_{2}$
258.34

Monoclinic, $P 2_{1} / c$
100
8.2456 (10), 13.7471 (17), 9.6878 (12)
92.643 (4)
1097.0 (2)

4
Mo $K \alpha$
0.47
$0.25 \times 0.22 \times 0.19$

Bruker D8 Venture Photon 100 CMOS
Multi-scan (SADABS; Bruker, 2014)
0.697, 0.746

23909, 2725, 2620
0.024
0.668

Computer programs: APEX3 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS2014 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

European Regional Development Fund (EU) (CTQ2015-71211-REDT and CTQ2015-7091-R).

References

Bruker (2014). APEX3, SAINT and SADABS. Bruker ASX Inc., Madison, Wisconsin, USA.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Kitaigorodskii, A. I. (1973). Physical Chemistry, Vol. 29, Molecular Crystals and Molecules. New York: Academic Press.
Li, C.-R., Chen, T. \& Xia, Z.-Q. (2011). Acta Cryst. E67, o1669.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wang, W. T., Chen, S. P. \& Gao, S. L. (2009). Eur. J. Inorg. Chem. pp. 3475-3480.
Wang, X., Hu, H. \& Tian, A. (2010). Cryst. Growth Des. 10, 47864794.

Wang, W., Liu, H.-M., Zheng, Y. \& Zhang, W.-Q. (2004). Acta Cryst. E60, o1279-o1280.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhao, H., Qu, Z. R., Ye, H. Y. \& Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84-100.

supporting information

Acta Cryst. (2017). E73, 1523-1525 [https://doi.org/10.1107/S205698901701341X]

A monoclinic polymorph of 1,2-bis[(1-methyl-1H-tetrazol-5-yl)sulfanyl]ethane (BMTTE)

Saray Argibay-Otero, Olaya Gómez-Paz and Rosa Carballo

Computing details

Data collection: APEX3 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

1,2-Bis[(1-methyl-1H-tetrazol-5-yl)sulfanyl]ethane

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{8} \mathrm{~S}_{2}$
$M_{r}=258.34$
Monoclinic, $P 2_{1} / c$
$a=8.2456$ (10) \AA
$b=13.7471$ (17) \AA
$c=9.6878(12) \AA$
$\beta=92.643$ (4) ${ }^{\circ}$
$V=1097.0(2) \AA^{3}$
$Z=4$
$F(000)=536$

Data collection

Bruker D8 Venture Photon 100 CMOS
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\text {min }}=0.697, T_{\text {max }}=0.746$
23909 measured reflections
$D_{\mathrm{x}}=1.564 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 144 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9507 reflections
$\theta=2.5-28.3^{\circ}$
$\mu=0.47 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, colourless
$0.25 \times 0.22 \times 0.19 \mathrm{~mm}$

2725 independent reflections
2620 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-10 \rightarrow 11$
$k=-18 \rightarrow 18$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.057$
$S=1.08$
2725 reflections
148 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0262 P)^{2}+0.493 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.36$ e \AA^{-3}
$\Delta \rho_{\min }=-0.25$ e \AA^{-3}

Extinction correction: (SHELXL2014; Sheldrick, 2015), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0376 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
S1	$0.46814(3)$	$0.19617(2)$	$0.21662(2)$	$0.01218(8)$
S2	$0.99483(3)$	$0.22655(2)$	$0.31188(3)$	$0.01382(8)$
N1	$0.32833(10)$	$0.04027(6)$	$0.08604(8)$	$0.01158(16)$
N2	$0.33462(11)$	$-0.05843(6)$	$0.08543(9)$	$0.01445(17)$
N3	$0.44707(11)$	$-0.08272(6)$	$0.17676(9)$	$0.01511(18)$
N4	$0.51615(11)$	$-0.00275(6)$	$0.23918(9)$	$0.01383(17)$
N5	$1.15565(10)$	$0.07099(6)$	$0.42528(8)$	$0.01085(16)$
N6	$1.16663(10)$	$-0.02693(6)$	$0.41075(9)$	$0.01411(17)$
N7	$1.06184(11)$	$-0.05083(6)$	$0.31273(9)$	$0.01451(17)$
N8	$0.98081(11)$	$0.02894(6)$	$0.26071(9)$	$0.01352(17)$
C1	$0.44014(11)$	$0.07287(7)$	$0.18059(10)$	$0.01056(18)$
C2	$0.66415(11)$	$0.19192(7)$	$0.31250(10)$	$0.01208(19)$
H2A	0.6649	0.2392	0.3896	0.014^{*}
H2B	0.6818	0.1262	0.3520	0.014^{*}
C3	$0.79982(12)$	$0.21624(7)$	$0.21671(10)$	$0.01285(19)$
H3A	0.7747	0.2784	0.1687	0.015^{*}
H3B	0.8064	0.1647	0.1458	0.015^{*}
C4	$1.04182(11)$	$0.10381(7)$	$0.33269(10)$	$0.01087(18)$
C11	$0.21707(12)$	$0.09470(7)$	$-0.00653(10)$	$0.0147(2)$
H11A	0.1360	0.1277	0.0476	0.022^{*}
H11B	0.1624	0.0499	-0.0721	0.022^{*}
H11C	0.2781	0.1431	-0.0572	0.022^{*}
C12	$1.25381(12)$	$0.12395(7)$	$0.52931(10)$	$0.0152(2)$
H12A	1.3335	0.1642	0.4838	0.023^{*}
H12B	1.3105	0.0776	0.5914	0.023^{*}
H12C	1.1834	0.1656	0.5827	0.023^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.01044(12)$	$0.00922(12)$	$0.01639(13)$	$0.00092(8)$	$-0.00455(8)$	$0.00048(8)$
S2	$0.01144(13)$	$0.00868(12)$	$0.02066(14)$	$-0.00105(8)$	$-0.00666(9)$	$0.00047(8)$
N1	$0.0121(4)$	$0.0099(4)$	$0.0125(4)$	$0.0000(3)$	$-0.0017(3)$	$0.0000(3)$
N2	$0.0164(4)$	$0.0100(4)$	$0.0170(4)$	$0.0008(3)$	$0.0007(3)$	$-0.0005(3)$
N3	$0.0153(4)$	$0.0120(4)$	$0.0178(4)$	$0.0002(3)$	$-0.0007(3)$	$0.0006(3)$

N4	$0.0140(4)$	$0.0111(4)$	$0.0162(4)$	$0.0013(3)$	$-0.0020(3)$	$0.0019(3)$
N 5	$0.0110(4)$	$0.0094(4)$	$0.0119(4)$	$0.0003(3)$	$-0.0017(3)$	$0.0007(3)$
N 6	$0.0156(4)$	$0.0100(4)$	$0.0168(4)$	$0.0010(3)$	$0.0019(3)$	$0.0010(3)$
N 7	$0.0161(4)$	$0.0115(4)$	$0.0159(4)$	$-0.0002(3)$	$0.0007(3)$	$-0.0003(3)$
N 8	$0.0150(4)$	$0.0109(4)$	$0.0145(4)$	$-0.0013(3)$	$-0.0014(3)$	$-0.0010(3)$
C1	$0.0091(4)$	$0.0114(4)$	$0.0111(4)$	$0.0003(3)$	$-0.0007(3)$	$0.0007(3)$
C2	$0.0107(4)$	$0.0114(4)$	$0.0136(4)$	$0.0000(3)$	$-0.0051(3)$	$0.0002(3)$
C3	$0.0108(4)$	$0.0120(4)$	$0.0153(4)$	$-0.0006(3)$	$-0.0048(3)$	$0.0015(3)$
C4	$0.0095(4)$	$0.0115(4)$	$0.0114(4)$	$-0.0008(3)$	$-0.0006(3)$	$0.0004(3)$
C11	$0.0137(5)$	$0.0152(5)$	$0.0144(5)$	$0.0018(4)$	$-0.0056(4)$	$0.0008(4)$
C12	$0.0152(5)$	$0.0157(5)$	$0.0140(4)$	$-0.0022(4)$	$-0.0062(4)$	$-0.0003(4)$

Geometric parameters ($A,{ }^{\circ}$)

S1-C1	1.7438 (10)	N7-N8	1.3681 (12)
S1-C2	1.8276 (10)	N8-C4	1.3290 (12)
S2-C4	1.7409 (10)	C2-C3	1.5232 (14)
S2-C3	1.8218 (10)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900
N1-C1	1.3461 (12)	C2-H2B	0.9900
$\mathrm{N} 1-\mathrm{N} 2$	1.3578 (12)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900
N1-C11	1.4594 (12)	C3-H3B	0.9900
N2-N3	1.2956 (12)	C11-H11A	0.9800
N3-N4	1.3663 (12)	C11-H11B	0.9800
N4-C1	1.3278 (12)	C11-H11C	0.9800
N5-C4	1.3459 (12)	C12-H12A	0.9800
N5-N6	1.3569 (12)	C12-H12B	0.9800
N5-C12	1.4580 (12)	C12-H12C	0.9800
N6-N7	1.2964 (12)		
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2$	100.16 (4)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.2
C4-S2-C3	99.77 (5)	C2-C3-S2	111.39 (7)
C1-N1-N2	108.09 (8)	C2-C3-H3A	109.4
C1-N1-C11	129.71 (8)	S2-C3-H3A	109.4
N2-N1-C11	122.19 (8)	C2-C3-H3B	109.4
N3-N2-N1	106.31 (8)	S2-C3-H3B	109.4
N2-N3-N4	111.44 (8)	H3A-C3-H3B	108.0
$\mathrm{C} 1-\mathrm{N} 4-\mathrm{N} 3$	105.18 (8)	N8-C4-N5	108.99 (8)
C4-N5-N6	108.14 (8)	N8-C4-S2	127.81 (8)
C4-N5-C12	129.88 (8)	N5-C4-S2	123.14 (7)
N6-N5-C12	121.97 (8)	N1-C11-H11A	109.5
N7-N6-N5	106.38 (8)	N1-C11-H11B	109.5
N6-N7-N8	111.37 (8)	H11A-C11-H11B	109.5
C4-N8-N7	105.12 (8)	N1-C11-H11C	109.5
N4- $\mathrm{C} 1-\mathrm{N} 1$	108.98 (9)	H11A-C11-H11C	109.5
N4-C1-S1	128.32 (8)	H11B-C11-H11C	109.5
N1-C1-S1	122.69 (7)	N5-C12-H12A	109.5
C3-C2-S1	109.91 (7)	N5-C12-H12B	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.7	$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5

supporting information

S1-C2-H2A	109.7	N5-C12-H12C	109.5
C3-C2-H2B	109.7	$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
S1-C2-H2B	109.7	H12B-C12-H12C	109.5

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11 — \mathrm{H} 11 B \cdots \mathrm{~N} 8^{\mathrm{i}}$	0.98	2.39	$3.3533(13)$	168
$\mathrm{C} 12 — \mathrm{H} 12 B \cdots \mathrm{~N} 4^{\mathrm{ii}}$	0.98	2.36	$3.3183(13)$	165

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $-x+2,-y,-z+1$.

