OPEN O ACCESS

Crystal structure of chlorido(dimethyl sulfoxide- κ S)bis[4-(pyridin-2-yl)benzaldehyde- κ ³C²,N]iridium(III) acetonitrile monosolvate

Andrew J. Peloquin, Madelyn B. Smith, Gary J. Balaich and Scott T. Iacono*

Department of Chemistry & Chemistry Research Center, United States Air Force Academy, Colorado Springs, CO 80840, USA. *Correspondence e-mail: scott.iacono@usafa.edu

The title compound, $[IrCl(C_{12}H_8NO)_2\{(CH_3)_2SO\}]\cdot H_3CCN$ or $[IrCl(fppy)_2(DM-SO)]\cdot H_3CCN$ [where fppy is 4-(pyridin-2-yl)benzaldehyde and DMSO is dimethyl sulfoxide], is a mononuclear iridium(III) complex including two fppy ligands, a sulfur-coordinating DMSO ligand, and one terminal chloride ligand that define a distorted octahedral coordination sphere. The complex crystallizes from 1:1 DMSO-acetonitrile as an acetonitrile solvate. In the crystal, weak C-H···O and C-H···N hydrogen-bonding interactions between adjacent complexes and between the acetonitrile solvent and the complex consolidate the packing.

1. Chemical context

The development of iridium complexes with three *ortho* metallating ligands has drawn great interest due to their potential application in light-emitting devices (Henwood & Zysman-Coman, 2017). Many such complexes have been synthesized, often utilizing phenylpyridine-based dichlorido-bridged di-iridium complexes as starting materials. In an attempt to synthesize such a compound with 4-(pyridin-2-yl)benzaldehyde (fppy) as a ligand, *viz.* di- μ -chlorido-bis-{bis[4-(pyridin-2-yl)benzaldehyde- $\kappa^2 C^2$,N']iridium(III) (Bettington *et al.*, 2004), spectroscopic results indicated a product with reduced symmetry compared to the expected C_i symmetry of the known complex. Single-crystal X-ray analysis was used to elucidate the structure of the title compound.

2. Structural commentary

The title compound (Fig. 1) crystallizes in the triclinic space group $P\overline{1}$ with one molecule per asymmetric unit. The Ir^{III} atom has a distorted octahedral coordination sphere defined

(H₃CCN)

Received 20 June 2017 Accepted 25 July 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; iridium; phenylpyridine derivative.

CCDC reference: 1564599

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

Figure 1

The molecular structure of chlorido(dimethyl sulfoxide- κS)bis[4-(pyridin-2-yl)benzaldehyde- $\kappa^2 C^2$,N']iridium(III) acetonitrile monosolvate. Displacement ellipsoids are shown at the 50% probability level. Only aldehyde H atoms are shown and the acetonitrile solvent molecule has been omitted for clarity.

by the S atom of the dimethyl sulfoxide (DMSO) ligand, a chlorine ligand and C and N atoms of two fppy ligands. The S and Cl atoms occupy equatorial positions, *trans* to the fppy C

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
C19–H19···O3 ⁱ	0.93	2.48	3.179 (3)	132
$C25-H25B\cdots N3^{ii}$	0.96	2.53	3.403 (3)	150
$C26-H26A\cdots O3^{iii}$	0.96	2.48	3.406 (2)	161
$C28-H28C\cdots O1^{iv}$	0.96	2.54	3.490 (3)	173

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 2, -y + 2, -z + 2; (iv) x + 1, y, z.

atoms, and the fppy N atoms occupy the axial positions. The least-squares planes of each fppy ligand indicate a nearly coplanar arrangement of the pyridine and phenyl rings with small deviations of 2.42 (9)° (fppy ligand N1/C2–C12 with C4 *trans* to S1) and 14.71 (9)° (fppy ligand N2/C14–C24 with C16 *trans* to C11). The Ir–S bond length [2.3810 (5) Å] is longer than the average distance [2.27 (1) Å] that was reported for this coordination mode (Calligaris, 2004). The S–O distance [1.4903 (13) Å] is only slightly longer than the previously reported average [1.473 (4) Å]. This S–O distance shows negligible contraction from the average reported S–O bond length [1.492 (1) Å] in non-coordinating sulfoxide molecules (Calligaris, 2004).

3. Supramolecular features

The acetonitrile solvate molecules fill voids that are visible along the b axis view direction (Fig. 2). Alignment of the

Figure 2 The crystal packing of the title complex, viewed along the *b* axis. Displacement ellipsoids are shown at the 50% probability level. H atoms have been omitted for clarity.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$[IrCl(C_{12}H_8NO)_2(C_2H_6OS)] - C_2H_2N$
$M_{\rm r}$	711.22
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.7837 (12), 12.0910 (16), 14.0097 (19)
$lpha,eta,\gamma(^\circ)$	97.5367 (15), 105.1501 (14), 109.3176 (14)
$V(Å^3)$	1316.1 (3)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	5.29
Crystal size (mm)	$0.32 \times 0.24 \times 0.17$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.26, 0.47
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	28976, 6983, 6828
R _{int}	0.026
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.685
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.015, 0.037, 1.68
No. of reflections	6983
No. of parameters	345
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.47, -0.65

Computer programs: APEX3 and SAINT (Bruker, 2017), SHELXS (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

acetonitrile molecules is caused by weak intermolecular contacts between acetonitrile H atoms and adjacent fppy aldehyde carbonyl O atoms ($C28-H28\cdots O1$) in addition to weak interactions between acetonitrile N atoms and adjacent DMSO H atoms ($C25-H25B\cdots N3$). There are also C-H $\cdots O$ interactions between adjacent complexes, involving aromatic H atoms of one of the fppy ligands and methyl groups of the DMSO ligand with the sulfoxide O atom. Numerical details of all these interactions are collated in Table 1.

4. Database survey

A search of the Cambridge Structural Database (CSD, V5.38, update February 2017; Groom *et al.*, 2016) for related structures revealed that the di- μ -chlorido-bis{bis[4-(pyridin-2-yl)-benzaldehyde- $\kappa^2 C^2$, N']iridium(III)} complex from which the title complex was derived, has been reported as a dichloromethane sesquisolvate (Bettington *et al.*, 2004).

5. Synthesis and crystallization

The parent compound, di- μ -chlorido-bis{bis[4-(pyridin-2-yl)benzaldehyde- $\kappa^2 C^2$,N']iridium(III), was synthesized utilizing a previously reported procedure (Bettington *et al.*, 2004).

For the synthesis of the title compound, di- μ -chloridobis{bis[4-(pyridin-2-yl)benzaldehyde- k^2C^2 .N']iridium(III) (0.101 g, 0.077 mmol) was dissolved in DMSO (2 ml) with gentle heating over 5 min. After cooling to room temperature, acetonitrile (2 ml) was added. After 24 h, the resulting solid was collected by vacuum filtration to afford the title compound as an orange crystalline solid (0.043 g, 41.7%). Spectroscopic data: ¹H NMR (500 MHz, DMSO- d_6): δ 9.83 (d, 1H, J = 8.0 Hz), 9.61 (s, 1H), 9.55–9.53 (m, 2H), 8.42 (d, 1H, J =8.0 Hz, 8.34 (d, 1H, J = 8.0 Hz), 8.20 (t, 1H, J = 7.5 Hz), 8.11 (t, J = 7.5 Hz), 1H, J = 7.5 Hz), 8.01 (d, 1H, J = 7.5 Hz), 7.96 (d, 1H, J =8.0 Hz), 7.69 (t, 1H, J = 6.5 Hz), 7.60 (t, 1H, J = 6.5 Hz), 7.40 (d, 1H, J = 8.0 Hz), 7.36 (d, 1H, J = 8.0 Hz), 6.71 (s, 1H), 6.10 (s, 1H) and ¹³C NMR (500 MHz, DMSO-*d*₆): δ 193.6, 193.5, 166.1, 165.7, 153.1, 152.1, 151.7, 150.5, 149.9, 145.5, 140.4, 139.4, 136.6, 135.9, 131.2, 129.4, 126.4, 125.9, 125.7, 125.5, 125.2, 124.8, 122.4, 121.8, 72.3, 66.0, 60.8, 40.5, 40.3, 40.1, 40.0, 39.8, 39.6, 39.5, 15.7.

6. Refinement

Crystal data as well as data collection and structure refinement details are summarized in Table 2. The aldehyde hydrogen atoms were found in a difference-Fourier map and were refined freely. The remaining hydrogen atoms were included in calculated positions and refined with a riding model: C–H = 0.95-0.98 Å with $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C}{\rm -methyl})$ and 1.2 $U_{\rm eq}({\rm C})$ for other H atoms.

Funding information

This work was supported by the Defense Threat Reduction Agency (DTRA) - Joint Science and Technology Transfer Office for Chemical and Biological Defense (MIPR No. HDTRA13964) and the Air Force Office of Scientific Research (AFOSR).

References

- Bettington, S., Thompson, A. L., Beeby, A. & Goeta, A. E. (2004). *Acta Cryst.* E60, m827–m829.
- Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Calligaris, M. (2004). Coord. Chem. Rev. 248, 351-375.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Henwood, A. F. & Zysman-Coman, E. (2017). A Comprehensive Review of Luminescent Iridium Complexes Used in Light-Emitting Electrochemical Cells (LEEC's) in Iridium (III), in Optoelectronic and Photonics Applications. Chichester: John Wiley & Sons Ltd.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2017). E73, 1279-1281 [https://doi.org/10.1107/S2056989017010945]

Crystal structure of chlorido(dimethyl sulfoxide- κ S)bis[4-(pyridin-2-yl)benzaldehyde- $\kappa^3 C^2$, N]iridium(III) acetonitrile monosolvate

Andrew J. Peloquin, Madelyn B. Smith, Gary J. Balaich and Scott T. Iacono

Computing details

Data collection: *APEX3* (Bruker, 2017); cell refinement: *SAINT* (Bruker, 2017); data reduction: *SAINT* (Bruker, 2017); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2016* (Sheldrick, 2015).

Chlorido(dimethyl sulfoxide- κ S)bis[4-(pyridin-2-yl)benzaldehyde- $\kappa^2 C^3$, N]iridium(III) acetonitrile monosolvate

Crystal data

[IrCl(C₁₂H₈NO)₂(C₂H₆OS)]·C₂H₃N $M_r = 711.22$ Triclinic, *P*1 a = 8.7837 (12) Å b = 12.0910 (16) Å c = 14.0097 (19) Å a = 97.5367 (15)° $\beta = 105.1501$ (14)° $\gamma = 109.3176$ (14)° V = 1316.1 (3) Å³

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ ω Scans scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.26, T_{\max} = 0.47$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.015$ $wR(F^2) = 0.037$ S = 1.686983 reflections 345 parameters 0 restraints Z = 2 F(000) = 696 $D_x = 1.795 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 9979 reflections $\theta = 2.6-30.0^{\circ}$ $\mu = 5.29 \text{ mm}^{-1}$ T = 100 KRectangular prism, orange $0.32 \times 0.24 \times 0.17 \text{ mm}$

28976 measured reflections 6983 independent reflections 6828 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 29.1^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -11 \rightarrow 11$ $k = -16 \rightarrow 16$ $l = -19 \rightarrow 19$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement

$w = 1/[\sigma^2(F_o^2)]$	$\Delta \rho_{\rm max} = 1.47 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} = 0.003$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	-0.0050 (3)	0.6613 (2)	0.33167 (17)	0.0243 (5)
H1	-0.088 (3)	0.596 (2)	0.278 (2)	0.042 (8)*
C2	0.1092 (2)	0.62505 (18)	0.40746 (15)	0.0157 (4)
H2	0.077 (3)	0.594 (2)	0.9857 (18)	0.028 (6)*
C3	0.2305 (2)	0.71022 (17)	0.49507 (14)	0.0134 (4)
Н3	0.239758	0.790067	0.505177	0.016*
C4	0.3376 (2)	0.67614 (16)	0.56730 (14)	0.0100 (3)
C5	0.3222 (2)	0.55552 (16)	0.54791 (14)	0.0116 (4)
C6	0.2015 (2)	0.46989 (17)	0.46076 (14)	0.0151 (4)
H6	0.193066	0.390228	0.449892	0.018*
C7	0.0941 (2)	0.50534 (17)	0.39041 (15)	0.0164 (4)
H7	0.012541	0.449242	0.332285	0.02*
C8	0.6532 (2)	0.60005 (17)	0.78483 (14)	0.0134 (4)
H8	0.724573	0.664417	0.840195	0.016*
C9	0.6625 (2)	0.48877 (17)	0.78530 (15)	0.0167 (4)
Н9	0.737233	0.47808	0.840651	0.02*
C10	0.5597 (3)	0.39315 (17)	0.70259 (15)	0.0175 (4)
H10	0.566006	0.317648	0.70063	0.021*
C11	0.4471 (2)	0.41157 (16)	0.62266 (15)	0.0153 (4)
H11	0.37664	0.348031	0.566469	0.018*
C12	0.4389 (2)	0.52483 (16)	0.62615 (14)	0.0112 (3)
C13	0.1550 (3)	0.57976 (18)	0.94959 (15)	0.0176 (4)
C14	0.1860 (2)	0.66267 (16)	0.88152 (14)	0.0128 (4)
C15	0.3053 (2)	0.66650 (16)	0.83096 (14)	0.0122 (4)
H15	0.363082	0.614479	0.838132	0.015*
C16	0.3375 (2)	0.74788 (16)	0.77005 (13)	0.0098 (3)
C17	0.2417 (2)	0.82202 (16)	0.75755 (14)	0.0108 (3)
C18	0.1194 (2)	0.81540 (17)	0.80579 (14)	0.0133 (4)
H18	0.055266	0.863072	0.795451	0.016*
C19	0.0948 (2)	0.73674 (16)	0.86940 (14)	0.0143 (4)
H19	0.016858	0.733882	0.903893	0.017*
C20	0.5027 (2)	1.00524 (16)	0.62983 (14)	0.0120 (4)
H20	0.605771	1.014028	0.61919	0.014*
C21	0.4188 (2)	1.07846 (16)	0.59468 (14)	0.0141 (4)
H21	0.464917	1.135452	0.560855	0.017*
C22	0.2647 (2)	1.06543 (17)	0.61075 (14)	0.0157 (4)

H22	0.204513	1.111646	0.585708	0.019*
C23	0.2021 (2)	0.98295 (17)	0.66440 (14)	0.0145 (4)
H23	0.100937	0.97487	0.67742	0.017*
C24	0.2915 (2)	0.91196 (16)	0.69888 (14)	0.0111 (3)
C25	0.6344 (2)	0.96111 (17)	0.94371 (14)	0.0157 (4)
H25A	0.559874	0.894382	0.96093	0.024*
H25B	0.570208	1.004318	0.911162	0.024*
H25C	0.722715	1.014181	1.004546	0.024*
C26	0.8560 (2)	1.04751 (17)	0.84339 (15)	0.0164 (4)
H26A	0.94507	1.092567	0.906542	0.025*
H26B	0.786226	1.092503	0.823195	0.025*
H26C	0.905534	1.033313	0.791846	0.025*
C27	0.5454 (3)	0.76301 (18)	0.12214 (16)	0.0216 (4)
C28	0.6709 (3)	0.7132 (2)	0.1106 (2)	0.0364 (6)
H28A	0.723039	0.747741	0.063586	0.055*
H28B	0.615895	0.62727	0.085237	0.055*
H28C	0.756838	0.731849	0.175519	0.055*
Cl1	0.74293 (5)	0.83320 (4)	0.62149 (3)	0.01155 (8)
Ir1	0.51788 (2)	0.78209 (2)	0.70247 (2)	0.00795 (2)
N1	0.54447 (18)	0.61957 (13)	0.70713 (11)	0.0097 (3)
N2	0.43895 (18)	0.92185 (13)	0.67888 (11)	0.0097 (3)
N3	0.4464 (3)	0.80168 (17)	0.13125 (15)	0.0286 (4)
01	-0.0021 (2)	0.76266 (15)	0.33564 (13)	0.0390 (4)
O2	0.21023 (19)	0.50165 (13)	0.95953 (12)	0.0254 (3)
O3	0.84599 (17)	0.85806 (12)	0.92054 (10)	0.0171 (3)
S1	0.72772 (6)	0.90632 (4)	0.85936 (3)	0.01024 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0214 (11)	0.0248 (12)	0.0157 (11)	0.0071 (9)	-0.0064 (9)	-0.0016 (9)
C2	0.0133 (9)	0.0191 (10)	0.0105 (9)	0.0047 (8)	0.0002 (7)	0.0014 (8)
C3	0.0139 (9)	0.0122 (9)	0.0120 (9)	0.0044 (7)	0.0025 (7)	0.0009 (7)
C4	0.0090 (8)	0.0121 (8)	0.0086 (8)	0.0029 (7)	0.0042 (7)	0.0018 (7)
C5	0.0110 (8)	0.0134 (9)	0.0089 (9)	0.0030 (7)	0.0032 (7)	0.0018 (7)
C6	0.0161 (9)	0.0110 (9)	0.0128 (9)	0.0017 (7)	0.0024 (8)	-0.0008 (7)
C7	0.0147 (9)	0.0165 (10)	0.0096 (9)	0.0012 (8)	-0.0010(7)	-0.0022 (7)
C8	0.0123 (9)	0.0137 (9)	0.0116 (9)	0.0046 (7)	0.0007 (7)	0.0018 (7)
C9	0.0192 (10)	0.0158 (10)	0.0149 (10)	0.0082 (8)	0.0020 (8)	0.0056 (8)
C10	0.0227 (10)	0.0124 (9)	0.0184 (10)	0.0075 (8)	0.0069 (8)	0.0050 (8)
C11	0.0191 (10)	0.0101 (9)	0.0127 (9)	0.0024 (7)	0.0040 (8)	0.0002 (7)
C12	0.0111 (8)	0.0125 (9)	0.0085 (9)	0.0029 (7)	0.0033 (7)	0.0011 (7)
C13	0.0199 (10)	0.0180 (10)	0.0151 (10)	0.0048 (8)	0.0089 (8)	0.0043 (8)
C14	0.0124 (9)	0.0130 (9)	0.0084 (9)	0.0012 (7)	0.0015 (7)	0.0007 (7)
C15	0.0112 (8)	0.0124 (9)	0.0098 (9)	0.0033 (7)	0.0007 (7)	0.0008 (7)
C16	0.0094 (8)	0.0086 (8)	0.0070 (8)	0.0032 (7)	-0.0019 (7)	-0.0025 (7)
C17	0.0088 (8)	0.0112 (8)	0.0080 (8)	0.0019 (7)	-0.0005 (7)	-0.0008 (7)
C18	0.0092 (8)	0.0154 (9)	0.0131 (9)	0.0052 (7)	0.0010 (7)	0.0000 (7)

supporting information

C19	0.0106 (9)	0.0160 (9)	0.0133 (9)	0.0020 (7)	0.0044 (7)	0.0003 (7)
C20	0.0127 (9)	0.0114 (9)	0.0089 (9)	0.0024 (7)	0.0021 (7)	0.0011 (7)
C21	0.0194 (9)	0.0103 (9)	0.0099 (9)	0.0044 (7)	0.0023 (7)	0.0023 (7)
C22	0.0184 (10)	0.0141 (9)	0.0132 (9)	0.0093 (8)	-0.0008 (8)	0.0024 (8)
C23	0.0122 (9)	0.0161 (9)	0.0135 (9)	0.0063 (7)	0.0016 (7)	0.0009 (8)
C24	0.0111 (8)	0.0103 (8)	0.0083 (9)	0.0031 (7)	0.0005 (7)	-0.0014 (7)
C25	0.0198 (10)	0.0157 (9)	0.0099 (9)	0.0069 (8)	0.0044 (8)	-0.0015 (7)
C26	0.0152 (9)	0.0126 (9)	0.0154 (10)	0.0006 (7)	0.0029 (8)	0.0007 (8)
C27	0.0265 (11)	0.0167 (10)	0.0151 (10)	0.0054 (9)	-0.0007 (9)	0.0057 (8)
C28	0.0377 (14)	0.0438 (15)	0.0351 (15)	0.0235 (12)	0.0108 (12)	0.0149 (12)
Cl1	0.01124 (19)	0.0134 (2)	0.0103 (2)	0.00477 (16)	0.00389 (16)	0.00282 (16)
Ir1	0.00779 (4)	0.00810 (4)	0.00644 (4)	0.00263 (3)	0.00083 (3)	0.00086 (3)
N1	0.0098 (7)	0.0095 (7)	0.0091 (7)	0.0035 (6)	0.0024 (6)	0.0017 (6)
N2	0.0107 (7)	0.0096 (7)	0.0065 (7)	0.0032 (6)	0.0008 (6)	0.0004 (6)
N3	0.0378 (11)	0.0250 (10)	0.0226 (10)	0.0156 (9)	0.0042 (9)	0.0067 (8)
01	0.0454 (11)	0.0286 (9)	0.0291 (10)	0.0197 (8)	-0.0143 (8)	0.0008 (8)
O2	0.0343 (9)	0.0235 (8)	0.0257 (9)	0.0135 (7)	0.0150 (7)	0.0131 (7)
O3	0.0172 (7)	0.0168 (7)	0.0129 (7)	0.0100 (6)	-0.0048 (6)	-0.0009 (6)
S1	0.0108 (2)	0.0099 (2)	0.0079 (2)	0.00406 (16)	0.00035 (16)	0.00033 (16)

Geometric parameters (Å, °)

C1—01	1.211 (3)	C16—C17	1.416 (2)
C1—C2	1.477 (3)	C16—Ir1	2.0077 (18)
C2—C7	1.391 (3)	C17—C18	1.398 (2)
C2—C3	1.400 (3)	C17—C24	1.469 (2)
C3—C4	1.396 (3)	C18—C19	1.390 (3)
C4—C5	1.402 (3)	C20—N2	1.346 (2)
C4—Ir1	2.0466 (18)	C20—C21	1.388 (3)
C5—C6	1.397 (3)	C21—C22	1.391 (3)
C5—C12	1.470 (3)	C22—C23	1.383 (3)
C6—C7	1.392 (3)	C23—C24	1.394 (3)
C8—N1	1.351 (2)	C24—N2	1.366 (2)
С8—С9	1.376 (3)	C25—S1	1.7799 (19)
C9—C10	1.381 (3)	C26—S1	1.7870 (19)
C10-C11	1.384 (3)	C27—N3	1.141 (3)
C11—C12	1.390 (3)	C27—C28	1.453 (3)
C12—N1	1.366 (2)	Cl1—Ir1	2.4748 (5)
C13—O2	1.204 (2)	Ir1—N2	2.0609 (15)
C13—C14	1.481 (3)	Ir1—N1	2.0614 (15)
C14—C19	1.384 (3)	Ir1—S1	2.3810 (5)
C14—C15	1.402 (2)	O3—S1	1.4903 (13)
C15—C16	1.392 (2)		
O1—C1—C2	125.8 (2)	C20—C21—C22	119.06 (17)
C7—C2—C3	120.72 (18)	C23—C22—C21	119.21 (17)
C7—C2—C1	119.00 (18)	C22—C23—C24	119.65 (17)
C3—C2—C1	120.28 (18)	N2-C24-C23	120.64 (16)

120.47 (18)	N2—C24—C17	113.70 (15)
117.90 (17)	C23—C24—C17	125.66 (16)
127.61 (14)	N3—C27—C28	179.7 (2)
114.48 (13)	C16—Ir1—C4	89.71 (7)
122.04 (17)	C16—Ir1—N2	80.48 (6)
122.36 (17)	C4—Ir1—N2	89.53 (7)
115.59 (16)	C16—Ir1—N1	93.83 (6)
119.15 (18)	C4—Ir1—N1	79.63 (7)
119.70 (18)	N2—Ir1—N1	167.83 (6)
122.61 (18)	C16—Ir1—S1	90.41 (5)
119.19 (19)	C4—Ir1—S1	179.68 (5)
118.86 (18)	N2—Ir1—S1	90.19 (4)
120.15 (18)	N1—Ir1—S1	100.65 (4)
120.48 (17)	C16—Ir1—Cl1	177.65 (5)
113.96 (16)	C4—Ir1—Cl1	91.58 (5)
125.56 (17)	N2—Ir1—Cl1	97.56 (4)
126.05 (18)	N1—Ir1—Cl1	88.33 (4)
120.78 (17)	S1—Ir1—Cl1	88.295 (18)
118.36 (17)	C8—N1—C12	118.67 (16)
120.86 (17)	C8—N1—Ir1	124.98 (12)
120.26 (17)	C12—N1—Ir1	116.32 (12)
118.19 (16)	C20—N2—C24	119.49 (15)
127.48 (13)	C20—N2—Ir1	124.76 (12)
114.21 (13)	C24—N2—Ir1	114.59 (11)
121.29 (17)	O3—S1—C25	106.03 (9)
123.30 (17)	O3—S1—C26	107.19 (9)
115.18 (15)	C25—S1—C26	98.72 (9)
119.24 (17)	O3—S1—Ir1	119.58 (6)
120.16 (17)	C25—S1—Ir1	111.64 (7)
121.84 (17)	C26—S1—Ir1	111.52 (7)
	120.47 (18) $117.90 (17)$ $127.61 (14)$ $114.48 (13)$ $122.04 (17)$ $122.36 (17)$ $115.59 (16)$ $119.15 (18)$ $119.70 (18)$ $122.61 (18)$ $120.15 (18)$ $120.15 (18)$ $120.48 (17)$ $113.96 (16)$ $125.56 (17)$ $126.05 (18)$ $120.78 (17)$ $118.36 (17)$ $120.26 (17)$ $120.86 (17)$ $120.26 (17)$ $118.19 (16)$ $127.48 (13)$ $114.21 (13)$ $121.29 (17)$ $123.30 (17)$ $115.18 (15)$ $119.24 (17)$ $120.16 (17)$ $121.84 (17)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	$H \cdots A$	$D \cdots A$	D—H···A	
C19—H19…O3 ⁱ	0.93	2.48	3.179 (3)	132	
C25—H25 <i>B</i> ···N3 ⁱⁱ	0.96	2.53	3.403 (3)	150	
C26—H26A···O3 ⁱⁱⁱ	0.96	2.48	3.406 (2)	161	
C28—H28C····O1 ^{iv}	0.96	2.54	3.490 (3)	173	

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) -*x*+2, -*y*+2, -*z*+2; (iv) *x*+1, *y*, *z*.