CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 13 March 2017
Accepted 3 May 2017

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: crystal structure; heterometallic complex; copper carboxylates; calcium carboxylates; $\pi-\pi$ stacking.

CCDC reference: 1547715

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Crystal structure of a heterometallic coordination polymer: poly[diaquabis(μ_{7}-benzene-1,3,5-tricarboxylato)dicalcium(II)copper(II)]

Feng Zhang* and Bing-Guang Zhang

Key Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission \& Ministry of Education, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, People's Republic of China. *Correspondence e-mail: zhangbg68@yahoo.com

In the title complex, $\left[\mathrm{Ca}_{2} \mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the $\mathrm{Ca}^{\text {II }}$ and $\mathrm{Cu}^{\text {II }}$ cations are bridged by the benzene-1,3,5-tricarboxylate anions $\left(\mathrm{BTC}^{3-}\right.$) to form the coordination polymer, in which each BTC^{3-} anion bridges two $\mathrm{Cu}^{\mathrm{II}}$ and five $\mathrm{Ca}^{\mathrm{II}}$ cations with a μ_{7} coordination mode. The $\mathrm{Cu}^{\mathrm{II}}$ cation, located at an inversion centre, is in a nearly square-planar geometry defined by four O atoms from four bridging BTC^{3-} anions, while the $\mathrm{Ca}^{\mathrm{II}}$ cation is in a distorted octahedral geometry defined by five O atoms from bridging BTC^{3-} anions and one water molecule. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between coordinating water molecules and carboxyl groups further stabilize the structure; $\pi-\pi$ stacking is also observed between parallel benzene rings, the centroid-to-centroid distance being 3.357 (2) A.

1. Chemical context

In recent years, the rational design and synthesis of heterometallic coordination compounds have attracted much attention due to their potential applications in magnetism, luminescence, adsorption, chemical sensing and catalysis, as well as their aesthetically beautiful architectures and topologies (Cui et al., 2012; Huang et al., 2013; Ma et al., 2014; Wimberg et al., 2012). However, hererometallic organic frameworks are investigated less frequently than single-metal organic frameworks in crystal engineering, mainly because of the competitive complexation of different metal ions in the self-assembly progress. Recently, alkaline-earth metal ions have attracted more and more research interest owing to their unpredictable coordination number and pH -dependent selfassembly in the construction of novel topological coordination compounds (Borah et al., 2011; Chen et al., 2011). However, the larger atomic radii and high enthalpy of hydration make it relatively difficult to design the coordination polymers of alkaline-earth metal ions as well as to synthesize them from aqueous solution (Reger et al., 2013). As alkaline-earth metals and transition metals coordinate to the same ligand, it often gives rise to homometallic coordination compounds rather than heterometallic ones. In this regard, one of the effective synthetic strategies in building the alkaline-earth-metalcontaining compounds is to employ appropriate bridging ligands. As a multifunctional hybrid ligand, $\mathrm{H}_{3} \mathrm{BTC}$ (benzene-1,3,5-tricarboxylic acid) in its partly or fully deprotonated form exhibits versatile coordination modes and can bind to the metal ions by making full use of the carboxylate oxygen atoms. In addition, heterometallic compounds incorporating only the
$\mathrm{H}_{3} \mathrm{BTC}$ ligand are few in number (Chen et al., 2004; Li et al., 2010; Sun et al., 2014, 2016; Xu et al., 2014). As part of our ongoing studies on these compounds, we describe here synthesis and crystal structure of the title compound, $\left[\mathrm{Ca}_{2} \mathrm{Cu}(\mathrm{BTC})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, (1).

2. Structural commentary

The asymmetric unit of (1) contains one copper(II) cation (located at an inversion centre), one calcium(II) cation, one BTC^{3-} anion and one coordinating water molecule (Fig. 1). The $\mathrm{Cu}-\mathrm{O}$ bond lengths are in the range 1.9435 (19)-

Figure 1
The coordination mode and atom-numbering scheme for (1). Displacement ellipsoids for non H -atoms are drawn at the 50% probability level, with H atoms shown as spheres of arbitrary radius. [Symmetry codes: (A) $x, y, z+1 ;(B)-x,-y+1,-z+2 ;(C) x, y-1, z ;(D)-x,-y+1,-z+1$; (E) $-x+1,-y+2,-z+2 ;(F) x, y+1, z ;(G)-x+1,-y+1,-z+2 ;(H)$ $x, y, z-1$.]

Table 1
Selected bond lengths (\AA).

$\mathrm{Ca} 1-\mathrm{O} 1$	$2.338(2)$	$\mathrm{Ca} 1-\mathrm{O}^{\text {iv }}$	$2.357(2)$
$\mathrm{Ca} 1-\mathrm{O}{ }^{\mathrm{i}}$	$2.280(2)$	$\mathrm{Ca} 1-\mathrm{O} 1^{1}$	$2.390(2)$
$\mathrm{Ca} 1-\mathrm{O} 4^{\text {ii }}$	$2.333(2)$	$\mathrm{Cu} 1-\mathrm{O} 2$	$1.9435(19)$
$\mathrm{Ca} 1-\mathrm{O} 5^{\text {iii }}$	$2.466(2)$	$\mathrm{Cu} 1-5^{\text {v }}$	$1.9800(19)$

Symmetry codes: (i) $x, y, z-1$; (ii) $-x,-y+1,-z+2$; (iii) $x, y+1, z$; (iv) $-x,-y+1,-z+1 ;(\mathrm{v})-x+1,-y+1,-z+2$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} W 1-\mathrm{H} W 1 A \cdots \mathrm{O}^{\mathrm{v}}$	$0.84(1)$	$1.95(1)$	$2.793(3)$	$173(3)$
$\mathrm{O} W 1-\mathrm{H} W 1 B \cdots \mathrm{O} 2^{\mathrm{vi}}$	$0.84(1)$	$2.31(2)$	$3.020(3)$	$143(3)$

Symmetry codes: $(\mathrm{v})-x+1,-y+1,-z+2 ;(\mathrm{vi})-x+1,-y+2,-z+2$.
1.9800 (19) \AA and the $\mathrm{Ca}-\mathrm{O}$ bond lengths are in the range of 2.280 (2)-2.466 (2) A (Table 1). All data are comparable to those reported for other related $\mathrm{Cu}^{\mathrm{II}}-\mathrm{BTC}$ and $\mathrm{Ca}^{\mathrm{II}}-\mathrm{BTC}$ complexes (Chui et al., 1999; Yang et al., 2004) . Each Cu ${ }^{\text {II }}$ cation is four-coordinated by four oxygen atoms from four different BTC^{3-} anions, forming a nearly square-planar geometry. Each $\mathrm{Ca}^{\mathrm{II}}$ cation is six-coordinated by five carboxylate oxygen atoms from five different BTC^{3-} anions and one terminal water molecule, displaying a distorted octahedron (Fig. 1). The mean deviation of the equatorial plane constructed by atoms O1, O4, O6 and OW1 is $0.06 \AA$. The $\mathrm{H}_{3} \mathrm{BTC}$ molecule is fully deprotonated and bridges two $\mathrm{Cu}^{\mathrm{II}}$ ions and five $\mathrm{Ca}^{\mathrm{II}}$ ions in a μ_{7} coordination mode.

3. Supramolecular features

Each CuO_{4} quadrilateral shares a vertex (O5) with two CaO_{6} polyhedra to form a trinuclear unit $\left\{\mathrm{CuCa}_{2} \mathrm{O}_{14}\right\}$ with $\mathrm{Ca}-\mathrm{O}-$ $\mathrm{Cu}-\mathrm{O}-\mathrm{Ca}$ connectivity (Fig. 2). Such units are cross-linked by the $\mu_{7}-\mathrm{BTC}^{3-}$ anions to create a three-dimensional framework (Fig. 3). In addition, the terminal water molecule is hydrogen bonded to the carboxylate O atoms (Table 2), forming a two-dimensional network parallel to (100). $\pi-\pi$ stacking interactions between (C1-C6) benzene rings $[C g \cdots C g(-x, 1-y, 2-z)=3.357$ (2) \AA] further stabilize the crystal structure.

Figure 2
The trinuclear unit constructed from a $\left[\mathrm{CaO}_{6}\right]$ octahedron and a $\left[\mathrm{CuO}_{4}\right]$ quadrilateral.

Figure 3
Polyhedral view of the three-dimensional heterometallic coordination framework of (1). All H atoms have been omitted for clarity.

4. Synthesis and crystallization

The title compound was synthesized using a similar procedure to that for the synthesis of the analogous compound $\left[\mathrm{CuSr}_{2}(\mathrm{BTC})_{2}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (Sun et al., 2016). A mixture of $\mathrm{H}_{3} \mathrm{BTC}$ ($210 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathrm{CuCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(121 \mathrm{mg}, 0.5 \mathrm{mmol})$ and CaCl_{2} ($110 \mathrm{mg}, 1 \mathrm{mmol}$) in 15 mL of distilled water was stirred for 10 min in air; 0.5 M NaOH was then added dropwise, and then the mixture was turned into a Parr Teflon-lined stainless steel vessel and heated to 443 K for 3 d . Blue block-shaped crystals suitable for X-ray diffraction were obtained in 60% yield (based on benzene-1,3,5-tricarboxylic acid).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms of the coordinating water molecule were located from a differenceFourier map, but refined using a riding model with isotropic displacement parameters $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. Hydrogen atoms attached to carbon atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award No. 21271189).

References

Borah, B. M., Dey, S. K. \& Das, G. (2011). Cryst. Growth Des. 11, 2773-2779.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Table 3
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
a, b, c (\AA)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }} \quad 0.012$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right) \quad 0.595$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$0.029,0.084,1.04$
1635
166
$\left[\mathrm{Ca}_{2} \mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
593.96

Triclinic, $P \overline{1}$
296
6.664 (3), 8.754 (4), 8.925 (4)
103.065 (4), 110.140 (4), 92.776 (5)
471.6 (4)

1
Mo $K \alpha$
1.79
$0.18 \times 0.15 \times 0.14$

Bruker SMART CCD

Multi-scan (SADABS; Bruker, 2009)
0.721, 0.766

2442, 1635, 1588
0.012
0.595

3
H atoms treated by a mixture of independent and constrained refinement
$0.35,-0.68$

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and DIAMOND (Brandenburg, 2006).

Chen, J.-X., Liu, S.-X. \& Gao, E.-Q. (2004). Polyhedron, 23, 18771888.

Chen, Y., Zheng, L., She, S., Chen, Z., Hu, B. \& Li, Y. (2011). Dalton Trans. 40, 4970-4975.
Chui, S. S. Y., Siu, A. \& Williams, I. D. (1999). Acta Cryst. C55, 194196.

Cui, Y.-J., Yue, Y.-F., Qian, G.-D. \& Chen, B.-L. (2012). Chem. Rev. 112, 1126-1162.
Huang, S.-L., Zhang, L., Lin, Y.-J. \& Jin, G.-X. (2013). CrystEngComm, 15, 78-85.
Li, L., Jin, J., Shi, Z., Zhao, L., Liu, J., Xing, Y. \& Niu, S. (2010). Inorg. Chim. Acta, 363, 748-754.
Ma, Y.-Z., Zhang, L.-M., Peng, G., Zhao, C.-J., Dong, R.-T., Yang, C.-F. \& Deng, H. (2014). CrystEngComm, 16, 667-683.

Reger, D. L., Leitner, A., Smith, M. D., Tran, T. T. \& Halasyamani, P. S. (2013). Inorg. Chem. 52, 10041-10051.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Sun, Q.-Z., Yin, Y.-B., Chai, L.-Y., Liu, H., Hao, P.-F., Yan, X.-P. \& Guo, Y.-Q. (2014). J. Mol. Struct. 1070, 75-79.
Sun, Q.-Z., Yin, Y.-B., Pan, J.-Q., Chai, L.-Y., Su, N., Liu, H., Zhao, Y.-L. \& Liu, X.-T. (2016). J. Mol. Struct. 1106, 64-69.

Wimberg, J., Meyer, S., Dechert, S. \& Meyer, F. (2012). Organometallics, 31, 5025-5033.
Xu, B., Cai, Y., Li, L., Zhang, Z. \& Li, C. (2014). J. Mol. Struct. 1059, 320-324.
Yang, Y.-Y., Huang, Z.-Q., Szeto, L. \& Wong, W.-T. (2004). Appl. Organomet. Chem. 18, 97-98.

supporting information

Acta Cryst. (2017). E73, 835-837 [https://doi.org/10.1107/S205698901700665X]

Crystal structure of a heterometallic coordination polymer: poly[diaquabis ($\mu_{7}-$ benzene-1,3,5-tricarboxylato)dicalcium(II)copper(II)]

Feng Zhang and Bing-Guang Zhang

Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[diaquabis(μ_{7}-benzene-1,3,5-tricarboxylato)dicalcium(II)copper(II)]

Crystal data

$\left[\mathrm{Ca}_{2} \mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=593.96$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.664$ (3) \AA
$b=8.754$ (4) \AA
$c=8.925(4) \AA$
$\alpha=103.065(4)^{\circ}$
$\beta=110.140(4)^{\circ}$
$\gamma=92.776(5)^{\circ}$
$V=471.6(4) \AA^{3}$

Data collection

Bruker SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.721, T_{\text {max }}=0.766$

$$
Z=1
$$

$F(000)=299$
$D_{\mathrm{x}}=2.091 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1990 reflections
$\theta=2.4-27.5^{\circ}$
$\mu=1.79 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, blue
$0.18 \times 0.15 \times 0.14 \mathrm{~mm}$

2442 measured reflections
1635 independent reflections
1588 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-7 \rightarrow 7$
$k=-10 \rightarrow 4$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.084$
$S=1.04$
1635 reflections
166 parameters
3 restraints

Primary atom site location: structure-invariant
direct methods
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0501 P)^{2}+0.6456 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.68 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
$\mathrm{Ca1}$	$0.13337(8)$	$0.79200(6)$	$0.58531(6)$	$0.01430(16)$
Cu 1	0.5000	1.0000	1.0000	$0.01590(16)$
O1	$0.2949(3)$	$0.6981(2)$	$0.8180(2)$	$0.0206(4)$
O2	$0.3877(3)$	$0.8375(2)$	$1.0782(2)$	$0.0192(4)$
O3	$0.2155(4)$	$0.5598(2)$	$1.4590(2)$	$0.0273(5)$
O4	$0.1993(3)$	$0.2977(2)$	$1.4102(2)$	$0.0190(4)$
O5	$0.2085(3)$	$0.0033(2)$	$0.8405(2)$	$0.0186(4)$
O6	$0.0233(4)$	$0.1170(2)$	$0.6527(2)$	$0.0283(5)$
C1	$0.2707(4)$	$0.5610(3)$	$1.0114(3)$	$0.0126(5)$
C2	$0.2808(4)$	$0.5623(3)$	$1.1690(3)$	$0.0145(5)$
H2A	0.3166	0.6577	1.2499	0.017^{*}
C3	$0.2377(4)$	$0.4211(3)$	$1.2074(3)$	$0.0136(5)$
C4	$0.1929(4)$	$0.2786(3)$	$1.0883(3)$	$0.0142(5)$
H4A	0.1703	0.1841	1.1148	0.017^{*}
C5	$0.1815(4)$	$0.2765(3)$	$0.9288(3)$	$0.0142(5)$
C6	$0.2163(4)$	$0.4182(3)$	$0.8895(3)$	$0.0136(5)$
H6A	0.2034	0.4176	0.7822	0.016^{*}
C7	$0.3178(4)$	$0.7085(3)$	$0.9639(3)$	$0.0139(5)$
C8	$0.2195(4)$	$0.4278(3)$	$1.3728(3)$	$0.0154(5)$
C9	$0.1339(4)$	$0.1255(3)$	$0.7989(3)$	$0.0142(5)$
OW1	$0.4854(3)$	$0.8960(3)$	$0.6111(3)$	$0.0315(5)$
HW1A	$0.587(4)$	$0.844(3)$	$0.604(4)$	0.038^{*}
HW1B	$0.544(5)$	$0.9871(18)$	$0.669(4)$	0.038^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ca 1	$0.0188(3)$	$0.0142(3)$	$0.0099(3)$	$0.0011(2)$	$0.0048(2)$	$0.0040(2)$
Cu 1	$0.0204(3)$	$0.0110(2)$	$0.0147(3)$	$0.00010(17)$	$0.00383(19)$	$0.00479(18)$
O 1	$0.0344(11)$	$0.0158(9)$	$0.0143(9)$	$0.0058(8)$	$0.0090(8)$	$0.0084(7)$
O2	$0.0282(10)$	$0.0125(9)$	$0.0145(9)$	$-0.0024(7)$	$0.0056(8)$	$0.0035(7)$
O3	$0.0480(13)$	$0.0191(10)$	$0.0181(10)$	$0.0061(9)$	$0.0181(10)$	$0.0016(8)$

O4	$0.0236(10)$	$0.0189(10)$	$0.0181(9)$	$0.0014(7)$	$0.0094(8)$	$0.0092(8)$
O5	$0.0228(10)$	$0.0107(9)$	$0.0180(9)$	$0.0032(7)$	$0.0027(8)$	$0.0030(7)$
O6	$0.0452(13)$	$0.0206(10)$	$0.0118(10)$	$0.0027(9)$	$0.0010(9)$	$0.0051(8)$
C1	$0.0118(12)$	$0.0128(12)$	$0.0131(12)$	$0.0020(9)$	$0.0033(10)$	$0.0049(10)$
C2	$0.0160(12)$	$0.0128(12)$	$0.0141(12)$	$0.0015(9)$	$0.0051(10)$	$0.0032(10)$
C3	$0.0148(12)$	$0.0140(12)$	$0.0124(12)$	$0.0025(9)$	$0.0049(10)$	$0.0043(10)$
C4	$0.0169(12)$	$0.0119(12)$	$0.0155(12)$	$0.0035(9)$	$0.0057(10)$	$0.0065(10)$
C5	$0.0143(12)$	$0.0135(12)$	$0.0131(12)$	$0.0032(10)$	$0.0030(10)$	$0.0033(10)$
C6	$0.0159(12)$	$0.0130(12)$	$0.0125(12)$	$0.0044(10)$	$0.0040(10)$	$0.0057(10)$
C7	$0.0145(12)$	$0.0135(12)$	$0.0167(13)$	$0.0051(9)$	$0.0063(10)$	$0.0078(10)$
C8	$0.0154(12)$	$0.0174(13)$	$0.0130(12)$	$0.0024(10)$	$0.0047(10)$	$0.0036(10)$
C9	$0.0177(12)$	$0.0129(12)$	$0.0129(13)$	$0.0017(10)$	$0.0056(10)$	$0.0050(10)$
OW1	$0.0262(11)$	$0.0264(11)$	$0.0459(14)$	$0.0047(9)$	$0.0166(10)$	$0.0116(10)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ca} 1-\mathrm{O} 1$	2.338 (2)	O5-Ca1 ${ }^{\text {viii }}$	2.466 (2)
$\mathrm{Ca} 1-\mathrm{O}^{\text {i }}$	2.280 (2)	O6-C9	1.241 (3)
$\mathrm{Ca} 1-\mathrm{O} 4{ }^{\text {ii }}$	2.333 (2)	O6-Ca1 ${ }^{\text {iv }}$	2.357 (2)
$\mathrm{Ca} 1-\mathrm{O} 5^{\text {iii }}$	2.466 (2)	O6- $\mathrm{Ca}^{\text {viii }}$	2.954 (2)
$\mathrm{Ca} 1-\mathrm{O} 6^{\text {iv }}$	2.357 (2)	C1-C2	1.382 (4)
Ca1-OW1	2.390 (2)	C1-C6	1.395 (4)
$\mathrm{Ca} 1-\mathrm{Cu} 1$	3.6439 (13)	C1-C7	1.499 (3)
$\mathrm{Cu}-\mathrm{O}^{\text {v }}$	1.9435 (19)	C2-C3	1.398 (4)
$\mathrm{Cu} 1-\mathrm{O} 2$	1.9435 (19)	C2-H2A	0.9300
$\mathrm{Cu} 1-\mathrm{O} 5^{\text {vi }}$	1.9800 (19)	C3-C4	1.386 (4)
$\mathrm{Cu} 1-\mathrm{O} 5^{\text {iii }}$	1.9800 (19)	C3-C8	1.511 (3)
$\mathrm{Cu} 1-\mathrm{Ca1}{ }^{\text {v }}$	3.6439 (13)	C4-C5	1.395 (4)
O1-C7	1.239 (3)	C4-H4A	0.9300
O2-C7	1.278 (3)	C5-C6	1.393 (4)
O3-C8	1.242 (3)	C5-C9	1.485 (3)
$\mathrm{O} 3-\mathrm{Ca} 1^{\text {vii }}$	2.280 (2)	C6-H6A	0.9300
O4-C8	1.271 (3)	$\mathrm{C} 8-\mathrm{Ca} 1^{\text {ii }}$	3.141 (3)
$\mathrm{O} 4-\mathrm{Ca} 1^{\text {ii }}$	2.333 (2)	C9-Ca1 ${ }^{\text {viii }}$	3.104 (3)
O5-C9	1.278 (3)	OW1-HW1A	0.844 (10)
O5-Cu1 ${ }^{\text {viii }}$	1.9800 (19)	OW1-HW1B	0.836 (10)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Ca} 1-\mathrm{O} 4{ }^{\text {ii }}$	99.86 (8)	C7-O2-Cu1	110.48 (16)
O3- $\mathrm{Ca} 1-\mathrm{O} 1$	81.17 (8)	C8-O3-Ca1 ${ }^{\text {vii }}$	168.1 (2)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Ca} 1-\mathrm{O} 1$	87.46 (7)	$\mathrm{C} 8-\mathrm{O} 4-\mathrm{Ca} 1^{1 i}$	118.28 (16)
$\mathrm{O} 3-\mathrm{Ca} 1-\mathrm{O}^{\text {iv }}$	97.47 (8)	C9-O5-Cu1 ${ }^{\text {viii }}$	125.84 (16)
O4ii- ${ }^{\text {iid }} 1-\mathrm{O}^{\text {iv }}$	93.57 (8)	C9-O5-Ca1 ${ }^{\text {viii }}$	107.73 (15)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O}^{\text {iv }}$	178.43 (7)	$\mathrm{Cu1}{ }^{\text {viii }}-\mathrm{O} 5-\mathrm{Ca}^{\text {viii }}$	109.61 (8)
O3--Ca1-OW1	83.82 (8)	C9-O6-Ca1 ${ }^{\text {iv }}$	157.26 (18)
O4ii- $\mathrm{Ca} 1-\mathrm{OW} 1$	173.99 (8)	C9-O6-Ca1 ${ }^{\text {viii }}$	85.06 (15)
$\mathrm{O} 1-\mathrm{Ca}-\mathrm{OW} 1$	88.42 (8)	$\mathrm{Ca} 1^{\text {iv }}-\mathrm{O} 6-\mathrm{Ca} 1^{\text {viii }}$	114.30 (8)
O6 ${ }^{\text {iv }}$ - $\mathrm{Ca} 1-\mathrm{OW} 1$	90.64 (8)	C2-C1-C6	120.0 (2)
$\mathrm{O} 3-\mathrm{Ca} 1-\mathrm{O} 5^{\text {iii }}$	148.03 (7)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	122.6 (2)

$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{O} 5^{\text {iii }}$	91.33 (7)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 5^{\text {iii }}$	69.43 (7)
$\mathrm{O} 6^{\mathrm{iv}}-\mathrm{Ca} 1-\mathrm{O} 5^{\text {iii }}$	111.71 (7)
OW1-Ca1-O5 ${ }^{\text {iii }}$	83.12 (7)
O3--Ca1-Cu1	118.21 (6)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{Cu} 1$	110.50 (5)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{Cu} 1$	49.46 (5)
$\mathrm{O}^{\text {iv }}-\mathrm{Ca} 1-\mathrm{Cu} 1$	131.04 (6)
OW1-Ca1-Cu1	63.49 (6)
$\mathrm{O} 5 \mathrm{iii}-\mathrm{Ca} 1-\mathrm{Cu} 1$	30.79 (4)
O6iii- ${ }^{\text {iid }} 1-\mathrm{Cu} 1$	73.03 (4)
C9 ${ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{Cu} 1$	50.47 (5)
C8 ${ }^{\text {iii }} \mathrm{Ca1}-\mathrm{Cu} 1$	106.72 (6)
$\mathrm{O} 2{ }^{\text {v }}-\mathrm{Cu} 1-\mathrm{O} 2$	180.000 (1)
$\mathrm{O} 2{ }^{\text {v }}-\mathrm{Cu} 1-\mathrm{O} 5^{\text {vi }}$	91.13 (8)
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O}^{\text {vi }}$	88.87 (8)
$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Cu} 1-\mathrm{O} 5^{\text {iii }}$	88.87 (8)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 5^{\text {iii }}$	91.13 (8)
$\mathrm{O} 5^{\text {vi }}-\mathrm{Cu} 1-\mathrm{O} 5^{\text {iii }}$	180.000 (1)
$\mathrm{O} 2{ }^{\text {v }}-\mathrm{Cu} 1-\mathrm{Ca1}{ }^{\text {v }}$	87.31 (6)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{Ca1}{ }^{\text {v }}$	92.69 (6)
O5 ${ }^{\text {vi}}-\mathrm{Cu} 1-\mathrm{Ca}^{\text {v }}$	39.61 (5)
$\mathrm{O} 5^{\text {iiii }}-\mathrm{Cu} 1-\mathrm{Ca1}{ }^{\text {v }}$	140.39 (5)
$\mathrm{O} 2{ }^{\text {v }}-\mathrm{Cu} 1-\mathrm{Ca} 1$	92.69 (6)
O2-Cu1-Ca1	87.31 (6)
O5 ${ }^{\text {vi }} \mathrm{Cu} 1-\mathrm{Ca} 1$	140.39 (5)
$\mathrm{O} 5 \mathrm{iii}-\mathrm{Cu} 1-\mathrm{Ca} 1$	39.61 (5)
$\mathrm{Ca1}{ }^{\text {v }}-\mathrm{Cu} 1-\mathrm{Ca} 1$	180.0
C7-O1-Ca1	146.05 (17)

$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$117.4(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.3(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.8
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.6(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8$	$120.9(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$119.2(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.3(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.9
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.9
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.8(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 9$	$118.8(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 9$	$121.4(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$119.9(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	120.1
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	120.1
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$	$123.6(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	$118.5(2)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 1$	$117.8(2)$
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{O} 4$	$124.8(2)$
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 3$	$117.4(2)$
$\mathrm{O} 4-\mathrm{C} 8-\mathrm{C} 3$	$117.7(2)$
O6-C9-O5	$120.3(2)$
O6-C9-C5	$121.0(2)$
O5-C9-C5	$118.7(2)$
Ca1-OW1-HW1A	$127(2)$
Ca1-OW1-HW1B	$122(2)$
HW1A-OW1-HW1B	$105.9(16)$

Symmetry codes: (i) $x, y, z-1$; (ii) $-x,-y+1,-z+2$; (iii) $x, y+1, z$; (iv) $-x,-y+1,-z+1$; (v) $-x+1,-y+2,-z+2$; (vi) $-x+1,-y+1,-z+2$; (vii) $x, y, z+1$; (viii) x, $y-1, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} W 1 — \mathrm{H} W 1 A \cdots \mathrm{O} 4^{\text {vi }}$	$0.84(1)$	$1.95(1)$	$2.793(3)$	$173(3)$
$\mathrm{O} W 1 — \mathrm{H} W 1 B \cdots \mathrm{O}^{v}$	$0.84(1)$	$2.31(2)$	$3.020(3)$	$143(3)$

Symmetry codes: (v) $-x+1,-y+2,-z+2$; (vi) $-x+1,-y+1,-z+2$.

