

Received 17 July 2017 Accepted 31 July 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

‡ Thomson Reuters ResearcherID: A-5599-2009.

Keywords: crystal structure; Hirshfeld surface analysis; hydrogen bonding.

CCDC reference: 1559280

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\bigcirc}$ ACCESS

Crystal structure and Hirshfeld surface analysis of 2-amino-4-methoxy-6-methylpyrimidinium 2-hydroxybenzoate

Muthaiah Jeevaraj,^a Palaniyappan Sivajeyanthi,^a Bellarmin Edison,^a Kaliyaperumal Thanigaimani,^b Kasthuri Balasubramani^a* and Ibrahim Abdul Razak^c‡

^aDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India, ^bDepartment of Chemistry, Government Arts College, Tiruchirappalli 620 022, Tamil Nadu, India, and ^cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. *Correspondence e-mail: manavaibala@gmail.com

In the title molecular salt, $C_6H_{10}N_3O^+ \cdot C_7H_5O_3^-$, the cation is protonated at the N atom lying between the amine and methyl substituents and the dihedral angle between the carboxyl group and its attached ring in the anion is 4.0 (2)°. The anion features an intramolecular $O-H\cdots O$ hydrogen bond, which closes an S(6) ring. The cation and anion are linked by two $N-H\cdots O$ hydrogen bonds $[R_2^2(8) \text{ motif}]$ to generate an ion pair in which the dihedral angle between the aromatic rings is 8.34 (9)°. Crystal symmetry relates two ion pairs bridged by further $N-H\cdots O$ hydrogen bonds into a tetrameric *DDAA* array. The tetramers are linked by pairs of $C-H\cdots O$ hydrogen bonds to generate [100] chains. Hirshfeld surface and fingerprint plot analyses are presented.

1. chemical context

Pyrimidine and aminopyrimidine derivatives have many applications as pesticides and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, such as AZT, which is the most widely-used anti-AIDS drug (Gilchrist, 1997). Hydrogen bonding plays a vital role in molecular recognition. Supramolecular chemistry plays a pivotal role in biological systems and in artificial systems. It refers to the specific interaction between two or more motifs through non-covalent interactions such as hydrogen bonding, hydrophobic forces, van der Waals forces, $\pi - \pi$ interactions *etc.* The generating of supramolecular architectures is correlated to the positions and properties of the active groups in molecules (Desiraju et al., 1989; Steiner et al., 2002) As part of our studies in these areas, the synthesis and structure of the title molecular salt, (I), is presented here.

research communications

Figure 1

The asymmetric unit of (I), with 50% probability displacement ellipsoids. The hydrogen bonds are indicated by dashed lines.

2. structural commentary

The molecular structure of (I) is shown in Fig. 1. The asymmetric unit contains a 2-amino-4-methoxy-6-methylpyrimidinium cation and a 2-hydroxybenzoate anion. The cation is protonated at N1, which lies between the amine and methyl substituents: this protonation is reflected by an increase in the bond angle at N1 $[C1-N1-C2 = 121.09 (15)^{\circ}]$, when compared with the unprotonated atom N3 $[C1-N3-C4 = 116.52 (18)^{\circ}]$, and the corresponding angle of 116.01 (18)° in neutral 2-amino-4-methoxy-6-methylpyrimidine (Glidewell *et al.*, 2003). An intramolecular O– $H \cdots$ O hydrogen bond occurs within the anion (Table 1).

3. supramolecular features

The protonated N atom (N1) and 2-amino group (N2) of the cation interacts with the O1 and O2 oxygen atoms of the carboxylate anion through a pair of $N-H\cdots O$ hydrogen bonds (Table 1), forming an eight-membered ring motif $R_2^2(8)$. Inversion-related $R_2^2(8)$ ring motifs are further bridged by $N-H\cdots O$ hydrogen bonds thereby forming a *DDAA* tetramer (*D* stands for hydrogen-bond donor and *A* stands for hydrogen-bond acceptor). This set of fused rings can be represented by the graph-set notations $R_2^2(8)$, $R_4^2(8)$ and $R_2^2(8)$. This type of motif has been reported previously in the crystal structures of trimethoprim hydrogen glutarate (Robert *et al.*, 2001) and 2-amino-4-methoxy-6-methylpyridinium trifluoroacetate (Jeevaraj *et al.*, 2016). These arrays are further linked *via*

Figure 2 A [100] chain in the crystal of (I) incorporating $R_2^2(8)$, $R_4^2(8)$ and $R_4^2(12)$ ring motifs.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O2$	0.86	1.84	2.7033 (19)	176
$N2-H2A\cdots O3^{i}$	0.86	2.00	2.816 (3)	158
$N2-H2B\cdots O3$	0.86	1.99	2.830 (2)	165
$O4-H4\cdots O2$	0.82	1.81	2.534 (2)	147
C3−H3···O1 ⁱⁱ	0.93	2.48	3.374 (3)	160

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 3, -y + 1, -z + 2.

pairwise C-H···O hydrogen bonds to generate another $R_2^2(8)$ ring motif as part of a [100] chain (Fig. 2).

4. Hirshfeld surface analysis

The d_{norm} parameter takes negative or positive values depending on whether the inter-molecular contact is shorter or longer, respectively, than the van der Waals radii (Spackman & Jayatilaka et al., 2009; McKinnon et al., 2007). The d_{norm} surface of the ion-pair in (I) is shown in Fig. 3: this naturally neglects hydrogen bonds (intra-anion O-H···O and N-H...O cation-to-anion) that occur within the asymmetric unit. The red points represent closer contacts and negative d_{norm} values on the surface corresponding to the N- $H \cdots O$ and $C - H \cdots O$ interactions are light red in colour. Two-dimensional fingerprint plots from the Hirshfeld surface analysis, as shown in Fig. 4, give a break-down of different contacts as follows: H···H (44.2%), C···H/H···C (19.6%), $O \cdots H/H \cdots O$ (20.9%), $C \cdots O/O \cdots C$ (3.0%), $C \cdots C$ (2.9%), $N \cdots H/H \cdots N$ (8.1%) and $O \cdots O$ (1.0%). Two 'wingtips' in the fingerprint plot are related to the strong $H \cdots O$ and $O \cdots H$ interactions.

5. Database survey

A search of the Cambridge Structural Database (Version 5.37, update February 2017; Groom *et al.*, 2016) for 2-amino-4-

Three-dimensional Hirshfeld surface of (I).

Figure 4 Fingerprint plots for (I).

methoxy-6-methylpyrimidine vielded seven structures: VAQSOW, VAQSUC, VAQSEM, VAQSIQ, VAQRUB and VAQSAI (Aakeroy et al., 2003) and NUQTOJ (Jasinski et al. (2010).

6. Synthesis and crystallization

The title compound was synthesized by mixing hot methanolic solutions (20 ml) of 2-amino-4-methoxy-6-methylpyrimidine (0.139 mg) and 2-hydroxybenzoic acid (0.156 mg) in a 1:1 molar ratio. The mixed solutions were warmed few minutes over a waterbath and then cooled and kept at room temperature for slow evaporation. After a few days, colourless block-shaped crystals of (I) were obtained (yield = 65%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms were positioned geometrically (N-H = 0.86, O-H = 0.82 and C-H = 0.96 or 0.93 Å) and were refined using a riding model, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}({\rm methyl}\ {\rm C})$. A rotating-group model was used for the methyl group.

Funding information

PS and KB thank the Department of Science and Technology (DST-SERB), grant No. SB/FT/CS-058/2013, New Delhi, India, for financial support.

Experimental details.	
Crystal data	
Chemical formula	$C_6H_{10}N_3O^+ \cdot C_7H_5O_3^-$
M _r	277.28
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.4291 (12), 15.0620 (19), 12.1595 (11)
β (°)	128.252 (6)
$V(Å^3)$	1356.1 (3)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.55 \times 0.33 \times 0.16$
Data collection	
Diffractometer	Bruker KappaCCD APEXII
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2004)
T_{\min}, T_{\max}	0.960, 0.984
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	33325, 4033, 2373
R _{int}	0.042
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.708
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.056, 0.164, 1.02
No. of reflections	4033
No. of parameters	183
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e A^{-3})$	0.21, -0.19

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

References

Table 2

A 1 1 A 1

- Aakeröy, B. C., Beffert, K., Desper, J. & Elisabeth, E. (2003). Cryst. Growth Des. 3, 837-846.
- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41-46. Alton, Hampshire, England: BCPC Publications.
- Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
- Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261-276. Singapore: Addison Wesley Longman.
- Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, 09-013.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.
- Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010). Acta Cryst. E66, 01189-01190.
- Jeevaraj, M., Edison, B., Kavitha, S. J., Thanikasalam, K., Britto, S. & Balasubramani, K. (2016). IUCrData, 1, x161010.
- Maeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415-422. Alton, Hampshire, England: BCPC Publications.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.
- Robert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206-o1208.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.

- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.

supporting information

Acta Cryst. (2017). E73, 1305-1307 [https://doi.org/10.1107/S2056989017011252]

Crystal structure and Hirshfeld surface analysis of 2-amino-4-methoxy-6methylpyrimidinium 2-hydroxybenzoate

Muthaiah Jeevaraj, Palaniyappan Sivajeyanthi, Bellarmin Edison, Kaliyaperumal Thanigaimani, Kasthuri Balasubramani and Ibrahim Abdul Razak

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

2-Amino-4-methoxy-6-methylpyrimidinium 2-hydroxybenzoate

```
Crystal data
```

C₆H₁₀N₃O⁺·C₇H₅O₃⁻ $M_r = 277.28$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.4291 (12) Å b = 15.0620 (19) Å c = 12.1595 (11) Å $\beta = 128.252$ (6)° V = 1356.1 (3) Å³ Z = 4

Data collection

Bruker KappaCCD APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.960, T_{\max} = 0.984$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.164$ S = 1.024033 reflections 183 parameters 0 restraints F(000) = 584 $D_x = 1.358 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4033 reflections $\theta = 2.5-27.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.55 \times 0.33 \times 0.16 \text{ mm}$

33325 measured reflections 4033 independent reflections 2373 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 30.2^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -13 \rightarrow 13$ $k = -21 \rightarrow 21$ $l = -17 \rightarrow 17$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0587P)^2 + 0.4004P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\begin{array}{l} \Delta\rho_{\rm max}=0.21~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.19~{\rm e}~{\rm \AA}^{-3} \end{array}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement pa	arameters (Ų)
---	---------------

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	1,29929 (16)	0.42997 (10)	1.00372 (13)	0.0632 (4)
N1	0.97381 (17)	0.55436 (9)	0.63943 (14)	0.0475 (4)
N2	0.72932 (19)	0.50804 (12)	0.62236 (17)	0.0659 (6)
N3	1.01155 (18)	0.46656 (10)	0.81604 (14)	0.0486 (4)
C1	0.9058 (2)	0.50922 (12)	0.69373 (17)	0.0482 (5)
C2	1.1545 (2)	0.55729 (11)	0.70701 (17)	0.0465 (5)
C3	1.2648 (2)	0.51464 (12)	0.82987 (18)	0.0510 (5)
C4	1.1868 (2)	0.46995 (11)	0.88151 (17)	0.0472 (5)
C5	1.2254 (3)	0.38111 (18)	1.0601 (3)	0.0863 (9)
C6	1.2148 (3)	0.60934 (14)	0.6387 (2)	0.0620 (7)
02	0.75239 (17)	0.63571 (9)	0.38790 (13)	0.0593 (4)
O3	0.51173 (16)	0.57024 (9)	0.34276 (13)	0.0597 (4)
O4	0.7259 (2)	0.72936 (11)	0.20277 (15)	0.0756 (6)
C7	0.5836 (2)	0.62036 (11)	0.30856 (17)	0.0459 (5)
C8	0.4695 (2)	0.66507 (10)	0.16945 (16)	0.0445 (5)
C9	0.5463 (3)	0.71779 (12)	0.12434 (19)	0.0554 (6)
C10	0.4349 (4)	0.75988 (14)	-0.0047 (2)	0.0723 (8)
C11	0.2513 (3)	0.74946 (14)	-0.0879 (2)	0.0719 (8)
C12	0.1737 (3)	0.69718 (14)	-0.0458 (2)	0.0649 (7)
C13	0.2822 (2)	0.65538 (12)	0.08200 (19)	0.0529 (6)
H1	0.90150	0.58160	0.56090	0.0570*
H2A	0.68270	0.47990	0.65460	0.0790*
H2B	0.66070	0.53540	0.54350	0.0790*
H3	1.38930	0.51480	0.87920	0.0610*
H5A	1.14960	0.41960	1.06650	0.1290*
H5B	1.32220	0.35930	1.15160	0.1290*
H5C	1.15550	0.33200	0.99970	0.1290*
H6A	1.22890	0.67050	0.66590	0.0930*
H6B	1.12630	0.60460	0.53890	0.0930*
H6C	1.32820	0.58650	0.66740	0.0930*
H4	0.77590	0.70480	0.27870	0.1130*
H10	0.48530	0.79540	-0.03500	0.0870*
H11	0.17840	0.77820	-0.17400	0.0860*

supporting information

H12	0.04900	0.69010	-0.10300	0.0780*
H13	0.22980	0.61990	0.11070	0.0640*

Atomic	displae	cement	paramet	ers	$(Å^2)$

T T 11	1722	T 733	T 712	T 713	1 723
U"	U^{22}	033	U ¹²	U^{13}	U^{23}
0.0472 (7)	0.0777 (9)	0.0528 (7)	0.0025 (6)	0.0250 (6)	0.0194 (6)
0.0436 (7)	0.0531 (8)	0.0423 (7)	-0.0014 (6)	0.0249 (6)	0.0067 (6)
0.0418 (8)	0.0915 (12)	0.0561 (9)	0.0001 (8)	0.0262 (7)	0.0254 (9)
0.0426 (7)	0.0549 (8)	0.0442 (8)	-0.0032 (6)	0.0249 (6)	0.0054 (6)
0.0433 (8)	0.0543 (10)	0.0446 (9)	-0.0026 (7)	0.0260 (8)	0.0036 (7)
0.0468 (9)	0.0486 (9)	0.0478 (9)	-0.0061 (7)	0.0311 (8)	-0.0041 (7)
0.0417 (8)	0.0597 (10)	0.0492 (9)	-0.0022 (7)	0.0269 (8)	0.0016 (8)
0.0447 (9)	0.0496 (9)	0.0428 (9)	0.0003 (7)	0.0248 (7)	0.0021 (7)
0.0666 (13)	0.1089 (19)	0.0698 (14)	-0.0019 (12)	0.0355 (12)	0.0374 (13)
0.0594 (11)	0.0715 (12)	0.0613 (11)	-0.0109 (9)	0.0405 (10)	0.0042 (9)
0.0508 (7)	0.0703 (8)	0.0485 (7)	-0.0047 (6)	0.0266 (6)	0.0078 (6)
0.0537 (7)	0.0726 (9)	0.0564 (7)	0.0029 (6)	0.0359 (6)	0.0161 (6)
0.0751 (9)	0.0866 (11)	0.0666 (9)	-0.0209 (8)	0.0446 (8)	0.0052 (8)
0.0511 (9)	0.0460 (9)	0.0460 (9)	0.0039 (7)	0.0328 (8)	0.0010 (7)
0.0540 (9)	0.0387 (8)	0.0421 (8)	0.0046 (7)	0.0304 (8)	0.0002 (6)
0.0703 (12)	0.0485 (9)	0.0518 (10)	-0.0050 (8)	0.0400 (10)	-0.0011 (8)
0.1055 (18)	0.0579 (12)	0.0625 (13)	-0.0020 (11)	0.0565 (13)	0.0097 (10)
0.0920 (16)	0.0589 (12)	0.0491 (11)	0.0191 (11)	0.0359 (12)	0.0094 (9)
0.0653 (12)	0.0627 (12)	0.0528 (11)	0.0186 (9)	0.0296 (10)	0.0042 (9)
0.0571 (10)	0.0490 (10)	0.0502 (10)	0.0100 (8)	0.0320 (9)	0.0026 (8)
	U^{11} 0.0472 (7) 0.0436 (7) 0.0418 (8) 0.0426 (7) 0.0433 (8) 0.0468 (9) 0.0417 (8) 0.0447 (9) 0.0666 (13) 0.0594 (11) 0.0508 (7) 0.0537 (7) 0.0511 (9) 0.0511 (9) 0.0511 (9) 0.0540 (9) 0.0703 (12) 0.1055 (18) 0.0920 (16) 0.0653 (12) 0.0571 (10)	U^{11} U^{22} 0.0472 (7) 0.0777 (9) 0.0436 (7) 0.0531 (8) 0.0418 (8) 0.0915 (12) 0.0426 (7) 0.0549 (8) 0.0433 (8) 0.0543 (10) 0.0468 (9) 0.0486 (9) 0.0417 (8) 0.0597 (10) 0.0447 (9) 0.0496 (9) 0.0666 (13) 0.1089 (19) 0.0594 (11) 0.0715 (12) 0.0508 (7) 0.0703 (8) 0.0537 (7) 0.0726 (9) 0.0511 (9) 0.0866 (11) 0.0511 (9) 0.0387 (8) 0.0703 (12) 0.0485 (9) 0.1055 (18) 0.0579 (12) 0.0920 (16) 0.0589 (12) 0.0571 (10) 0.0490 (10)	U^{11} U^{22} U^{33} $0.0472 (7)$ $0.0777 (9)$ $0.0528 (7)$ $0.0436 (7)$ $0.0531 (8)$ $0.0423 (7)$ $0.0436 (7)$ $0.0531 (8)$ $0.0423 (7)$ $0.0418 (8)$ $0.0915 (12)$ $0.0561 (9)$ $0.0426 (7)$ $0.0549 (8)$ $0.0442 (8)$ $0.0433 (8)$ $0.0543 (10)$ $0.0446 (9)$ $0.0468 (9)$ $0.0486 (9)$ $0.0478 (9)$ $0.0417 (8)$ $0.0597 (10)$ $0.0492 (9)$ $0.0447 (9)$ $0.0496 (9)$ $0.0428 (9)$ $0.0666 (13)$ $0.1089 (19)$ $0.0698 (14)$ $0.0594 (11)$ $0.0715 (12)$ $0.0613 (11)$ $0.0508 (7)$ $0.0703 (8)$ $0.0485 (7)$ $0.0537 (7)$ $0.0726 (9)$ $0.0564 (7)$ $0.0511 (9)$ $0.0460 (9)$ $0.0460 (9)$ $0.0540 (9)$ $0.0387 (8)$ $0.0421 (8)$ $0.0703 (12)$ $0.0485 (9)$ $0.0518 (10)$ $0.1055 (18)$ $0.0579 (12)$ $0.0625 (13)$ $0.0920 (16)$ $0.0589 (12)$ $0.0491 (11)$ $0.0571 (10)$ $0.0490 (10)$ $0.0502 (10)$	U^{11} U^{22} U^{33} U^{12} 0.0472 (7)0.0777 (9)0.0528 (7)0.0025 (6)0.0436 (7)0.0531 (8)0.0423 (7) -0.0014 (6)0.0418 (8)0.0915 (12)0.0561 (9)0.0001 (8)0.0426 (7)0.0549 (8)0.0442 (8) -0.0032 (6)0.0433 (8)0.0543 (10)0.0446 (9) -0.0026 (7)0.0468 (9)0.0486 (9)0.0478 (9) -0.0061 (7)0.0417 (8)0.0597 (10)0.0492 (9) -0.0022 (7)0.0447 (9)0.0496 (9)0.0428 (9)0.0003 (7)0.0666 (13)0.1089 (19)0.0698 (14) -0.0019 (12)0.0594 (11)0.0715 (12)0.0613 (11) -0.0047 (6)0.0537 (7)0.0726 (9)0.0564 (7) 0.0029 (6)0.0511 (9)0.0485 (11)0.0666 (9) -0.0209 (8)0.0511 (9)0.0485 (9)0.0518 (10) -0.0050 (8)0.1055 (18)0.0579 (12)0.0625 (13) -0.0020 (11)0.0920 (16)0.0589 (12)0.0491 (11) 0.0191 (11)0.0653 (12)0.0627 (12)0.0528 (11) 0.0100 (8)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0472 (7)0.0777 (9)0.0528 (7)0.0025 (6)0.0250 (6)0.0436 (7)0.0531 (8)0.0423 (7) -0.0014 (6)0.0249 (6)0.0418 (8)0.0915 (12)0.0561 (9)0.0001 (8)0.0262 (7)0.0426 (7)0.0549 (8)0.0442 (8) -0.0032 (6)0.0249 (6)0.0433 (8)0.0543 (10)0.0446 (9) -0.0026 (7)0.0260 (8)0.0468 (9)0.0486 (9)0.0478 (9) -0.0021 (7)0.0311 (8)0.0417 (8)0.0597 (10)0.0492 (9) -0.0022 (7)0.0269 (8)0.0447 (9)0.0496 (9)0.0428 (9)0.0003 (7)0.0248 (7)0.0666 (13)0.1089 (19)0.0698 (14) -0.0019 (12)0.0355 (12)0.0594 (11)0.0715 (12)0.0613 (11) -0.0029 (6)0.0359 (6)0.0537 (7)0.0703 (8)0.0485 (7) -0.0047 (6)0.0266 (6)0.0511 (9)0.0460 (9)0.0460 (9) -0.0209 (8)0.0446 (8)0.0511 (9)0.0460 (9)0.0460 (9)0.0039 (7)0.0328 (8)0.0540 (9)0.0387 (8)0.0421 (8)0.0406 (7)0.0304 (8)0.0703 (12)0.0485 (9)0.0518 (10) -0.0020 (11)0.0565 (13)0.0920 (16)0.0589 (12)0.0491 (11)0.0191 (11)0.0359 (12)0.0653 (12)0.0627 (12)0.0528 (11)0.0186 (9)0.0296 (10)0.0571 (10)0.0490 (10)0.0502 (10)0.0100 (8)0.0320 (9)

Geometric parameters (Å, °)

01—C4	1.321 (2)	С5—Н5А	0.9600
O1—C5	1.445 (4)	C5—H5C	0.9600
O2—C7	1.271 (3)	C5—H5B	0.9600
O3—C7	1.245 (3)	C6—H6B	0.9600
O4—C9	1.345 (3)	C6—H6C	0.9600
O4—H4	0.8200	C6—H6A	0.9600
N1—C2	1.359 (3)	C7—C8	1.490 (2)
N1-C1	1.354 (3)	C8—C13	1.395 (3)
N2-C1	1.317 (3)	C8—C9	1.396 (3)
N3—C1	1.335 (2)	C9—C10	1.388 (3)
N3—C4	1.318 (3)	C10—C11	1.370 (4)
N1—H1	0.8600	C11—C12	1.372 (4)
N2—H2B	0.8600	C12—C13	1.375 (3)
N2—H2A	0.8600	C10—H10	0.9300
C2—C6	1.488 (3)	C11—H11	0.9300
C2—C3	1.343 (2)	C12—H12	0.9300
C3—C4	1.400 (3)	C13—H13	0.9300
С3—Н3	0.9300		

01…C3 ⁱ	3.374 (3)	C7····H10 ^{iv}	2.8800
O2…C3 ⁱⁱ	3.411 (2)	C7…H2B	2.7800
O2…N1	2.7033 (19)	C7…H1	2.7100
02…04	2.534 (2)	C7…H4	2.4200
O3…N2 ⁱⁱⁱ	2.816 (3)	C9····H5B ^{vi}	3.0500
O3…N2	2.830 (2)	C12····H6A ^{ix}	3.0300
04…02	2.534 (2)	C13···H6A ^{ix}	2.9700
O1···H3 ⁱ	2.4800	H102	1.8400
O2…H4	1.8100	H1O3	2.9200
02…H6B	2.8300	H1···C7	2.7100
02···H1	1 8400	H1H2B	2,2600
03···H2B	1 9900	H1H6B	2.3200
O3…H13	2 5100	$H^2 A \cdots O^{3^{iii}}$	2.0200
03···H1	2.9200	H2A…H2B ⁱⁱⁱ	2.5800
O3…H2A ⁱⁱⁱ	2,0000	H2BO3	1 9900
03···H6C ⁱⁱ	2.8500	H2B···C7	2 7800
$O3 \cdots H10^{iv}$	2.6300	H2B···H1	2.7600
O_{4} H12 ^v	2.0100	H2BH2A ⁱⁱⁱ	2.2000
O4 m 2 $O4 m 45 B^{vi}$	2.7200		2.5800
N1O2	2.3000		2.5100
N102 N203	2.7033(19) 2.830(2)	H2C2 ⁱ	2.4800
N203	2.830(2)	113 C5 112112i	2 3600
N2H5C	2.810 (5)	H3H3 H4O2	2.3000
	2.0800	H402	1.8100
	2.5000		2.4200
	3.331(3)		2.5700
	3.382 (3)	H5A····N3	2.5600
	3.374 (3)	H5B····O4 ²	2.8600
$C_2 = C_7^{\text{ii}}$	3.492 (3)	H5B····C9 ²	3.0500
	3.463 (3)	$H_{3}C_{1}N_{3}$	2.6800
	3.411 (2)		2.9700
	3.556 (3)	H6A····C12*	3.0300
	3.441 (3)	H6B····02	2.8300
C6···C12*	3.550 (3)	H6B···H1	2.3200
	3.463 (3)	H6C····H3	2.5100
	3.551 (3)	H6C····O3 ⁿ	2.8500
	3.492 (3)		2.6100
C12····C2 ^{vin}	3.582 (3)	$H10\cdots C7^{x_1}$	2.8800
C12····C4 ^{vin}	3.556 (3)	H12····O4 ^{IX}	2.7200
C12····C6 ^{IX}	3.550 (3)	H12···H4 ^{1x}	2.5700
$C13\cdots C4^{vin}$	3.441 (3)	H13…O3	2.5100
C3…H3 ⁱ	3.0100		
C4—O1—C5	118.6 (2)	С2—С6—Н6А	109.00
C9—O4—H4	109.00	С2—С6—Н6С	109.00
C1—N1—C2	121.09 (15)	H6A—C6—H6B	109.00
C1—N3—C4	116.52 (18)	C2—C6—H6B	109.00
C1—N1—H1	119.00	H6B—C6—H6C	110.00
C2—N1—H1	119.00	H6A—C6—H6C	109.00

H2A—N2—H2B	120.00	O2—C7—C8	117.66 (18)
C1—N2—H2A	120.00	O3—C7—C8	119.57 (18)
C1—N2—H2B	120.00	O2—C7—O3	122.77 (16)
N2—C1—N3	119.68 (19)	C7—C8—C13	120.12 (18)
N1—C1—N3	122.16 (19)	C9—C8—C13	118.69 (16)
N1—C1—N2	118.17 (16)	C7—C8—C9	121.19 (19)
N1—C2—C6	116.68 (16)	O4—C9—C10	118.8 (3)
C3—C2—C6	125.0 (2)	C8—C9—C10	119.4 (3)
N1—C2—C3	118.35 (19)	O4—C9—C8	121.81 (17)
C2—C3—C4	118.0 (2)	C9—C10—C11	120.6 (3)
N3—C4—C3	123.91 (16)	C10-C11-C12	120.8 (2)
O1—C4—C3	116.42 (19)	C11—C12—C13	119.3 (2)
O1—C4—N3	119.67 (18)	C8—C13—C12	121.3 (2)
С2—С3—Н3	121.00	С9—С10—Н10	120.00
С4—С3—Н3	121.00	C11—C10—H10	120.00
O1—C5—H5B	109.00	C10-C11-H11	120.00
O1—C5—H5C	109.00	C12—C11—H11	120.00
O1—C5—H5A	109.00	C11—C12—H12	120.00
H5A—C5—H5C	110.00	C13—C12—H12	120.00
H5B—C5—H5C	109.00	C8—C13—H13	119.00
H5A—C5—H5B	110.00	С12—С13—Н13	119.00
C5-01-C4-N3	1.9 (3)	O2—C7—C8—C13	-175.72 (17)
C5-01-C4-C3	-178.55 (18)	O3—C7—C8—C9	-176.44 (18)
C2—N1—C1—N2	-179.22 (17)	O3—C7—C8—C13	4.1 (3)
C2—N1—C1—N3	0.8 (3)	C7—C8—C9—O4	1.2 (3)
C1—N1—C2—C3	-0.4 (2)	C7—C8—C9—C10	-178.58 (19)
C1—N1—C2—C6	-179.52 (16)	C13—C8—C9—O4	-179.40 (18)
C4—N3—C1—N1	-0.5 (3)	C13—C8—C9—C10	0.8 (3)
C4—N3—C1—N2	179.56 (17)	C7—C8—C13—C12	178.86 (18)
C1-N3-C4-O1	179.29 (16)	C9—C8—C13—C12	-0.6 (3)
C1—N3—C4—C3	-0.3 (3)	O4—C9—C10—C11	179.7 (2)
N1-C2-C3-C4	-0.3 (3)	C8—C9—C10—C11	-0.5 (3)
C6—C2—C3—C4	178.73 (18)	C9-C10-C11-C12	-0.2 (4)
C2—C3—C4—O1	-178.88 (16)	C10-C11-C12-C13	0.4 (4)
C2—C3—C4—N3	0.7 (3)	C11—C12—C13—C8	-0.1 (3)
O2—C7—C8—C9	3.7 (3)		

Symmetry codes: (i) -*x*+3, -*y*+1, -*z*+2; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*, -*y*+3/2, *z*+1/2; (v) *x*+1, -*y*+3/2, *z*+1/2; (vi) -*x*+2, *y*+1/2, -*z*+3/2; (vii) *x*+1, *y*, *z*+1; (viii) *x*-1, *y*, *z*-1; (ix) *x*-1, -*y*+3/2, *z*-1/2; (x) -*x*+2, *y*-1/2, -*z*+3/2; (xi) *x*, -*y*+3/2, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A
N1—H1…O2	0.86	1.84	2.7033 (19)	176
N2—H2A···O3 ⁱⁱⁱ	0.86	2.00	2.816 (3)	158
N2—H2 <i>B</i> ···O3	0.86	1.99	2.830 (2)	165

			supporting information		
O4—H4…O2	0.82	1.81	2.534 (2)	147	
C3—H3…O1 ⁱ	0.93	2.48	3.374 (3)	160	

Symmetry codes: (i) -*x*+3, -*y*+1, -*z*+2; (iii) -*x*+1, -*y*+1, -*z*+1.