

Received 30 June 2017 Accepted 27 July 2017

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; TTF derivative; thiolbenzoate.

CCDC reference: 1548509

Supporting information: this article has supporting information at journals.iucr.org/e

Yuanyuan Zhang, Qiqian He, Huijie Bao, Lejia Wang and Xunwen Xiao*

Department of Material Science and Chemical Engineering, Ningbo University of Technology, 201 Fenghua Road, Ningbo 315211, People's Republic of China. *Correspondence e-mail: xunwenxiao@126.com

In the title compound (systematic name: 4,4'-{[2-(5,6-dihydro-[1,3]dithiolo-[4,5-*b*][1,4]dioxin-2-ylidene)-1,3-dithiole-4,5-diyl]bis(sulfanediyl)}dibenzoic acid 0.25-hydrate), C₂₂H₁₄O₆S₆·0.25H₂O, the tetrathiafulvalene (TTF) core adopts a boat conformation, where the central S₂C==CS₂ plane makes dihedral angles of 31.34 (4) and 26.83 (6)°, respectively, with the peripheral S₂C==CS₂ and S₂C₂O₂ planes. In the crystal, the benzoic acid molecules are linked *via* O-H···O hydrogen bonds, forming inversion dimers with $R_2^2(8)$ motifs. The dimers are linked through weak C-H···O hydrogen bonds into a chain structure along [101]. The chains stack along the *a* axis through S···S and S···C short contacts, forming layers parallel to the *ac* plane.

1. Chemical context

Tetrathiafulvalene (TTF) and its derivatives have received much attention in recent years due to their unique electrical properties and synthetic versatility (Canvert et al., 2009; Xiao et al., 2012). Among them, bis(ethylenedioxy)-TTF (BEDO-TTF) derivatives have afforded two-dimensional stable metallic CT complexes resulting from its self-assembling nature in partially oxidized states (Horiuchi et al., 1996). Ethylenedioxy-TTF (EDO-TTF) is a noted electron-donor molecule, and (EDO-TTF)₂PF₆ shows a metal-insulator thermal transition at near room temperature (Ota et al., 2002). There are also many reports that peripheral arylation of TTF could afford photochemically active organic materials. Recently, Shao's group reported a method to introduce aryls to TTF through the sulfur atom (Sun et al., 2013; Zhang et al., 2015). Our group has also reported a donor molecule, EDO-TTF-pyridine (Xiao et al., 2012). To obtain more insight into this system, we report here the synthesis and crystal structure of the title compound.

2. Structural commentary

The asymmetric unit of the title compound contains one benzoic acid molecule and a quarter molecule of solvent water

research communications

Figure 1

(Zhang et al., 2015).

The molecular structure of the title compound, showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level. A, B and C indicate mean planes defined by six atoms.

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$	
$O4-H4\cdots O5^{i}$	0.86 (2)	1.78 (2)	2.629 (3)	165 (5)	
$O6-H6\cdots O3^{i}$	0.84(2)	1.78 (2)	2.624 (3)	177 (4)	
$O1W-H1WA\cdots O5^{ii}$	0.85	2.38	3.18 (2)	155	
$O1W-H1WB\cdots O3^{ii}$	0.85	2.37	3.17 (2)	158	
$C13-H13A\cdots O2^{iii}$	0.93	2.67	3.570 (4)	163	
$C20-H20A\cdots O1^{iii}$	0.93	2.65	3.552 (4)	164	

Symmetry codes: (i) -x + 1, -y, -z; (ii) x - 1, y, z + 1; (iii) -x, -y, -z + 1.

3. Supramolecular features

(Fig. 1). The TTF core adopts a boat conformation, as usually observed in neutral TTF derivatives. The central plane A (S1/ S2/C5/C6/S3/S4) and the adjacent planes B (S3/S4/C7/C8/S5/S6) and C ($\frac{S1}{S2}/C3/C4}/O1/O2$) are almost planar with r.m.s. deviations of 0.0233, 0.0274 and 0.0105 Å, respectively. The dihedral angles between planes A and B and A and C are 31.24 (4) and 26.83 (6)°, respectively. Plane B makes dihedral angles of 85.88 (11) and 82.03 $(15)^{\circ}$, respectively, with the benzene C9-C14 and C16-C21 rings. These benzene rings are approximately parallel, subtending a dihedral angle of 11.82 (14)°. All bond lengths and angles in the TTF fragment are within the range of the values for a neutral TTF molecule

In the crystal, pairs of inversion-related benzoic acid molecules are linked by O-H···O hydrogen bonds between carboxyl groups (Table 1), forming R_2^2 (8) hydrogen-bond motifs (Fig. 2). The water molecule links two carboxyl groups in the benzoic acid molecule through O-H···O hydrogen bonds. The dimers are linked by weak $C-H \cdots O$ hydrogen bonds into a chain structure running along $[\overline{101}]$. The chains stack along the *a* axis via $S \cdots S$ and $S \cdots C$ interactions $[S4 \cdot \cdot \cdot S5^{iv} = 3.420(5) \text{ Å} \text{ and } S1 \cdot \cdot \cdot C20^{v} = 3.456(5) \text{ Å};$ symmetry codes: (iv) x - 1, y, z; (v) -x + 1, -y, -z + 1], forming a layer parallel to the *ac* plane (Fig. 3).

4. Database survey

The crystal structure of 3',4'-ethylenedioxotetrathiafulvolenyl-3-carboxylic acid (EDO-TTF-COOH) reported by Mézière et

Figure 2 A view of the inversion dimer of the title compound with two $R_2^2(8)$ hydrogen-bond motifs. O-H···O hydrogen bonds are shown as dotted lines.

Figure 3 A view of the crystal packing of the title compound, showing $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, and $S\cdots S$ and $S\cdots C$ interactions.

2 NaOH in CH₂OH, H₂O, THF, 12h

Figure 4 Synthesis of the title compound.

al. (2000) has a similar structure to the title compound. Both structures include $O-H\cdots O$ hydrogen bonds between carboxyl groups with R_2^2 (8) ring motifs.

5. Synthesis and crystallization

The title compound was prepared according to the reaction scheme shown in Fig. 4. 4,5-Ethylenedioy-1,3-dithiole-2-thione, **3**, (systematic name: 5,6-dihydro-[1,3]dithiolo[4,5-*b*]-[1,4]dioxine-2-thione) and 4,5-bis(thiolmethylbenzoate)-1,3-dithiole-2-thion, **4**, [systematic name: dimethyl 4,4'-(2-oxo-1,3-dithiole-4,5-diyl)bis(sufanediyl)dibenzoate] were synthesized by the literature method (Sun *et al.*, 2013). Compound **2** was prepared from compounds **3** and **4** using a standard phosphite-mediated coupling procedure as follows:

Compounds **3** (193 mg 0.1 mmol) and **4** (465 mg 0.1 mmol) were mixed in triethylphosphite (5 ml) and heated at 393 K for 6 h. P(OEt)₃ was then removed under reduced pressure and the red residue was purified by column chromatography on silica gel (DCM) to give 310 mg of a red powder of **2** (yield = 53%). ¹H NMR [CDCl₃, δ (ppm), *J* (Hz)]: 8.01 (*d*, 4H, *J* = 8.5), 7.41 (*d*, 4H, *J* = 8.5), 4.28 (*s*, 4H), 3.94 (*s*, 6H).

Finally, compound 1 was obtained by hydrolysis reaction of compound 2: A 50 ml flask was charged with compound 2 (260 mg, 0.50 mmol) under an N₂ atmosphere. Degassed methanol (6 ml) and THF (6 ml) were added to generate a suspension. In a separate flask, sodium hydroxide (230 mg, 5.8 mmol) was dissolved in degassed water (4 ml). The sodium hydroxide solution was added to compound 2 and the reaction was heated to reflux for 8 h. The reaction was then cooled to room temperature and the volatiles were removed in vacuo. Hydrochloric acid (1 mol l⁻¹, 15 ml) was added to afford a maroon precipitate, which was collected by filtration and washed with water (50 ml). The product was collected and dried under high vacuum for 12 h to afford 1 as a maroon solid (179 mg, 0.35 mmol, 70% yield). ¹H NMR [DMSO- d_6 , δ (ppm), J (Hz)]: 8.02 (d, 4H, J = 8.6), 7.43 (d, 4H, J = 8.6), 4.28 (s, 4H). Elemental analysis calculated for C₂₂H₁₄O₆S₆: C 46.62, H 2.49%; found: C 46.67, H 2.51%. Red crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate solution of the title compound. Elemental analysis calculated for C₂₂H₁₄O₆S₆·0.25H₂O: C 46.26, H 2.56%; found: C 46.29, H 2.58%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Carboxyl H atoms were located in a difference-Fourier map and refined with O-H = 0.85 (2) Å, and with $U_{iso}(H) = 1.2U_{eq}(O)$. H atoms bonded to C and O(water) atoms were positioned geometrically and included in the refinement in the riding-model approximation (C-H = 0.93 or 0.97 Å, and O-H = 0.85 Å) with $U_{iso}(H) = 1.2U_{eq}(C \text{ or}$ O). In the refinement, the occupancy of the lattice water molecule was fixed at 0.25, which was estimated from the results of element analysis and gave acceptable displacement parameters for the water O atom.

Table 2Experimental details.	
Crystal data	
Chemical formula	$C_{22}H_{14}O_6S_6 \cdot 0.25H_2O$
M _r	571.19
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	296
a, b, c (Å)	7.6995 (6), 9.2634 (8), 17.9198 (14)
α, β, γ (°)	90.970 (4), 92.039 (4), 110.902 (4)
$V(Å^3)$	1192.64 (17)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.61
Crystal size (mm)	$0.32 \times 0.22 \times 0.16$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2014)
T_{\min}, T_{\max}	0.85, 0.91
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	40263, 5496, 4411
Rint	0.066
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.652
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.119, 1.08
No. of reflections	5496
No. of parameters	322
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho = \Delta \rho + (e \check{A}^{-3})$	0.47 - 0.27

Computer programs: *APEX2* and *SAINT-Plus* (Bruker, 2014), *SHELXS97* and *SHELXTL* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015) and *publCIF* (Westrip, 2010).

Funding information

This work was supported by Zhejiang Province Planted Talent Plan, Ningbo Natural Science Foundation 2017 A610013.

References

- Bruker (2014). *APEX2*, *SAINT-Plus* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Canvert, D., Sallé, M., Zhang, G. & Zhang, D. (2009). Chem. Commun. pp. 2245–2269.
- Horiuchi, S., Yamochi, H., Saito, G., Sakaguchi, K. & Kusunoki, M. (1996). J. Am. Chem. Soc. 118, 8604–8622.

- Mézière, C., Fourmigué, M. & Fabre, J.-M. (2000). C. R. Acad. Sci. Ser. Ilc Chim. 3, 387–395.
- Ota, A., Yamochi, H. & Saito, G. (2002). J. Mater. Chem. 12, 2600–2602.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sun, J., Lu, X., Shao, J., Cui, Z., Shao, Y., Jiang, G., Yu, W. & Shao, X. (2013). RSC Adv. 3, 10193–10196.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xiao, X., Wang, G., Shen, L., Fang, J. & Gao, H. (2012). Synth. Met. 162, 900–903.
- Zhang, X., Lu, X., Sun, J., Zhao, Y. & Shao, X. (2015). *CrystEngComm*, **17**, 4110–4116.

supporting information

Acta Cryst. (2017). E73, 1275-1278 [https://doi.org/10.1107/S2056989017011070]

Crystal structure of ethylenedioxytetrathiafulvalene-4,5-bis(thiolbenzoic acid) 0.25-hydrate

Yuanyuan Zhang, Qiqian He, Huijie Bao, Lejia Wang and Xunwen Xiao

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT-Plus* (Bruker, 2014); data reduction: *SAINT-Plus* (Bruker, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

4,4'-{[2-(5,6-Dihydro-[1,3]dithiolo[4,5-b][1,4]dioxin-2-ylidene)-1,3-dithiole-4,5-diyl]bis(sulfanediyl)}dibenzoic acid 0.25-hydrate

Crystal data $C_{22}H_{14}O_6S_6 \cdot 0.25H_2O$ $M_r = 571.19$ Triclinic, $P\overline{1}$ a = 7.6995 (6) Å b = 9.2634 (8) Å c = 17.9198 (14) Å a = 90.970 (4)° $\beta = 92.039$ (4)° $\gamma = 110.902$ (4)° V = 1192.64 (17) Å³

Data collection

Bruker APEXII CCD diffractometer ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{\min} = 0.85, T_{\max} = 0.91$ 40263 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.119$ S = 1.085496 reflections 322 parameters 2 restraints Z = 2 F(000) = 585 $D_x = 1.591 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9956 reflections $\theta = 2.6-27.6^{\circ}$ $\mu = 0.61 \text{ mm}^{-1}$ T = 296 K Block, red $0.32 \times 0.22 \times 0.16 \text{ mm}$

5496 independent reflections 4411 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$ $\theta_{max} = 27.6^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -10 \rightarrow 10$ $k = -12 \rightarrow 12$ $l = -23 \rightarrow 23$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0409P)^2 + 1.3142P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.47$ e Å⁻³ $\Delta\rho_{min} = -0.27$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.11044 (11)	0.09238 (9)	0.66738 (4)	0.04393 (19)	
S2	-0.09625 (9)	0.29064 (8)	0.61324 (4)	0.03501 (16)	
S3	0.32187 (10)	0.13385 (8)	0.51255 (4)	0.03623 (17)	
S4	0.12080 (9)	0.32989 (8)	0.45679 (4)	0.03457 (16)	
S5	0.66618 (9)	0.29700 (9)	0.42971 (4)	0.04079 (19)	
S6	0.42943 (10)	0.51964 (8)	0.36264 (4)	0.03834 (17)	
01	-0.1244 (3)	0.3703 (2)	0.75549 (11)	0.0433 (5)	
O1W	-0.114 (3)	0.387 (2)	1.0200 (8)	0.189 (11)	0.25
H1WA	-0.1141	0.2992	1.0328	0.227*	0.25
H1WB	-0.2242	0.3865	1.0236	0.227*	0.25
O2	0.0741 (3)	0.1748 (3)	0.80773 (11)	0.0470 (5)	
03	0.4480 (5)	0.2974 (3)	0.00584 (14)	0.0900 (11)	
O4	0.2328 (5)	0.0854 (3)	0.04444 (14)	0.0863 (10)	
H4	0.222 (7)	0.048 (5)	-0.0006 (14)	0.104*	
05	0.7607 (4)	0.0500 (3)	0.08500 (12)	0.0664 (7)	
O6	0.5255 (4)	-0.1560 (3)	0.11897 (12)	0.0575 (6)	
H6	0.539 (5)	-0.200 (4)	0.0790 (14)	0.069*	
C1	-0.0452 (6)	0.3816 (4)	0.83013 (18)	0.0591 (9)	
H1A	-0.1185	0.4167	0.8640	0.071*	
H1B	0.0800	0.4579	0.8322	0.071*	
C2	-0.0387 (6)	0.2316 (4)	0.85521 (18)	0.0599 (9)	
H2A	0.0124	0.2441	0.9062	0.072*	
H2B	-0.1642	0.1559	0.8547	0.072*	
C3	0.0365 (4)	0.1960 (3)	0.73426 (15)	0.0362 (6)	
C4	-0.0543 (4)	0.2847 (3)	0.71027 (14)	0.0335 (6)	
C5	0.0641 (3)	0.1999 (3)	0.59408 (14)	0.0318 (5)	
C6	0.1508 (3)	0.2153 (3)	0.52984 (14)	0.0291 (5)	
C7	0.4361 (3)	0.2753 (3)	0.44870 (13)	0.0295 (5)	
C8	0.3442 (3)	0.3653 (3)	0.42336 (13)	0.0291 (5)	
C9	0.3906 (3)	0.4271 (3)	0.27335 (13)	0.0290 (5)	
C10	0.4906 (4)	0.5139 (3)	0.21609 (15)	0.0415 (7)	
H10A	0.5698	0.6155	0.2256	0.050*	
C11	0.4719 (5)	0.4482 (3)	0.14444 (16)	0.0472 (7)	
H11A	0.5394	0.5058	0.1062	0.057*	
C12	0.3526 (4)	0.2970 (3)	0.13006 (15)	0.0394 (6)	
C13	0.2478 (4)	0.2132 (3)	0.18680 (15)	0.0412 (7)	
H13A	0.1639	0.1134	0.1767	0.049*	
C14	0.2677 (4)	0.2776 (3)	0.25845 (14)	0.0375 (6)	
H14A	0.1986	0.2204	0.2965	0.045*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C15	0.3430 (5)	0.2226 (4)	0.05515 (16)	0.0514 (8)
C16	0.6443 (3)	0.2013 (3)	0.34120 (13)	0.0296 (5)
C17	0.7745 (4)	0.2746 (3)	0.28949 (15)	0.0387 (6)
H17A	0.8628	0.3721	0.3008	0.046*
C18	0.7729 (4)	0.2022 (3)	0.22095 (16)	0.0419 (7)
H18A	0.8597	0.2515	0.1862	0.050*
C19	0.6421 (4)	0.0565 (3)	0.20418 (14)	0.0330 (5)
C20	0.5125 (4)	-0.0176 (3)	0.25668 (15)	0.0354 (6)
H20A	0.4252	-0.1158	0.2458	0.042*
C21	0.5142 (3)	0.0553 (3)	0.32484 (14)	0.0340 (6)
H21A	0.4278	0.0061	0.3598	0.041*
C22	0.6426 (4)	-0.0211 (3)	0.13115 (15)	0.0407 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0568 (4)	0.0448 (4)	0.0426 (4)	0.0312 (4)	0.0196 (3)	0.0122 (3)
S2	0.0351 (3)	0.0449 (4)	0.0316 (3)	0.0212 (3)	0.0112 (3)	0.0041 (3)
S3	0.0419 (4)	0.0402 (4)	0.0346 (3)	0.0238 (3)	0.0106 (3)	-0.0010 (3)
S4	0.0305 (3)	0.0527 (4)	0.0268 (3)	0.0221 (3)	0.0060(2)	0.0005 (3)
S5	0.0269 (3)	0.0621 (5)	0.0336 (4)	0.0172 (3)	0.0012 (3)	-0.0215 (3)
S6	0.0484 (4)	0.0341 (3)	0.0279 (3)	0.0087 (3)	0.0086 (3)	-0.0067 (3)
O1	0.0529 (12)	0.0482 (12)	0.0359 (10)	0.0260 (10)	0.0124 (9)	-0.0025 (9)
O1W	0.25 (2)	0.169 (18)	0.059 (9)	-0.035 (16)	0.038 (12)	-0.041 (10)
O2	0.0530 (12)	0.0575 (13)	0.0358 (11)	0.0253 (10)	0.0093 (9)	0.0118 (9)
O3	0.165 (3)	0.0509 (15)	0.0402 (13)	0.0183 (17)	0.0469 (17)	-0.0017 (11)
O4	0.134 (3)	0.0605 (16)	0.0378 (14)	0.0012 (16)	0.0300 (15)	-0.0190 (12)
O5	0.0908 (18)	0.0584 (14)	0.0373 (12)	0.0089 (13)	0.0296 (12)	-0.0078 (10)
O6	0.0739 (16)	0.0509 (13)	0.0378 (12)	0.0099 (12)	0.0164 (11)	-0.0167 (10)
C1	0.079 (2)	0.062 (2)	0.0426 (18)	0.0330 (19)	0.0057 (16)	-0.0096 (15)
C2	0.080 (2)	0.070 (2)	0.0342 (16)	0.031 (2)	0.0124 (16)	0.0041 (15)
C3	0.0368 (14)	0.0379 (14)	0.0349 (14)	0.0133 (11)	0.0098 (11)	0.0064 (11)
C4	0.0340 (13)	0.0358 (13)	0.0325 (13)	0.0136 (11)	0.0119 (10)	0.0013 (11)
C5	0.0299 (12)	0.0326 (13)	0.0347 (13)	0.0126 (10)	0.0096 (10)	0.0013 (10)
C6	0.0269 (11)	0.0324 (13)	0.0293 (12)	0.0119 (10)	0.0048 (9)	-0.0027 (10)
C7	0.0245 (11)	0.0384 (13)	0.0262 (12)	0.0125 (10)	0.0030 (9)	-0.0115 (10)
C8	0.0293 (12)	0.0380 (13)	0.0196 (11)	0.0118 (10)	0.0043 (9)	-0.0084 (9)
C9	0.0338 (12)	0.0339 (13)	0.0230 (12)	0.0159 (10)	0.0078 (9)	-0.0014 (9)
C10	0.0545 (17)	0.0317 (14)	0.0334 (14)	0.0084 (12)	0.0131 (12)	-0.0012 (11)
C11	0.073 (2)	0.0389 (15)	0.0278 (14)	0.0164 (14)	0.0216 (14)	0.0056 (11)
C12	0.0598 (18)	0.0361 (14)	0.0244 (13)	0.0191 (13)	0.0090 (12)	-0.0002 (10)
C13	0.0513 (16)	0.0346 (14)	0.0305 (14)	0.0062 (12)	0.0087 (12)	-0.0059 (11)
C14	0.0418 (14)	0.0380 (14)	0.0272 (13)	0.0064 (12)	0.0120 (11)	-0.0017 (11)
C15	0.084 (2)	0.0416 (17)	0.0279 (14)	0.0212 (16)	0.0164 (15)	-0.0029 (12)
C16	0.0273 (11)	0.0394 (14)	0.0265 (12)	0.0173 (10)	0.0042 (9)	-0.0063 (10)
C17	0.0450 (15)	0.0324 (13)	0.0359 (14)	0.0097 (12)	0.0112 (12)	-0.0042 (11)
C18	0.0517 (17)	0.0382 (15)	0.0339 (14)	0.0122 (13)	0.0184 (12)	0.0015 (11)
C19	0.0401 (14)	0.0378 (14)	0.0255 (12)	0.0190 (11)	0.0065 (10)	-0.0040 (10)

supporting information

C20	0.0331 (13)	0.0381 (14)	0.0329 (14)	0.0104 (11)	0.0047 (10)	-0.0073 (11)
C21	0.0302 (12)	0.0428 (15)	0.0289 (13)	0.0124 (11)	0.0103 (10)	-0.0042 (11)
C22	0.0544 (17)	0.0431 (16)	0.0271 (13)	0.0200 (13)	0.0090 (12)	-0.0040 (11)

Geometric parameters (Å, °)

S1—C3	1.755 (3)	C2—H2A	0.9700
S1—C5	1.763 (3)	C2—H2B	0.9700
S2—C4	1.762 (3)	C3—C4	1.323 (4)
S2—C5	1.763 (3)	C5—C6	1.336 (3)
S3—C7	1.761 (3)	C7—C8	1.346 (4)
S3—C6	1.769 (2)	C9—C14	1.386 (4)
S4—C6	1.759 (3)	C9—C10	1.391 (3)
S4—C8	1.762 (2)	C10—C11	1.392 (4)
S5—C7	1.757 (2)	C10—H10A	0.9300
S5—C16	1.777 (2)	C11—C12	1.387 (4)
S6—C8	1.759 (3)	C11—H11A	0.9300
S6—C9	1.767 (2)	C12—C13	1.388 (4)
O1—C4	1.375 (3)	C12—C15	1.486 (4)
O1—C1	1.436 (4)	C13—C14	1.387 (4)
O1W—H1WA	0.8522	C13—H13A	0.9300
O1W—H1WB	0.8483	C14—H14A	0.9300
O2—C3	1.371 (3)	C16—C21	1.385 (4)
O2—C2	1.455 (4)	C16—C17	1.388 (4)
O3—C15	1.260 (4)	C17—C18	1.387 (4)
O4—C15	1.258 (4)	C17—H17A	0.9300
O4—H4	0.863 (19)	C18—C19	1.387 (4)
O5—C22	1.261 (3)	C18—H18A	0.9300
O6—C22	1.263 (4)	C19—C20	1.397 (4)
O6—H6	0.843 (18)	C19—C22	1.483 (3)
C1—C2	1.485 (5)	C20—C21	1.383 (3)
C1—H1A	0.9700	C20—H20A	0.9300
C1—H1B	0.9700	C21—H21A	0.9300
C3—S1—C5	91.86 (12)	C14—C9—S6	123.81 (19)
C4—S2—C5	91.46 (12)	C10—C9—S6	116.2 (2)
C7—S3—C6	93.69 (12)	C9—C10—C11	119.9 (3)
C6—S4—C8	93.76 (12)	C9—C10—H10A	120.1
C7—S5—C16	103.60 (11)	C11—C10—H10A	120.1
C8—S6—C9	103.42 (11)	C12—C11—C10	120.1 (2)
C4—O1—C1	110.0 (2)	C12—C11—H11A	120.0
H1WA—O1W—H1WB	107.7	C10-C11-H11A	120.0
C3—O2—C2	109.7 (2)	C11—C12—C13	119.8 (2)
C15—O4—H4	116 (3)	C11—C12—C15	120.2 (3)
С22—О6—Н6	115 (3)	C13—C12—C15	120.0 (3)
O1—C1—C2	112.2 (3)	C14—C13—C12	120.3 (3)
O1—C1—H1A	109.2	C14—C13—H13A	119.8
C2—C1—H1A	109.2	C12—C13—H13A	119.8

O1—C1—H1B	109.2	C9—C14—C13	119.9 (2)
C2—C1—H1B	109.2	C9—C14—H14A	120.0
H1A—C1—H1B	107.9	C13—C14—H14A	120.0
O2—C2—C1	111.8 (3)	O4—C15—O3	122.8 (3)
02—C2—H2A	109.2	O4—C15—C12	118.2 (3)
C1 - C2 - H2A	109.2	03-C15-C12	119.0(3)
$\Omega^2 - \Omega^2 - H^2 B$	109.2	C_{21} C_{16} C_{17}	1201(2)
C1 - C2 - H2B	109.2	$C_{21} - C_{16} - S_{5}$	120.1(2) 122.88(19)
$H_{2A} = C_2 + H_{2B}$	107.0	C_{17} C_{16} S_{5}	122.00(17)
$C_{12}^{-}C_{2}^{-}C_{12}^{-}D_{2}^{-}$	107.9	$C_{17} = C_{10} = S_{5}$	110.0(2)
$C_{4} = C_{3} = O_{2}$	125.5(3)	$C_{10} = C_{17} = C_{10}$	119.9 (2)
C4 - C3 - S1	116.0(2)	$C_{16} - C_{17} - H_{17A}$	120.0
02-03-51	110.7(2)	C10 - C17 - H17A	120.0
C_{3} C_{4} C_{1}	125.0 (2)	C19 - C18 - C17	120.1 (2)
C3—C4—S2	118.2 (2)	C19—C18—H18A	120.0
01	116.75 (19)	С17—С18—Н18А	120.0
C6—C5—S2	123.0 (2)	C18—C19—C20	119.8 (2)
C6—C5—S1	121.6 (2)	C18—C19—C22	119.8 (2)
S2—C5—S1	115.37 (14)	C20—C19—C22	120.4 (2)
C5—C6—S4	123.8 (2)	C21—C20—C19	119.9 (2)
C5—C6—S3	123.1 (2)	C21—C20—H20A	120.1
S4—C6—S3	112.94 (13)	C19—C20—H20A	120.1
C8—C7—S5	125.7 (2)	C20—C21—C16	120.2 (2)
C8—C7—S3	116.87 (18)	C20—C21—H21A	119.9
S5—C7—S3	117.18 (15)	C16—C21—H21A	119.9
C7—C8—S6	126.18 (19)	O5—C22—O6	123.6 (3)
C7—C8—S4	117.00 (19)	O5—C22—C19	118.5 (3)
<u>\$6</u>	116 78 (15)	$06-C^{2}-C^{19}$	118.0(2)
$C_{14} - C_{9} - C_{10}$	1200(2)	00 022 017	110.0 (2)
	120.0 (2)		
C4 - 01 - C1 - C2	-435(4)	C9—S6—C8—S4	-10045(15)
$C_{3} = C_{2} = C_{1}^{2}$	-42.7(4)	C6-S4-C8-C7	143(2)
$C_1 C_2 C_2 C_1$	42.7 (4) 60 5 (4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-163 43 (14)
$C_1 = C_2 = C_2$	14.2(4)	$C_{0}^{8} = C_{0}^{8} = C_{0}^{1} = C_{0}^{1}$	103.43(14)
$C_2 = 0_2 = C_3 = C_4$	14.2(4)	$C_{8} = 50 = C_{9} = C_{14}$	16.4(3)
$C_2 = C_2 = C_3 = S_1$	-104.1(2)	$C_{0} = S_{0} = C_{0} = C_{10}$	-102.2(2)
$C_{3} = C_{3} = C_{4}$	12.0 (2)		-2.3(4)
$C_{3} = C_{3} = C_{4} = C_{4}$	-169.0(2)	S6-C9-C10-C11	1/8.3 (2)
02-C3-C4-01	0.4 (4)	C9—C10—C11—C12	0.5 (5)
SI_C3_C4_OI	178.6 (2)	C10—C11—C12—C13	2.0 (5)
O2—C3—C4—S2	-177.6 (2)	C10—C11—C12—C15	-175.3(3)
S1—C3—C4—S2	0.7 (3)	C11—C12—C13—C14	-2.8 (5)
C1—O1—C4—C3	14.8 (4)	C15—C12—C13—C14	174.6 (3)
C1	-167.3 (2)	C10—C9—C14—C13	1.5 (4)
C5—S2—C4—C3	-13.6 (2)	S6—C9—C14—C13	-179.1 (2)
C5—S2—C4—O1	168.3 (2)	C12—C13—C14—C9	1.0 (5)
C4—S2—C5—C6	-155.6 (2)	C11—C12—C15—O4	-179.9 (4)
C4—S2—C5—S1	22.02 (16)	C13—C12—C15—O4	2.7 (5)
C3—S1—C5—C6	155.8 (2)	C11—C12—C15—O3	1.9 (5)
C3—S1—C5—S2	-21.84 (17)	C13—C12—C15—O3	-175.5 (3)
	× /		· · ·

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
04—H4…O5 ⁱ	0.86 (2)	1.78 (2)	2.629 (3)	165 (5)
O6—H6…O3 ⁱ	0.84 (2)	1.78 (2)	2.624 (3)	177 (4)
O1W—H1 WA ···O5 ⁱⁱ	0.85	2.38	3.18 (2)	155
O1 <i>W</i> —H1 <i>WB</i> ···O3 ⁱⁱ	0.85	2.37	3.17 (2)	158
C13—H13A····O2 ⁱⁱⁱ	0.93	2.67	3.570 (4)	163
C20—H20A····O1 ⁱⁱⁱ	0.93	2.65	3.552 (4)	164

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) *x*-1, *y*, *z*+1; (iii) -*x*, -*y*, -*z*+1.