CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 14 July 2017
Accepted 4 August 2017

Edited by T. N. Guru Row, Indian Institute of Science, India

Keywords: crystal structure; oxime; 2-furanaldoxime; benzoyloxime ester; hydrogen bonding.

CCDC reference: 1549733

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of (E)-furan-2-carbaldehyde O-benzoyloxime

Yousef M. Hijji, ${ }^{\text {a }}$ * Rajeesha Rajan, ${ }^{\text {a }}$ Said Mansour ${ }^{\text {b }}$ and Hamdi Ben Yahia ${ }^{\text {b* }}$

${ }^{\text {a }}$ Department of Chemistry and Earth Sciences, Qatar University, PO Box 2713, Doha, Qatar, and ${ }^{\mathbf{b}}$ Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar.
*Correspondence e-mail: yousef.hijji@qu.edu.qa, hyahia@qf.org.qa

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{3}$, the benzoate and furan rings are almost coplanar, making a dihedral angle of $11.68(9)^{\circ}$. The twist angle between the COO group and the benzene ring is only $2.79(16)^{\circ}$. In the crystal, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming chains along [100]. The molecules stack in a herringbone fashion and inversion-related chains are linked by offset $\pi-\pi$ interactions [intercentroid distance $=3.931(1) \AA$], forming ribbons propagating along the a-axis direction.

1. Chemical context

Oxime esters have shown potencies for inhibiting lipoproteinassociated phospholipase A2 (Lp-PLA2) activity. Their derivatives are used for the prevention and treatment of cardiovascular disease (Jeong et al., 2013, 2006). These compounds are good antioxidants and are used in pharmaceutical compositions for their anti-microbial activity (Liu et al., 2008; Harini et al., 2012; Ahluwalia et al., 2017). In view of this interest, we have synthesized the title oxime ester derivative and report herein on its crystal structure.

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. An intramolecular short contact ($\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 2$) is present (Table 1), which may prevent the - COO group from tilting, since the twist angle between the -C6/O2/O3 unit and the benzene ring ($\mathrm{C} 7-\mathrm{C} 12$) is only $2.79(16)^{\circ}$. This also might be the reason why the molecule is almost planar. The dihedral angle between the furan ($\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 4$) ring and the benzene ring is $11.68(9)^{\circ}$. The $\mathrm{C} 6-\mathrm{O} 2$ and $\mathrm{C} 6=\mathrm{O} 3$ distances of 1.352 (2) and 1.195 (2) Å, respectively, are typical values for single and double C-O bonds. This overall geometry is very similar to that observed for E-benzaldehyde O-benzoyloxime (Altinbas et al., 2004). Within the five-membered furan ring, the interatomic $\mathrm{O} 1-\mathrm{C} 1$ and $\mathrm{O} 1-\mathrm{C} 4$ distances of 1.369 (2)
open \prec access

Figure 1
View of the molecular structure of the title compound, with the atom labelling and 50% probability displacement ellipsoids.
and 1.367 (2) \AA, respectively, are typical values for $\mathrm{O}-\mathrm{Cs} p^{2}$ bonds. The short $\mathrm{C} 4-\mathrm{C} 3$ and $\mathrm{C} 1-\mathrm{C} 2$ bond lengths of 1.324 (4) and 1.347 (3) A , respectively, and the stretched C2C 3 bond distance of 1.408 (2) \AA are typical values observed for double $\mathrm{C}=\mathrm{C}$ and single $\mathrm{C}-\mathrm{C}$ bonds, respectively. The $-\mathrm{C} 5 / \mathrm{N} 1 / \mathrm{O} 2$ group is twisted by $4.40(13)^{\circ}$ with respect to the furan ring. The $\mathrm{N} 1-\mathrm{O} 2$ distance of 1.444 (1) \AA is only slightly longer than reported in other oxime compounds (Wetherington \& Moncrief, 1973), whereas the $\mathrm{C}=\mathrm{N}-\mathrm{O}$ angle of $106.73(11)^{\circ}$ is slightly smaller.

3. Supramolecular features

In the crystal, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming chains along the a-axis direction (Table 1 and Fig. 2). The molecules stack in a herringbone fashion and inversion-related chains are linked by offset $\pi-\pi$ interactions $\left[C g 1 \cdots C g 1^{i}=3.931\right.$ (1) \AA, interplanar distance $=3.574$ (1) \AA, slippage $=1.64 \AA, \alpha=0.03(7)^{\circ}, C g 1$ is the centroid of the benzene ring (C7-C12); symmetry code: (i) $-x+1,-y+2$,

Figure 2
A view along the b axis of the crystal packing of the title compound. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, linking molecules to form chains along [100], are shown as dashed lines [see Table 1; only H atom H5 (grey ball) has been included].

Table 1
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C8-H8 $\cdots \mathrm{O} 2$	$0.93(2)$	$2.384(13)$	$2.724(2)$	$102(1)$
C5-H5 \cdots O3 $^{\mathrm{i}}$	$0.97(2)$	$2.312(16)$	$3.159(2)$	$145(1)$

Symmetry code: (i) $x-1, y, z$.
$-z]$, forming ribbons propagating along the a-axis direction (Fig. 3).

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016) for the substructure furan-2-carbaldehyde oxime gave 20 hits, while for substructure formaldehyde O-benzoyloxime there were 24 hits. The $\mathrm{O}-\mathrm{N}$ distances vary from ca 1.38 to $1.45 \AA$, while the $\mathrm{N}=\mathrm{C}$ distances vary from $c a 1.25$ to $1.32 \AA$. In the title compound, these distances are $\mathrm{N} 1-\mathrm{O} 2=1.444(1) \AA$ and $\mathrm{N} 1=\mathrm{C} 5$ is 1.270 (2) \AA, within the limits observed. In the majority of the formaldehyde O-benzoyloxime structures, the dihedral angle between the plane of the -COO group and the benzene ring is $<10^{\circ}$. In the title compound, this dihedral angle is $2.79(16)^{\circ}$.

5. Synthesis and crystallization

Synthesis of 2-furanaldoxime: A mixture of 5.0 g of furfuraldehyde (without further purification), 1.5 equiv. of $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ and 1 mmol of pyridine was stirred for 3 h at rt until the $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ was completely solubilized. The reaction mixture was then quenched in water and the furanaldoxime precipitated out. This solid was filtered and recrystallized from diethyl ether to give colourless needle-like crystals (yield 4.268 g , 74%; m.p. 349-351 K). FT-IR spectrum showed two peaks at 3166 and $1634 \mathrm{~cm}^{-1}$. Elemental analysis:

Figure 3
A view along the a axis of the crystal packing of the title compound. The offset $\pi-\pi$ interactions are shown as blue double arrows, and only H atom H5 (grey ball) has been included.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{3}$
M_{r}	215.2
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	293
$a, b, c(\AA)$	$6.3414(3), 9.1268(5), 18.1423(9)$
$\beta\left({ }^{\circ}\right)$	$95.634(2)$
$V\left(\AA^{3}\right)$	$1044.94(9)$
Z	4
Radiation type	Mo $\mathrm{K} \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.1
Crystal size (mm)	$0.19 \times 0.06 \times 0.04$
Data collection	D 8 venture
Diffractometer	Multi-scan $(S A D A B S ;$ Bruker,
Absorption correction	$2015)$
	$0.87,0.89$
$T_{\text {min }}, T_{\text {max }}$	$19019,2480,1245$
No. of measured, independent and	
\quad observed $[I>3 \sigma(I)]$ reflections	0.061
$R_{\text {int }}$	0.658
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	$0.037,0.101,1.05$
$R[F>3 \sigma(F)], w R(F), S$	2480
No. of reflections	182
No. of parameters	All H-atom parameters refined
H-atom treatment	$0.24,-0.19$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	

Computer programs: APEX3 and SAINT (Bruker, 2015), SIR2002 (Burla et al. 2003), JANA2006 (Petricek et al., 2014), DIAMOND (Brandenburg \& Berndt, 1999) and Mercury (Macrae et al., 2008).
analysis calculated for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{2}\left(111.10 \mathrm{~g} \mathrm{~mol}^{-1}\right): \mathrm{C}, 54.05 ; \mathrm{H}$, 4.54; N, 12.61; O, 28.80%. Found: C, 53.13 ; H, 4.45; N, 12.99; O, 29.43%. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta(\mathrm{ppm}): 6.64(d d, J=3.42 \mathrm{~Hz}$, $0.49 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(d, J=3.42 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(s, 1 \mathrm{H}), 7.76(s, 1 \mathrm{H})$, $11.80(s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right): \delta(\mathrm{ppm})=145.85,143.80$, 135.92, 116.89, 112.67.

Preparation of the \boldsymbol{O}-benzoyl ester of furanaldoxime: Benzoyl chloride (5.01 mmol) was added dropwise under stirring to 4.55 mmol of furanaldoxime. Since the reaction was vigorous and exothermic the mixture was placed in an ice bath for 30 min . The reaction mixture was then quenched in icewater, and then extracted with EtOAc. The organic layer was separated and washed with $1 M \mathrm{NaOH}$ solution to remove the benzoic acid and HCl that had formed as by products. The EtOAc layer was passed through anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and dried in vacuo to give the title compound as a light-brown solid $(0.9806 \mathrm{~g})$. Recrystallization of the title compound from ethanol-EtOAc gave colourless needle-like crystals (yield 50%, m.p. $410-412 \mathrm{~K}$). Elemental analysis: analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{3}\left(215.20 \mathrm{~g} \mathrm{~mol}^{-1}\right): \mathrm{C}, 66.97 ; \mathrm{H}, 4.22 ; \mathrm{N}, 6.51 ; \mathrm{O}$, 22.30%. Found: C, 67.00; H, 4.19; N, 6.40; O, 22.41\%. ${ }^{1}$ H NMR
(DMSO- d_{6}): $\delta(\mathrm{ppm}): 6.74-6.75(d d, J=3.67 \mathrm{~Hz}, 1.96 \mathrm{~Hz}, 1 \mathrm{H})$, $7.18(d, J=3.42 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(t, J=8.04 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(t, J=$ $7.58 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(s, 1 \mathrm{H}), 8.07(d d, J=8.56 \mathrm{~Hz}, 1.22 \mathrm{~Hz} 2 \mathrm{H})$, $8.82(s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta \mathrm{ppm}: 163.55,148.05$, $147.65,145.28,134.35,129.77,129.48,128.52,119.14,113.07$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were located from difference-Fourier maps and freely refined.

Acknowledgements

We are grateful to Mr Ahmed Abdelsalam Ali Easa of the Central Laboratory Unit, Qatar University, for the elemental analysis, and to Mr Ziad Sarah from the American University of Sharjah for measuring the NMR data.

Funding information

Funding for this research was provided by: Qatar National Research Fund (award No. NPRP-7-495-1-094).

References

Ahluwalia, V., Kumar, J., Rana, V. S., Singh, R., Sati, O. P., Walia, S. \& Garg, N. (2017). Toxicol. Environ. Chem. 99, 1-9.
Altinbas, O., Dondas, H. A., Arslan, H., Kulcu, N. \& Killner, C. (2004). Z. Kristallogr. New Cryst. Struct. 219, 379.

Brandenburg, K. \& Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Harini, S. T., Kumar, H. V., Rangaswamy, J. \& Naik, N. (2012). Bioorg. Med. Chem. Lett. 22, 7588-7592.
Jeong, T. S., Lee, W. S., Jeong, H. J., Park, Y. D., Han, J. M., Kim, H. C., Moon, O. S. \& Won, Y. S. (2013). Google patent.
Jeong, H. J., Park, Y.-D., Park, H.-Y., Jeong, I. Y., Jeong, T.-S. \& Lee, W. S. (2006). Bioorg. Med. Chem. Lett. 16, 5576-5579.

Liu, X. H., Zhi, L. P., Song, B. A. \& Xu, H. L. (2008). Chem. Res. Chin. Univ. 24, 454-458.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Petricek, V., Dusek, M. \& Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.
Wetherington, J. B. \& Moncrief, J. W. (1973). Acta Cryst. B29, 15201525.

supporting information

Acta Cryst. (2017). E73, 1326-1328 [https://doi.org/10.1107/S2056989017011562]

Crystal structure of ((E)-furan-2-carbaldehyde O-benzoyloxime

Yousef M. Hijji, Rajeesha Rajan, Said Mansour and Hamdi Ben Yahia

Computing details

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SIR2002 (Burla et al. 2003); program(s) used to refine structure: JANA2006 (Petricek et al., 2014); molecular graphics: DIAMOND (Brandenburg \& Berndt, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: JANA2006 (Petricek et al., 2014).
(E)-(Furan-2-ylmethylidene)amino benzoate

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{3}$
$M_{r}=215.2$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=6.3414$ (3) Å
$b=9.1268(5) \AA$
$c=18.1423(9) \AA$
$\beta=95.634(2)^{\circ}$
$V=1044.94(9) \AA^{3}$
$Z=4$

Data collection

D8 venture
diffractometer
Radiation source: X-ray tube
ω and π scans
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
$T_{\text {min }}=0.87, T_{\text {max }}=0.89$
19019 measured reflections

Refinement

Refinement on F^{2}
$R[F>3 \sigma(F)]=0.037$
$w R(F)=0.101$
$S=1.05$
2480 reflections
182 parameters
0 restraints
0 constraints
All H -atom parameters refined

$$
F(000)=448
$$

$D_{\mathrm{x}}=1.368 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$
Cell parameters from 19019 reflections
$\theta=2.3-27.9^{\circ}$
$\mu=0.1 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, colourless
$0.19 \times 0.06 \times 0.04 \mathrm{~mm}$

2480 independent reflections
1245 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=27.9^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-7 \rightarrow 8$
$k=-12 \rightarrow 12$
$l=-23 \rightarrow 23$

Weighting scheme based on measured s.u.'s $w=$
$1 /\left(\sigma^{2}(I)+0.001936 I^{2}\right)$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.19$ e \AA^{-3}
Extinction correction: B-C type 1 Gaussian isotropic (Becker \& Coppens, 1974)
Extinction coefficient: 8600 (1100)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
O1	$0.30081(17)$	$0.35070(10)$	$0.20660(6)$	$0.0583(4)$
O2	$0.40886(16)$	$0.65844(10)$	$0.04205(5)$	$0.0509(4)$
O3	$0.76174(18)$	$0.66965(13)$	$0.06946(6)$	$0.0708(5)$
N1	$0.4062(2)$	$0.55510(12)$	$0.10223(6)$	$0.0514(5)$
C1	$0.1492(3)$	$0.42685(14)$	$0.16340(8)$	$0.0476(5)$
C2	$-0.0453(3)$	$0.39050(16)$	$0.18114(10)$	$0.0599(7)$
H2	$-0.177(3)$	$0.4294(17)$	$0.1589(9)$	$0.071(5)^{*}$
C3	$-0.0152(4)$	$0.28632(18)$	$0.23844(10)$	$0.0695(8)$
H3	$-0.120(3)$	$0.2372(18)$	$0.2617(9)$	$0.076(5)^{*}$
C4	$0.1916(4)$	$0.26537(18)$	$0.25172(10)$	$0.0682(8)$
H4	$0.279(3)$	$0.2027(17)$	$0.2837(9)$	$0.074(5)^{*}$
C5	$0.2128(3)$	$0.52772(15)$	$0.10928(8)$	$0.0468(5)$
H5	$0.099(3)$	$0.5716(15)$	$0.0768(8)$	$0.060(4)^{*}$
C6	$0.6056(2)$	$0.70645(15)$	$0.03182(8)$	$0.0448(5)$
C7	$0.6002(2)$	$0.81086(13)$	$-0.03072(7)$	$0.0402(5)$
C8	$0.4156(3)$	$0.84781(16)$	$-0.07375(8)$	$0.0505(6)$
H8	$0.290(2)$	$0.8040(15)$	$-0.0630(7)$	$0.058(4)^{*}$
C9	$0.4214(3)$	$0.94724(17)$	$-0.13070(10)$	$0.0600(7)$
H9	$0.295(3)$	$0.9700(17)$	$-0.1605(9)$	$0.073(5)^{*}$
C10	$0.6096(3)$	$1.01023(18)$	$-0.14491(9)$	$0.0596(7)$
H10	$0.617(3)$	$1.0760(16)$	$-0.1852(9)$	$0.069(5)^{*}$
C11	$0.7926(3)$	$0.97388(18)$	$-0.10261(9)$	$0.0619(7)$
H11	$0.922(3)$	$1.0175(17)$	$-0.1118(9)$	$0.072(5)^{*}$
C12	$0.7884(3)$	$0.87486(17)$	$-0.04569(9)$	$0.0521(6)$
H12	$0.917(3)$	$0.8530(15)$	$-0.0176(9)$	$0.067(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0656(9)$	$0.0566(6)$	$0.0511(6)$	$-0.0020(5)$	$-0.0023(5)$	$0.0048(5)$
O2	$0.0418(7)$	$0.0557(6)$	$0.0551(6)$	$0.0011(5)$	$0.0037(5)$	$0.0127(5)$
O3	$0.0408(8)$	$0.0946(8)$	$0.0751(8)$	$0.0062(6)$	$-0.0033(6)$	$0.0227(6)$
N1	$0.0521(10)$	$0.0499(7)$	$0.0518(8)$	$0.0018(6)$	$0.0026(6)$	$0.0090(6)$
C1	$0.0539(11)$	$0.0431(7)$	$0.0458(9)$	$0.0023(7)$	$0.0056(7)$	$-0.0043(6)$
C2	$0.0589(13)$	$0.0498(9)$	$0.0740(11)$	$0.0015(8)$	$0.0217(10)$	$0.0002(8)$
C3	$0.0903(18)$	$0.0522(9)$	$0.0718(12)$	$-0.0055(10)$	$0.0368(12)$	$-0.0006(9)$
C4	$0.1016(19)$	$0.0539(10)$	$0.0491(11)$	$-0.0050(11)$	$0.0081(10)$	$0.0044(8)$
C5	$0.0443(11)$	$0.0464(8)$	$0.0498(9)$	$0.0024(7)$	$0.0052(7)$	$-0.0011(7)$
C6	$0.0350(10)$	$0.0488(7)$	$0.0506(9)$	$0.0034(6)$	$0.0043(7)$	$-0.0060(7)$
C7	$0.0347(9)$	$0.0416(7)$	$0.0447(8)$	$0.0012(6)$	$0.0061(6)$	$-0.0067(6)$
C8	$0.0385(11)$	$0.0556(8)$	$0.0577(10)$	$-0.0016(7)$	$0.0067(8)$	$0.0046(8)$
C9	$0.0482(13)$	$0.0682(10)$	$0.0627(11)$	$0.0040(8)$	$0.0019(9)$	$0.0134(8)$
C10	$0.0586(13)$	$0.0624(10)$	$0.0592(11)$	$-0.0018(9)$	$0.0134(9)$	$0.0103(8)$
C11	$0.0516(13)$	$0.0694(10)$	$0.0668(11)$	$-0.0138(9)$	$0.0171(9)$	$0.0000(9)$
C12	$0.0373(11)$	$0.0643(9)$	$0.0544(10)$	$-0.0023(8)$	$0.0032(8)$	$-0.0035(8)$

Geometric parameters (A, ${ }^{\circ}$)

O1-C1	1.3688 (17)	C5-H5	0.970 (15)
O1-C4	1.367 (2)	C6-C7	1.4795 (19)
O2-N1	1.4441 (14)	C7-C8	1.383 (2)
O2-C6	1.3523 (19)	C7- ${ }^{\text {C12 }}$	1.379 (2)
O3-C6	1.1945 (18)	C8-H8	0.927 (16)
N1-C5	1.270 (2)	C8-C9	1.378 (2)
C1-C2	1.347 (3)	C9-H9	0.944 (17)
C1-C5	1.433 (2)	C9-C10	1.372 (3)
C2-H2	0.957 (17)	C10-H10	0.950 (16)
C2-C3	1.408 (2)	C10-C11	1.368 (2)
C3-H3	0.936 (18)	C11-H11	0.943 (17)
C3-C4	1.324 (4)	C11-C12	1.374 (2)
C4-H4	0.952 (16)	C12-H12	0.941 (16)
C1-O1-C4	105.29 (14)	O3-C6-C7	125.11 (14)
N1-O2-C6	113.27 (10)	C6-C7-C8	122.99 (13)
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 5$	106.73 (11)	C6-C7-C12	117.92 (13)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	110.27 (13)	C8-C7-C12	119.09 (13)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 5$	119.30 (14)	C7- $\mathrm{C} 8-\mathrm{H} 8$	118.1 (8)
C2- $\mathrm{C} 1-\mathrm{C} 5$	130.42 (15)	C7-C8-C9	120.00 (15)
C1-C2-H2	126.0 (10)	H8-C8-C9	121.9 (9)
C1-C2-C3	106.37 (18)	C8-C9-H9	119.4 (10)
H2-C2-C3	127.6 (10)	C8-C9-C10	120.31 (16)
C2-C3-H3	127.2 (10)	H9-C9-C10	120.2 (10)
C2-C3-C4	107.0 (2)	C9-C10-H10	121.1 (10)
H3-C3-C4	125.7 (10)	C9-C10-C11	119.92 (16)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	111.09 (16)	H10-C10-C11	118.9 (10)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{H} 4$	114.1 (11)	C10-C11-H11	120.3 (9)
C3-C4-H4	134.8 (11)	C10-C11-C12	120.21 (17)
N1-C5-C1	122.35 (14)	H11-C11-C12	119.5 (10)
N1-C5-H5	121.6 (9)	C7-C12-C11	120.48 (15)
C1-C5-H5	116.0 (9)	C7-C12-H12	121.7 (10)
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{O} 3$	123.68 (13)	C11-C12-H12	117.8 (10)
O2-C6-C7	111.21 (12)		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 2$	$0.93(2)$	$2.384(13)$	$2.724(2)$	$102(1)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots 3^{\mathrm{i}}$	$0.97(2)$	$2.312(16)$	$3.159(2)$	$145(1)$

[^0]
[^0]: Symmetry code: (i) $x-1, y, z$.

