

Received 13 June 2017 Accepted 22 August 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; theoretical calculations; quinolinic acid imide; hydrogen bonding.

CCDC reference: 1570205

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of *N*-[2-(cyclohexylsulfanyl)ethyl]quinolinic acid imide

Hyunjin Park, Myong Yong Choi,* Cheol Joo Moon and Tae Ho Kim*

Department of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea. *Correspondence e-mail: mychoi@gnu.ac.kr, thkim@gnu.ac.kr

The title compound, $C_{15}H_{18}N_2O_2S$ {systematic name: 6-[2-(cyclohexylsulfanyl)ethyl]-5*H*-pyrrolo[3,4-*b*]pyridine-5,7(6*H*)-dione}, was obtained from the reaction of pyridine-2,3-dicarboxylic anhydride (synonym: quinolinic anhydride) with 2-(cyclohexylsulfanyl)ethylamine. The dihedral angle between the mean plane of the cyclohexyl ring and the quinolinic acid imide ring is 25.43 (11)°. In the crystal, each molecule forms two C–H···O hydrogen bonds and one weak C–O··· π [O···ring centroid = 3.255 (2) Å] interaction with neighbouring molecules to generate a ladder structure along the *b*-axis direction. The ladders are linked by weak C–O··· π [O···ring centroid = 3.330 (2) Å] interactions, resulting in sheets extending parallel to the *ab* plane. The molecular structure is broadly consistent with theoretical calculations performed by density functional theory (DFT).

1. Chemical context

Quinolinic anhydrides have been used extensively as versatile intermediates in the synthesis of various heterocyclic systems, such as aphthyridines, nicotinamides and isotonic derivatives. Recently, they have been exploited in antiviral, dementia, anti-allergy and antitumor targets (Metobo et al., 2013). In addition, it is expected that various metal complexes may be formed because they are composed of N/S-donor atoms. In particular, our group reported copper(I) coordination polymers with N/S-donor-atom ligands, which showed their various luminescence and reversible/irreversible structural transformations (Jeon et al., 2014; Cho et al., 2015). As part of our ongoing studies in this area, we designed and synthesized a new N/S-donor ligand, namely N-[2-(cyclohexylsulfanyl)ethyl]quinolinic acid imide, which was prepared from the reaction of quinolinic anhydride with 2-(cyclohexylsulfanyl)ethylamine. Herein, we report its crystal structure.

OPEN d ACCESS

2. Structural commentary

The crystal structure of the title compound is shown in Fig. 1. The cyclohexyl ring adopts a chair conformation, with the exocyclic C–S bond in an equatorial orientation; the dihedral angle between the mean plane (r.m.s. deviation = 0.2317 Å) of

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} C2{-}H2{\cdot}{\cdot}{\cdot}O1^{i}\\ C3{-}H3{\cdot}{\cdot}{\cdot}O1^{i} \end{array}$	0.95	2.50	3.119 (3)	123
	0.95	2.55	3.129 (3)	119

Symmetry code: (i) x, y + 1, z.

the cyclohexyl ring and the quinolinic acid imide ring is $25.43 (11)^{\circ}$. All bond lengths and angles are normal and comparable to those observed in similar crystal structures (Garduño-Beltrán *et al.*, 2009; Inoue *et al.*, 2009).

3. Supramolecular features

In the crystal, molecules are linked by $C2-H2\cdots O1^{i}$ and $C3-H3\cdots O1^{i}$ hydrogen bonds [H···O = 2.50 and 2.55 Å, respectively; symmetry code: (i) x, y + 1, z; Table 1], and weak $C6-O1\cdots Cg1^{ii}$ (Cg1 is the centroid of the N1/C1-C5 ring) interactions [O·· π = 3.255 (2) Å; symmetry code: (ii) 1 - x, $-\frac{1}{2} + y, \frac{1}{2} - z$], forming a one-dimensional ladder structure along the *b* axis. The ladders are packed in an *ABAB* pattern along the *c* axis (yellow dashed lines in Fig. 2). In addition, the ladders are linked by $C7-O2\cdots Cg1^{iii}$ interactions [O·· π = 3.330 (2) Å; symmetry code: (iii) -1 + x, y, z], resulting in the formation of a two-dimensional network structure lying parallel to the *ab* plane (red dashed lines in Fig. 3).

4. Theoretical calculations

To support the experimental data based on the diffraction study, computational calculations on the *N*-[2-(cyclohexyl-sulfanyl)ethyl]quinolinic acid imide molecule were performed using the *GAUSSIAN09* software package (Frisch *et al.*, 2009). Full geometry optimizations were calculated at the DFT level of theory using a basis set of 6-311++G(d,p). The optimized parameters, such as bond lengths and angles, are in generally good agreement (the largest bond-length deviation is less than 0.03 Å) with the experimental crystallographic data (Table 2). The calculated and experimental torsion angles for N2-C8-C9-S1 (C8-C9-S1-C10) are 53.64 (65.80) and 64.2 (3)° [97.4 (2)°], respectively. The calculated and experimental dihedral angle between the ring systems were 25.34 and

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

 Table 2

 Experimental and calculated bond lengths (Å).

Bond	X-ray	B3LYP (6–311++G(d,p))	Difference
S1-C9	1.813 (3)	1.830	-0.017
S1-C10	1.827 (3)	1.853	-0.026
O1-C6	1.212 (3)	1.205	0.007
O2-C7	1.209 (3)	1.210	0.001
N1-C5	1.325 (3)	1.324	0.001
N1-C1	1.342 (4)	1.342	0.000
N2-C6	1.394 (3)	1.407	-0.013
N2-C7	1.395 (4)	1.399	-0.004
N2-C8	1.460 (3)	1.456	0.004
C1-C2	1.382 (4)	1.400	-0.018
C2-C3	1.381 (4)	1.396	-0.015
C3-C4	1.380 (4)	1.385	-0.005
C4-C5	1.376 (4)	1.392	-0.016
C4-C7	1.490 (4)	1.492	-0.002
C5-C6	1.497 (4)	1.508	-0.011
C8-C9	1.522 (4)	1.536	-0.014
C10-C11	1.516 (4)	1.534	-0.018
C10-C15	1.530 (4)	1.536	-0.006
C11-C12	1.523 (4)	1.539	-0.016
C12-C13	1.523 (4)	1.534	-0.011
C13-C14	1.514 (4)	1.535	-0.021
C14-C15	1.524 (5)	1.537	-0.013

 $25.43 (11)^{\circ}$, respectively. However, several relatively large differences between the experimental and theoretical data (see Table 2) may be due to the packing effects induced by the intermolecular interactions in the crystal.

5. Synthesis and crystallization

A mixture of quinolinic anhydride (0.67 g, 5.0 mmol) and 2-(cyclohexylsulfanyl)ethylamine (0.83 g, 5.3 mmol) in toluene (15 ml) was heated at 433 K with stirring for 8 h. The crude product was extracted with dichloromethane. The dichloromethane layer was dried with anhydrous Na_2SO_4 and

Figure 2

The crystal packing of the title compound, indicating the C-H···O hydrogen bonds and C-O·· π interactions (yellow dashed lines) [symmetry codes: (i) x, y + 1, z; (ii) $1 - x, -\frac{1}{2} + y, \frac{1}{2} - z$], which results in a one-dimensional ladder structure along the *b* axis.

research communications

evaporated to give a crude solid. The reaction mixture was then concentrated and purified by chromatography on silica gel (MeCOOEt/*n*-C₆H₁₄ = 30/70 *v*/*v*, R_F = 0.28) (Kang *et al.*, 2015). Colourless plates were obtained by slow evaporation of a hexane solution of the title compound. ¹H NMR (300 MHz, CDCl₃): δ 7.40 (*dd*, H, Py), 8.02 (*t*, H, Py), 7.52 (*dd*, H, Py), 3.74 (*t*, 2H, NCH₂), 2.64 (*t*, 2H, CH₂S), 2.56 (*d*, H, SCH), 1.82–1.04 [*m*, 10H, (CH₂)₅]; ¹³C NMR (75.4 MHz, CDCl₃): δ 166.84, 166.47, 155.60, 144.65, 139.31, 125.76, 116.76, 42.95, 37.89, 33.36, 27.71, 25.91, 25.68

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and refined using a riding model, with C-H =0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic C-H groups, C-H = 0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂ groups, and C-H = 1.00 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for Csp³-H groups.

Acknowledgements

The main calculations were carried out by the Supercomputing Center/Korea Institute of Science and Technology Information (KISTI) (KSC-2017-C1-0002).

Funding information

Funding for this research was provided by: National Research Foundation of Korea (Basic Science Research Program through the National Research Foundation of Korea (NRF); grant No. 2015R1D1A3A01020410; grant No. 2016R1D1A1B03934376) and by the Korea government (MSIP) (2017M2B2A9A02049940).

References

- Brandenburg, K. (2010). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cho, S., Jeon, Y., Lee, S., Kim, J. & Kim, T. H. (2015). *Chem. Eur. J.* **21**, 1439–1443.
- Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. http://www.gaussian.com.
- Garduño-Beltrán, O., Román-Bravo, P., Medrano, F. & Tlahuext, H. (2009). Acta Cryst. E65, 02581.
- Inoue, S., Shiota, H., Fukumoto, Y. & Chatani, N. (2009). J. Am. Chem. Soc. 131, 6898–6899.
- Jeon, Y., Cheon, S., Cho, S., Lee, K. Y., Kim, T. H. & Kim, J. (2014). Cryst. Growth Des. 14, 2105–2109.
- Kang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183–5187.
- Metobo, S. E., Jabri, S. Y., Aktoudianakis, E., Evans, J., Jin, H. & Kim, C. U. (2013). *Tetrahedron Lett.* 54, 6782–6784.

Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Figure 3

The packing diagram, showing the two-dimensional network structure formed by $C-O \cdots \pi$ interactions (red dashed lines) [symmetry code: (iii) -1 + x, y, z]. H atoms and cyclohexanesulfanyl groups not involved in intermolecular interactions have been omitted for clarity.

 $\begin{array}{c} C_{15}H_{18}N_2O_2S\\ 290.37 \end{array}$

1432.94 (10)

 $0.28 \times 0.10 \times 0.09$

Bruker APEXII CCD

Multi-scan (SADABS; Bruker,

Μο Κα

2014)

0.046

0.595

2536

181

0.20. -0.19

0.05 (5)

0.690, 0.746

11035, 2536, 2302

0.034, 0.072, 1.04

0.23

173

4

Orthorhombic, P212121

5.5322 (2), 7.8707 (3), 32.9092 (14)

Table 3Experimental details.

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) V (Å³) ZRadiation type μ (mm⁻¹) Crystal size (mm)

Data collection Diffractometer Absorption correction

 T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections

 $\begin{array}{c} R_{\rm int} \\ (\sin \theta / \lambda)_{\rm max} \, ({\rm \AA}^{-1}) \end{array}$

Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, SNo. of reflections No. of parameters H-atom treatment $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å⁻³) Absolute structure

Absolute structure parameter

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2010), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

H-atom parameters constrained

 $[(I^+) + (I^-)]$ (Parsons *et al.*, 2013)

Flack x determined using 839 quotients $[(I^+) - (I^-)]/$

supporting information

Acta Cryst. (2017). E73, 1372-1374 [https://doi.org/10.1107/S2056989017012142]

Crystal structure of N-[2-(cyclohexylsulfanyl)ethyl]quinolinic acid imide

Hyunjin Park, Myong Yong Choi, Cheol Joo Moon and Tae Ho Kim

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

6-[2-(Cyclohexylsulfanyl)ethyl]-5H-pyrrolo[3,4-b]pyridine-5,7(6H)-dione

Crystal data

 $C_{15}H_{18}N_2O_2S$ $M_r = 290.37$ Orthorhombic, $P2_12_12_1$ a = 5.5322 (2) Å b = 7.8707 (3) Å c = 32.9092 (14) Å V = 1432.94 (10) Å³ Z = 4F(000) = 616

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\min} = 0.690, \ T_{\max} = 0.746$
11035 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.072$ S = 1.042536 reflections 181 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites $D_x = 1.346 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2024 reflections $\theta = 2.5-27.2^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 173 KPlate, colourless $0.28 \times 0.10 \times 0.09 \text{ mm}$

2536 independent reflections 2302 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.2^{\circ}$ $h = -6 \rightarrow 6$ $k = -8 \rightarrow 9$ $l = -39 \rightarrow 39$

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0215P)^{2} + 0.3497P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.19 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 839 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons *et al.*, 2013) Absolute structure parameter: 0.05 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.53243 (13)	0.93377 (11)	0.09181 (3)	0.0414 (2)
01	0.5825 (3)	0.9636 (2)	0.20137 (6)	0.0362 (5)
O2	0.1331 (3)	1.3885 (3)	0.14389 (6)	0.0360 (5)
N1	0.8186 (4)	1.2919 (3)	0.22791 (7)	0.0292 (6)
N2	0.3211 (4)	1.1461 (3)	0.16766 (7)	0.0268 (5)
C1	0.8794 (5)	1.4552 (4)	0.23364 (8)	0.0306 (7)
H1	1.0179	1.4779	0.2498	0.037*
C2	0.7561 (5)	1.5929 (4)	0.21783 (8)	0.0320 (7)
H2	0.8111	1.7050	0.2233	0.038*
C3	0.5532 (5)	1.5678 (3)	0.19413 (8)	0.0301 (6)
Н3	0.4639	1.6597	0.1829	0.036*
C4	0.4884 (5)	1.4006 (3)	0.18778 (7)	0.0235 (6)
C5	0.6241 (5)	1.2727 (3)	0.20487 (8)	0.0234 (6)
C6	0.5174 (5)	1.1058 (3)	0.19241 (8)	0.0262 (6)
C7	0.2900 (5)	1.3212 (4)	0.16376 (8)	0.0281 (7)
C8	0.1681 (5)	1.0227 (4)	0.14678 (9)	0.0335 (7)
H8A	-0.0035	1.0559	0.1499	0.040*
H8B	0.1895	0.9095	0.1594	0.040*
C9	0.2300 (5)	1.0119 (4)	0.10179 (9)	0.0369 (8)
H9A	0.2130	1.1263	0.0896	0.044*
H9B	0.1120	0.9361	0.0883	0.044*
C10	0.4745 (5)	0.7095 (3)	0.08142 (8)	0.0278 (6)
H10	0.3597	0.6645	0.1023	0.033*
C11	0.3645 (5)	0.6857 (4)	0.03962 (8)	0.0318 (7)
H11A	0.4706	0.7395	0.0191	0.038*
H11B	0.2057	0.7435	0.0387	0.038*
C12	0.3313 (6)	0.4988 (4)	0.02908 (10)	0.0448 (9)
H12A	0.2117	0.4476	0.0478	0.054*
H12B	0.2676	0.4887	0.0011	0.054*
C13	0.5693 (6)	0.4026 (4)	0.03229 (10)	0.0463 (8)
H13A	0.5408	0.2803	0.0271	0.056*
H13B	0.6831	0.4450	0.0114	0.056*
C14	0.6795 (6)	0.4253 (4)	0.07406 (10)	0.0438 (8)
H14A	0.8382	0.3672	0.0750	0.053*
H14B	0.5734	0.3716	0.0946	0.053*
C15	0.7133 (5)	0.6123 (4)	0.08458 (9)	0.0388 (8)
H15A	0.8329	0.6633	0.0658	0.047*
H15B	0.7773	0.6223	0.1126	0.047*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0268 (4)	0.0445 (5)	0.0529 (5)	-0.0066 (4)	0.0022 (3)	-0.0203 (4)
01	0.0412 (12)	0.0199 (11)	0.0474 (12)	0.0036 (10)	-0.0046 (10)	0.0019 (10)
O2	0.0354 (11)	0.0345 (12)	0.0380 (11)	0.0093 (10)	-0.0109 (9)	-0.0026 (10)
N1	0.0318 (13)	0.0227 (14)	0.0332 (13)	0.0016 (11)	-0.0039 (11)	-0.0014 (11)
N2	0.0258 (12)	0.0212 (13)	0.0333 (13)	-0.0014 (11)	-0.0006 (11)	-0.0047 (10)
C1	0.0334 (15)	0.0274 (17)	0.0310 (16)	0.0000 (14)	-0.0036 (12)	-0.0047 (13)
C2	0.0432 (17)	0.0200 (17)	0.0329 (16)	-0.0009 (14)	-0.0028 (13)	-0.0022 (13)
C3	0.0408 (15)	0.0212 (15)	0.0282 (14)	0.0072 (14)	-0.0074 (13)	-0.0001 (12)
C4	0.0302 (14)	0.0186 (14)	0.0217 (13)	0.0009 (13)	-0.0013 (11)	-0.0016 (11)
C5	0.0263 (13)	0.0186 (15)	0.0252 (14)	0.0002 (12)	0.0010 (12)	-0.0010 (12)
C6	0.0275 (14)	0.0215 (15)	0.0297 (14)	0.0013 (13)	0.0031 (12)	-0.0012 (12)
C7	0.0304 (15)	0.0289 (17)	0.0251 (14)	0.0027 (14)	0.0033 (12)	-0.0035 (13)
C8	0.0253 (14)	0.0272 (17)	0.0478 (18)	-0.0047 (13)	0.0013 (14)	-0.0099 (14)
C9	0.0290 (14)	0.0363 (18)	0.0455 (18)	0.0024 (13)	-0.0079 (13)	-0.0159 (14)
C10	0.0245 (14)	0.0323 (16)	0.0265 (14)	-0.0028 (13)	0.0030 (12)	-0.0022 (12)
C11	0.0361 (16)	0.0329 (18)	0.0265 (15)	0.0029 (14)	-0.0032 (13)	-0.0027 (13)
C12	0.0435 (19)	0.039 (2)	0.052 (2)	0.0007 (16)	-0.0084 (16)	-0.0145 (16)
C13	0.0491 (19)	0.0342 (19)	0.056 (2)	0.0052 (17)	0.0069 (16)	-0.0118 (16)
C14	0.0379 (17)	0.042 (2)	0.051 (2)	0.0103 (18)	0.0047 (15)	0.0076 (17)
C15	0.0307 (15)	0.049 (2)	0.0372 (17)	0.0036 (15)	-0.0018 (13)	-0.0023 (16)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

S1—C9	1.813 (3)	C8—H8B	0.9900
S1—C10	1.827 (3)	С9—Н9А	0.9900
O1—C6	1.212 (3)	С9—Н9В	0.9900
O2—C7	1.209 (3)	C10—C11	1.516 (4)
N1—C5	1.325 (3)	C10—C15	1.530 (4)
N1C1	1.342 (4)	C10—H10	1.0000
N2—C6	1.394 (3)	C11—C12	1.523 (4)
N2—C7	1.395 (4)	C11—H11A	0.9900
N2—C8	1.460 (3)	C11—H11B	0.9900
C1—C2	1.382 (4)	C12—C13	1.523 (4)
C1—H1	0.9500	C12—H12A	0.9900
C2—C3	1.381 (4)	C12—H12B	0.9900
C2—H2	0.9500	C13—C14	1.514 (4)
C3—C4	1.380 (4)	C13—H13A	0.9900
С3—Н3	0.9500	C13—H13B	0.9900
C4—C5	1.376 (4)	C14—C15	1.524 (5)
C4—C7	1.490 (4)	C14—H14A	0.9900
C5—C6	1.497 (4)	C14—H14B	0.9900
C8—C9	1.522 (4)	C15—H15A	0.9900
C8—H8A	0.9900	C15—H15B	0.9900
C9—S1—C10	101.54 (14)	H9A—C9—H9B	107.7

C5—N1—C1	113.2 (2)	C11—C10—C15	110.3 (2)
C6—N2—C7	112.0 (2)	C11—C10—S1	111.1 (2)
C6—N2—C8	125.1 (2)	C15—C10—S1	108.6 (2)
C7—N2—C8	122.8 (2)	C11—C10—H10	109.0
N1—C1—C2	125.0 (3)	C15—C10—H10	109.0
N1-C1-H1	117.5	S1-C10-H10	109.0
C2-C1-H1	117.5	C10-C11-C12	112.0(2)
C_{3} $-C_{2}$ $-C_{1}$	120 1 (3)	C10-C11-H11A	109.2
$C_3 - C_2 - H_2$	120.0	C12— $C11$ — $H11A$	109.2
C1 - C2 - H2	120.0	C10-C11-H11B	109.2
C4 - C3 - C2	115.7(3)	C_{12} C_{11} H_{11B}	109.2
$C_4 - C_3 - H_3$	122.2	H11A—C11—H11B	107.9
C2_C3_H3	122.2	C_{13}	107.9
$C_2 = C_3 = H_3$	110.6 (2)	$C_{13} = C_{12} = C_{11}$	100 /
$C_{5} = C_{4} = C_{5}$	119.0(2) 108.2(2)	$C_{13} - C_{12} - H_{12A}$	109.4
$C_3 = C_4 = C_7$	100.2(2)	C_{11} C_{12} C	109.4
$C_{3} - C_{4} - C_{7}$	132.2(2)	С13—С12—Н12В	109.4
NI = C5 = C4	120.4(2)	CII—CI2—HI2B	109.4
NI = C5 = C6	125.3(2)	H12A - C12 - H12B	108.0
C4 - C5 - C6	108.3(2)	C14 - C13 - C12	110.6 (3)
01 - C6 - N2	125.7(2)	C14—C13—H13A	109.5
01	128.7 (2)	C12—C13—H13A	109.5
N2-C6-C5	105.5 (2)	C14—C13—H13B	109.5
02—C7—N2	124.8 (3)	С12—С13—Н13В	109.5
02	129.2 (3)	H13A—C13—H13B	108.1
N2—C7—C4	106.0 (2)	C13—C14—C15	111.7 (3)
N2—C8—C9	111.4 (2)	C13—C14—H14A	109.3
N2—C8—H8A	109.4	C15—C14—H14A	109.3
С9—С8—Н8А	109.4	C13—C14—H14B	109.3
N2—C8—H8B	109.4	C15—C14—H14B	109.3
С9—С8—Н8В	109.4	H14A—C14—H14B	107.9
H8A—C8—H8B	108.0	C14—C15—C10	111.2 (3)
C8—C9—S1	113.7 (2)	C14—C15—H15A	109.4
С8—С9—Н9А	108.8	C10—C15—H15A	109.4
S1—C9—H9A	108.8	C14—C15—H15B	109.4
С8—С9—Н9В	108.8	C10—C15—H15B	109.4
S1—C9—H9B	108.8	H15A—C15—H15B	108.0
C5—N1—C1—C2	0.3 (4)	C6—N2—C7—C4	1.1 (3)
N1—C1—C2—C3	0.1 (4)	C8—N2—C7—C4	-177.0 (2)
C1—C2—C3—C4	-0.3 (4)	C5—C4—C7—O2	-179.3 (3)
C2—C3—C4—C5	0.2 (4)	C3—C4—C7—O2	-0.8(5)
C2—C3—C4—C7	-178.2(3)	C5-C4-C7-N2	-0.6(3)
C1 - N1 - C5 - C4	-0.4 (4)	C3—C4—C7—N2	177,9 (3)
C1 - N1 - C5 - C6	178.4 (3)	C6-N2-C8-C9	-103.0(3)
C3—C4—C5—N1	0.2 (4)	C7—N2—C8—C9	74.9 (3)
C7-C4-C5-N1	179.0 (2)	N2-C8-C9-S1	64.2 (3)
C_{3} C_{4} C_{5} C_{6}	-1788(2)	C10 = S1 = C9 = C8	97 4 (2)
C7-C4-C5-C6	0.0(3)	C9 = S1 = C10 = C11	750(2)
	··· (<i>J</i>)		, 2.0 (4)

C7—N2—C6—O1	178.8 (3)	C9—S1—C10—C15	-163.5 (2)
C8—N2—C6—O1	-3.1 (4)	C15—C10—C11—C12	55.5 (3)
C7—N2—C6—C5	-1.1 (3)	S1—C10—C11—C12	175.9 (2)
C8—N2—C6—C5	176.9 (2)	C10—C11—C12—C13	-56.0 (4)
N1—C5—C6—O1	1.7 (4)	C11—C12—C13—C14	55.3 (4)
C4—C5—C6—O1	-179.3 (3)	C12—C13—C14—C15	-55.8 (4)
N1—C5—C6—N2	-178.4 (2)	C13—C14—C15—C10	56.0 (3)
C4—C5—C6—O1 N1—C5—C6—N2 C4—C5—C6—N2 C6—N2—C7—O2 C8—N2—C7—O2	-179.3 (3) -178.4 (2) 0.6 (3) 179.9 (3) 1.8 (4)	C12—C13—C14—C15 C13—C14—C15—C10 C11—C10—C15—C14 S1—C10—C15—C14	-55.8 (4) 56.0 (3) -55.2 (3) -177.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C2—H2…O1 ⁱ	0.95	2.50	3.119 (3)	123
C3—H3···O1 ⁱ	0.95	2.55	3.129 (3)	119

Symmetry code: (i) x, y+1, z.