

Received 22 April 2017 Accepted 19 May 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

**Keywords:** crystal structure; pyrazol-3-amine; steric repulsion; hydrogen bonding.

CCDC reference: 703162

**Supporting information**: this article has supporting information at journals.iucr.org/e



OPEN 3 ACCESS



# Crystal structure of 5-chloro-N<sup>1</sup>-(5-phenyl-1*H*-pyrazol-3-yl)benzene-1,2-diamine

### Yegor Yartsev,<sup>a</sup>\* Vitaliy Palchikov,<sup>b</sup> Alexandr Gaponov<sup>b</sup> and Svitlana Shishkina<sup>c</sup>

<sup>a</sup>V. N. Karazin Kharkiv National University, 4 Svobody Sq, Kharkiv 61077, Ukraine, <sup>b</sup>Oles Honchar Dnipropetrovsk National University, 72 Gagarina St, Dnipropetrovsk 49010, Ukraine, and <sup>c</sup>SSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61001, Ukraine. \*Correspondence e-mail: yartsev.yegor@gmail.com

The title compound,  $C_{15}H_{13}ClN_4$ , crystallizes with two independent molecules (*A* and *B*) in the asymmetric unit, which are far from planar as a result of steric repulsion between the rings. The benzene and phenyl rings are inclined to the central pyrazole ring by 46.64 (10) and 17.87 (10)° in molecule *A*, and by 40.02 (10) and 14.18 (10)° in molecule *B*. The aromatic rings are inclined to one another by 58.77 (9)° in molecule *A*, and 36.95 (8)° in molecule *B*. In the crystal, the *A* and *B* molecules are linked by two pairs of N-H···N hydrogen bonds forming *A*-*B* dimers. These are further linked by a fifth N-H···N hydrogen bond, forming tetramer-like units that stack along the *a*-axis direction, forming columns, which are in turn linked by C-H··· $\pi$  interactions, forming layers parallel to the *ac* plane.

#### 1. Chemical context

The synthesis and reactions of benzodiazepin-2-ones and thiones have been studied in detail by our group (Gaponov et al., 2016; Okovytyy et al., 2009). The mechanism of ethanolassisted hydrazinolysis of 1,3-dihydro-2*H*-benzo[*b*][1,4]diazepine-2-thiones (Fig. 1) has been modelled by quantumchemical calculations (Okovytyy et al., 2009). However, instead of obtaining the previously suggested products (IIIa) and (IIIb), compounds  $N^{1}$ -(5-phenyl-1*H*-pyrazol-3-yl)benzene-1,2-diamine (Ia) and its 5-chloro-derivative (Ib) were prepared from 4-phenyl-1,3-dihydro-2H-benzo[b][1,4]diazepine-2-thiones (IIa) and (IIb) and hydrazine hydrate (Fig. 1). Aminopirazoles are useful building blocks for the synthesis of new pharmaceutical agents (Sakya et al., 2006) and agrochemicals (Yuan et al., 2013), due to their notable biological properties (Peng et al., 2013; Zhang et al., 2014; Ansari et al., 2017). The crystal structure analysis of the title compound, (Ib), was undertaken as it may help to provide a better understanding of the properties of aminopirazoles.

#### 2. Structural commentary

There are two independent molecules (A and B) in the asymmetric unit of the title compound (Ib), as illustrated in Fig. 2. They are composed of three unsaturated rings, two of which are connected by a bridging amino group. The molecules are not planar as a result of steric repulsion between the rings, which results in some disturbance of the conjugation. Thus, the presence of a shortened intramolecular contact C2  $\cdots$  H11 [2.80 Å in molecule A and 2.81 Å in molecule B as







**Figure 1** Synthesis scheme for the title compound (I*b*).

compared with the sum of their van der Waals radii of 2.87 Å (Zefirov, 1997)], indicates the presence of repulsion between the pyrazole ring and the phenyl substituent. The steric strain is compensated for by the elongation of the C1–C10 bond: 1.486 (2) Å in molecule A and 1.482 (2) Å in molecule B compared to a mean bond length of 1.470 Å for a typical conjugated system (Bürgi & Dunitz, 1994). In addition, the C2–C1–C10 bond angle increases to 130.6 (2)° in both molecules, and the pyrazole and phenyl rings are twisted with respect to each other, with torsion angle C2–C1–C10–C11 being 18.1 (3)° in molecule A and –14.3 (3)° in molecule B.



There is an even stronger repulsion between the aminochlorophenyl and pyrazole rings linked through the bridging

Table 1Hydrogen-bond geometry (Å, °).

.. . .

| $D - H \cdot \cdot \cdot A$            | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|----------------------------------------|----------|-------------------------|--------------|------------------|
| $N2A - H2NA \cdots N4B^{i}$            | 0.87 (2) | 2.44 (2)                | 3.127 (3)    | 136 (2)          |
| $N3A - H3NA \cdots N1B^{i}$            | 0.82(2)  | 2.17 (2)                | 2.973 (2)    | 168 (2)          |
| $N2B - H2NB \cdot \cdot \cdot N4A^{i}$ | 0.87(2)  | 2.50 (2)                | 3.159 (3)    | 134 (2)          |
| $N3B - H3NB \cdot \cdot \cdot N1A^{i}$ | 0.83 (2) | 2.20 (2)                | 3.019 (2)    | 169 (2)          |
| $N4B - H4ND \cdots N1A^{ii}$           | 0.89 (2) | 2.43 (2)                | 3.207 (3)    | 146 (2)          |
| $C11B - H11B \cdots Cg3^{iii}$         | 0.93     | 2.97                    | 3.541 (2)    | 121              |
| Symmetry codes: (i)                    | -x + 1   | -v + 1, -z + 1          | (ii) x +     | 1. v. z: (iii)   |

amino group [shortened intramolecular contacts are:  $C2 \cdots C9$ = 3.25 Å (*A*), 3.21 Å (*B*);  $C2 \cdots H9$  = 2.75 Å (*A*), 2.67 Å (*B*); H3 $\cdots$ H4 = 2.28 Å for both molecules;  $C3 \cdots H9$  = 2.76 Å for both molecules] leads to a greater twist of these unsaturated rings relative to each other; the dihedral angle between the mean planes N1/N2/C1–C3 and C4–C9 is 46.6 (1)° for molecule *A* and 40.0 (1)° for *B*. Moreover, the N3–C3 bonds [1.395 (3) Å in *A* and 1.394 (2) Å in *B*; mean value of 1.339 Å] and the N3–C4 bonds [1.408 (2) Å in *A*, 1.406 (2) Å in *B*; mean value of 1.353 Å] are elongated with respect to the mean values for such bonds, and the C2=C3–N3 bond angle is increased to 130.3 (2)° in *A* and 130.5 (2)° in *B*.

The bridging nitrogen atom, N3, has an almost planar configuration (the bond-angle sum is  $356^{\circ}$  in *A* and  $358^{\circ}$  in *B*). The N4H<sub>2</sub> amino group has a pyramidal configuration (bond-angle sum is  $329^{\circ}$  in *A* and  $325^{\circ}$  in *B*). The C5–N4 bond, 1.422 (3) Å in *A* and 1.425 (3) Å in *B*, is elongated in comparison with the mean value of 1.394 Å; this elongation is probably caused by the involvement of the nitrogen lone pair in hydrogen bonding (Table 1).



#### Figure 2

The molecular structure of the two independent molecules (A and B) of compound (Ib), with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.



Figure 3

A view of the hydrogen-bonded (dashed lines; see Table 1) tetrameric units of compound (*Ib*). For clarity, only H atoms involved in hydrogen bonding have been included.

#### 3. Supramolecular features

In the crystal, molecules are linked by two pairs of  $N-H\cdots N$  hydrogen bonds, forming A-B dimers (Table 1 and Fig. 3). The dimers are linked by a fifth  $N-H\cdots N$  hydrogen bond to form a tetramer-like arrangement (Table 1 and Fig. 3). These stack up the *a*-axis direction, forming columns (Table 2 and Fig. 4),



#### Figure 4

A view along the *a* axis of the crystal packing of compound (Ib). The N– $H \cdots N$  hydrogen bonds are shown as dashed lines and the C– $H \cdots \pi$  interactions as blue arrows (see Table 1). For clarity, only the H atoms involved in these interactions have been included.

which are linked by  $C-H\cdots\pi$  interactions, forming layers parallel to the *ac* plane.

#### 4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update February 2017; Groom et al., 2016) for N.5-diphenyl-1H-pyrazol-3-amine (S1; Fig. 5) gave only two relevant hits, viz. methyl 3-nitro-4-[(5-phenyl-1*H*-pyrazol-3-yl)amino]benzoate (DIKSOG; Portilla et al., 2007) and N-(5-phenyl-1Hpyrazol-3-yl)benzene-1,2-diamine (KUTFAH; Doumbia et al., 2010). They differ from compound (Ib) in the substituents on one of the aromatic rings (see Fig. 5). The molecule of DIKSOG is practically planar, probably owing to the formation of intramolecular N-H···O and C-H···N hydrogen bonds. In compound KUTFAH, while the phenyl ring is almost coplanar with the pyrazole ring (dihedral angle is ca 3.68° cf. 2.15° in DIKSOG), the o-aminophenyl ring is inclined to the pyrazole ring by  $ca 64.03^{\circ}$  (cf. 5.61° in DIKSOG). This conformation is similar to that of compound (Ib). In the crystal of DIKSOG, molecules are linked by pairs of N- $H \cdots N$  hydrogen bonds, forming inversion dimers, while in the crystal of KUTFAH, molecules are linked into chains by N- $H \cdots N$  hydrogen bonds.

#### 5. Synthesis and crystallization

The initial 4-phenyl-1,3-dihydro-2H-benzo[b][1,4]diazepine-2thiones (IIa) and (IIb) were synthesized from the corresponding 4-phenyl-1,3-dihydro-2H-benzo[b][1,4]diazepin-2ones according to the procedure described previously (Solomko *et al.*, 1990). The synthesis of the title compound (Ib) is illustrated in Fig. 1.

#### **General procedure:**

Hydrazine hydrate (0.5 ml, 85% aq. solution) was added to a solution of the corresponding 4-phenyl-1,3-dihydro-2*H*-



Figure 5

CSD search substructure S1, and relevant hits, KUTFAH and DIKSOG.

Table 2Experimental details.

| Crystal data                                                          |                                              |
|-----------------------------------------------------------------------|----------------------------------------------|
| Chemical formula                                                      | $C_{15}H_{13}ClN_4$                          |
| M <sub>r</sub>                                                        | 284.74                                       |
| Crystal system, space group                                           | Monoclinic, $P2_1/c$                         |
| Temperature (K)                                                       | 293                                          |
| a, b, c (Å)                                                           | 10.0709 (17), 20.322 (6), 13.886 (4)         |
| $\beta$ (°)                                                           | 102.776 (18)                                 |
| $V(\dot{A}^3)$                                                        | 2771.7 (12)                                  |
| Ζ                                                                     | 8                                            |
| Radiation type                                                        | Μο Κα                                        |
| $\mu (\text{mm}^{-1})$                                                | 0.27                                         |
| Crystal size (mm)                                                     | $0.20 \times 0.10 \times 0.10$               |
| Data collection                                                       |                                              |
| Diffractometer                                                        | Agilent Xcalibur Sapphire3                   |
| Absorption correction                                                 | Multi-scan (CrysAlis RED;<br>Agilent, 2012). |
| $T_{\min}, T_{\max}$                                                  | 0.649, 1.000                                 |
| No. of measured, independent and                                      | 15157, 4795, 3132                            |
| observed $[I > 2\sigma(I)]$ reflections                               |                                              |
| R <sub>int</sub>                                                      | 0.027                                        |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                  | 0.595                                        |
| Refinement                                                            |                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                   | 0.037, 0.102, 0.94                           |
| No. of reflections                                                    | 4795                                         |
| No. of parameters                                                     | 393                                          |
| H-atom treatment                                                      | H atoms treated by a mixture of              |
|                                                                       | independent and constrained refinement       |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$ | 0.16, -0.21                                  |

Computer programs: CrysAlis CCD and CrysAlis RED (Agilent, 2012), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

benzo[b][1,4]diazepine-2-thiones, (IIa) or (IIb), (5 mmol) in ethanol (40 ml). The mixture was heated at reflux for 3 h (TLC monitoring), then the solvent and the excess of hydrazine hydrate were removed under reduced pressure. The residue was washed with small amounts of cold alcohol. Colourless crystals of (Ia) and (Ib) were grown by recrystallization of the crude product from ethanol solution.

#### Spectroscopic and analytical data for (Ia):

Yield 0.91 g, 73%; m.p. 415–417 K [415–417 K from ethanol in accordance with Essassi & Salem (1985)]. IR  $\nu_{max}$  (KBr): 3410–3220, 2970, 1605, 1545, 1505, 1260, 1030, 920, 860, 810 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$  4.91 (s, 2H, NH<sub>2</sub>), 6.16 (s, 1H, CH), 6.40–6.79 (m, 3H, ArH + NH), 7.03–7.95 (m, 7H, ArH), 12.42 (s, 1H, NH) ppm. MS (EI) m/z (rel. intensity): 251 [M + H] (18), 250 [ $M^+$ ] (100), 249 [M – H] (52), 234 (8), 233 (7), 221 (5), 219 (13), 132 (18), 131 (10), 130 (5), 125 (5), 119 (16), 104 (6), 103 (8), 102 (4), 92 (4), 91 (4), 77 (9). Analysis calculated for C<sub>15</sub>H<sub>14</sub>N<sub>4</sub> (250.12): C, 71.98; H, 5.64; N, 22.38; found: C, 72.12; H, 5.54; N, 22.26.

#### Spectroscopic and analytical data for (Ib):

Yield 0.99 g, 70%; m.p. 468–470 K. IR  $\nu_{max}$  (KBr): 3400– 3210, 2975, 1600, 1560, 1500, 1250, 1145, 1000, 960, 920, 880, 855, 800 cm<sup>-1</sup>. <sup>1</sup>H NMR (Solv, MHz):  $\delta$  4.95 (*s*, 2H, NH<sub>2</sub>), 6.27 (*s*, 1H, CH), 6.57–6.66 (*m*, 2H, ArH + NH), 7.30–7.79 (*m*, 7H, ArH), 12.49 (s, 1H, NH) ppm. MS (EI) m/z (rel. intensity): 285 [M + H] (34), 284 [ $M^+$ ] (100), 283 [M – H] (44), 269 (6), 268 (10), 267 (12), 255 (8), 253 (12), 168 (8), 167 (8), 166 (25), 165 (13), 164 (7), 131 (7), 119 (26), 104 (8), 103 (7), 102 (7), 91 (6), 77 (13). Analysis calculated for C<sub>15</sub>H<sub>13</sub>CIN<sub>4</sub> (284.08): C, 63.27; H, 4.60; N, 19.68; found: C, 63.08; H, 4.71; N, 19.73.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All of the H atoms could be located from difference-Fourier maps. The C-bound H atoms were included in calculated positions and treated as riding: C-H = 0.93 Å with  $1.2U_{eq}(C)$ . The N-bound H atoms were located in difference-Fourier maps and freely refined.

#### References

- Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Ansari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16–41.
- Bürgi, H.-B. & Dunitz, J. D. (1994). *Structure Correlation*, Vol. 2, pp. 767–784. Weinheim: VCH.
- Doumbia, M. L., Bouhfid, R., Essassi, E. M. & El Ammari, L. (2010). Acta Cryst. E66, 0841.
- Essassi, E. M. & Salem, M. (1985). Bull. Soc. Chim. Belg. 94, 755-758.
- Gaponov, A. A., Zlenko, E. T., Shishkina, S. V., Shishkin, O. V., Antypenko, O. M., Tretiakov, S. V. & Palchikov, V. A. (2016). *Med. Chem. Res.* 25, 1768–1780.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Okovytyy, S. I., Sviatenko, L., Gaponov, A., Tarabara, I., Kasyan, L. & Leszczynski, J. (2009). J. Phys. Chem. A, **113**, 11376–11381.
- Peng, X.-M., Cai, G.-X. & Zhou, C.-H. (2013). Curr. Top. Med. Chem. 13, 1963–2010.
- Portilla, J., Mata, E. G., Cobo, J., Low, J. N. & Glidewell, C. (2007). *Acta Cryst.* C63, o510–o513.
- Sakya, S. M., Lundy DeMello, K. M., Minich, M. L., Rast, B., Shavnya, A., Rafka, R. J., Koss, D. A., Cheng, H., Li, J., Jaynes, B. H., Ziegler, C. B., Mann, D. W., Petras, C. F., Seibel, S. B., Silvia, A. M., George, D. M., Lund, L. A., Denis, S. S., Hickman, A., Haven, M. L. & Lynch, M. P. (2006). *Bioorg. Med. Chem. Lett.* 16, 288–292.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Solomko, Z. F., Sharbatyan, P. A., Gaponov, A. A. & Avraraenko, V. I. (1990). Chem. Heterocycl. Compd. 26, 341–345.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yuan, J.-G., Wu, H.-X., Lu, M.-L., Song, G.-P. & Xu, H.-H. (2013). J. Agric. Food Chem. 61, 4236–4241.
- Zefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.
- Zhang, Z., Ojo, K. K., Vidadala, R., Huang, W., Geiger, J. A., Scheele, S., Choi, R., Reid, M. C., Keyloun, K. R., Rivas, K., Siddaramaiah, L. K., Comess, K. M., Robinson, K. P., Merta, P. J., Kifle, L., Hol, W. G. J., Parsons, M., Merritt, E. A., Maly, D. J., Verlinde, C. L. M. J., Van Voorhis, W. C. & Fan, E. (2014). ACS Med. Chem. Lett. 5, 40– 44

# supporting information

Acta Cryst. (2017). E73, 876-879 [https://doi.org/10.1107/S2056989017007381]

Crystal structure of 5-chloro-N<sup>1</sup>-(5-phenyl-1*H*-pyrazol-3-yl)benzene-1,2-diamine

### Yegor Yartsev, Vitaliy Palchikov, Alexandr Gaponov and Svitlana Shishkina

**Computing details** 

Data collection: *CrysAlis CCD* (Agilent, 2012); cell refinement: *CrysAlis CCD* (Agilent, 2012); data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: *SHELXS2014* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015) and *PLATON* (Spek, 2009).

5-Chloro-N<sup>1</sup>-(5-phenyl-1H-pyrazol-3-yl)benzene-1,2-diamine

| Crystal data                                         |                                                             |
|------------------------------------------------------|-------------------------------------------------------------|
| C <sub>15</sub> H <sub>13</sub> ClN <sub>4</sub>     | F(000) = 1184                                               |
| $M_r = 284.74$                                       | $D_x = 1.365 \text{ Mg m}^{-3}$                             |
| Monoclinic, $P2_1/c$                                 | Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A}          |
| a = 10.0709 (17) Å                                   | Cell parameters from 5031 reflections                       |
| b = 20.322 (6) Å                                     | $\theta = 2.0-31.5^{\circ}$                                 |
| c = 13.886 (4) Å                                     | $\mu = 0.27 \text{ mm}^{-1}$                                |
| $\beta = 102.776 (18)^{\circ}$                       | T = 293  K                                                  |
| $V = 2771.7 (12) Å^3$                                | Parallelepiped, colourless                                  |
| Z = 8                                                | $0.20 \times 0.10 \times 0.10 \text{ mm}$                   |
| Data collection                                      |                                                             |
| Agilent Xcalibur Sapphire3                           | 15157 measured reflections                                  |
| diffractometer                                       | 4795 independent reflections                                |
| Radiation source: Enhance (Mo) X-ray Source          | 3132 reflections with $I > 2\sigma(I)$                      |
| Detector resolution: 16.1827 pixels mm <sup>-1</sup> | $R_{int} = 0.027$                                           |
| $\omega$ -scan                                       | $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.5^{\circ}$ |
| Absorption correction: multi-scan                    | $h = -11 \rightarrow 11$                                    |
| (CrysAlis RED; Agilent, 2012).                       | $k = -24 \rightarrow 24$                                    |
| $T_{min} = 0.649, T_{max} = 1.000$                   | $l = -16 \rightarrow 15$                                    |
| Refinement                                           |                                                             |
| Refinement on $F^2$                                  | Secondary atom site location: difference Fourier            |
| Least-squares matrix: full                           | map                                                         |
| $R[F^2 > 2\sigma(F^2)] = 0.037$                      | Hydrogen site location: mixed                               |
| $wR(F^2) = 0.102$                                    | H atoms treated by a mixture of independent                 |
| S = 0.94                                             | and constrained refinement                                  |
| 4795 reflections                                     | $w = 1/[\sigma^2(F_o^2) + (0.064P)^2]$                      |
| 393 parameters                                       | where $P = (F_o^2 + 2F_c^2)/3$                              |
| 0 restraints                                         | $(\Delta/\sigma)_{max} = 0.001$                             |
| Primary atom site location: structure-invariant      | $\Delta\rho_{max} = 0.16$ e Å <sup>-3</sup>                 |
| direct methods                                       | $\Delta\rho_{min} = -0.21$ e Å <sup>-3</sup>                |

#### Special details

**Geometry**. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

|      | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|--------------|-----------------------------|--|
| Cl1A | 0.49786 (7)  | 0.24353 (3)  | 0.83066 (4)  | 0.0730(2)                   |  |
| Cl1B | 0.96923 (7)  | 0.24226 (3)  | 0.84367 (4)  | 0.0776 (2)                  |  |
| N1A  | 0.21769 (16) | 0.51489 (7)  | 0.60279 (10) | 0.0457 (5)                  |  |
| N2A  | 0.18787 (17) | 0.55321 (8)  | 0.67697 (11) | 0.0457 (5)                  |  |
| N3A  | 0.39006 (18) | 0.44024 (8)  | 0.58852 (12) | 0.0492 (6)                  |  |
| N4A  | 0.55691 (19) | 0.39198 (9)  | 0.47173 (13) | 0.0511 (6)                  |  |
| C1A  | 0.27518 (18) | 0.54304 (9)  | 0.76473 (12) | 0.0415 (6)                  |  |
| C2A  | 0.36726 (19) | 0.49617 (9)  | 0.74824 (12) | 0.0461 (6)                  |  |
| C3A  | 0.32764 (18) | 0.48054 (9)  | 0.64684 (12) | 0.0411 (6)                  |  |
| C4A  | 0.46130 (18) | 0.38147 (8)  | 0.61844 (12) | 0.0403 (6)                  |  |
| C5A  | 0.54902 (18) | 0.35744 (9)  | 0.55934 (13) | 0.0421 (6)                  |  |
| C6A  | 0.61960 (19) | 0.29883 (9)  | 0.58605 (14) | 0.0518 (7)                  |  |
| C7A  | 0.6070 (2)   | 0.26396 (10) | 0.66977 (15) | 0.0580 (7)                  |  |
| C8A  | 0.5203 (2)   | 0.28827 (9)  | 0.72658 (13) | 0.0509 (7)                  |  |
| C9A  | 0.44765 (19) | 0.34626 (9)  | 0.70194 (12) | 0.0460 (6)                  |  |
| C10A | 0.26315 (19) | 0.57736 (8)  | 0.85694 (12) | 0.0424 (6)                  |  |
| C11A | 0.3742 (2)   | 0.57789 (10) | 0.93726 (13) | 0.0539(7)                   |  |
| C12A | 0.3656 (2)   | 0.60944 (11) | 1.02456 (15) | 0.0625 (8)                  |  |
| C13A | 0.2459 (2)   | 0.64019 (10) | 1.03356 (15) | 0.0594 (8)                  |  |
| C14A | 0.1350(2)    | 0.63963 (10) | 0.95502 (15) | 0.0604 (8)                  |  |
| C15A | 0.1432 (2)   | 0.60866 (9)  | 0.86679 (14) | 0.0533 (7)                  |  |
| N1B  | 0.72238 (17) | 0.52522 (8)  | 0.62179 (11) | 0.0516 (5)                  |  |
| N2B  | 0.69078 (18) | 0.56217 (9)  | 0.69663 (11) | 0.0513 (6)                  |  |
| N3B  | 0.88215 (17) | 0.44361 (8)  | 0.60966 (12) | 0.0488 (6)                  |  |
| N4B  | 1.04647 (18) | 0.39335 (9)  | 0.49141 (13) | 0.0510 (6)                  |  |
| C1B  | 0.76350 (18) | 0.54428 (9)  | 0.78701 (12) | 0.0413 (6)                  |  |
| C2B  | 0.84788 (18) | 0.49384 (9)  | 0.77092 (12) | 0.0451 (6)                  |  |
| C3B  | 0.81946 (18) | 0.48419 (9)  | 0.66735 (12) | 0.0423 (6)                  |  |
| C4B  | 0.94813 (18) | 0.38342 (9)  | 0.63783 (12) | 0.0420 (6)                  |  |
| C5B  | 1.03456 (18) | 0.35833 (9)  | 0.57797 (13) | 0.0441 (6)                  |  |
| C6B  | 1.0996 (2)   | 0.29824 (9)  | 0.60360 (14) | 0.0543 (7)                  |  |
| C7B  | 1.0828 (2)   | 0.26284 (10) | 0.68562 (15) | 0.0600 (8)                  |  |
| C8B  | 0.9971 (2)   | 0.28790 (10) | 0.74217 (14) | 0.0539 (7)                  |  |
| C9B  | 0.93023 (19) | 0.34753 (9)  | 0.71968 (13) | 0.0480 (6)                  |  |
| C10B | 0.75168 (17) | 0.57770 (9)  | 0.87960 (12) | 0.0403 (6)                  |  |
| C11B | 0.8117 (2)   | 0.54986 (10) | 0.97074 (13) | 0.0515 (7)                  |  |
| C12B | 0.8070 (2)   | 0.58188 (11) | 1.05840 (14) | 0.0563 (7)                  |  |
| C13B | 0.74198 (19) | 0.64222 (10) | 1.05668 (14) | 0.0527 (7)                  |  |
| C14B | 0.6804 (2)   | 0.67007 (10) | 0.96768 (15) | 0.0573 (7)                  |  |
| C15B | 0.6852 (2)   | 0.63790 (9)  | 0.87961 (14) | 0.0517 (7)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| H2NA | 0.120 (2)   | 0.5806 (10) | 0.6599 (14) | 0.059 (6)* |
|------|-------------|-------------|-------------|------------|
| H3NA | 0.3590 (18) | 0.4435 (9)  | 0.5292 (13) | 0.042 (5)* |
| H2A  | 0.44000     | 0.47860     | 0.79430     | 0.0550*    |
| H4NB | 0.631 (2)   | 0.3782 (9)  | 0.4504 (15) | 0.058 (6)* |
| H4NA | 0.563 (2)   | 0.4346 (12) | 0.4845 (16) | 0.076 (7)* |
| H6A  | 0.67640     | 0.28270     | 0.54700     | 0.0620*    |
| H7A  | 0.65550     | 0.22520     | 0.68740     | 0.0700*    |
| H9A  | 0.39010     | 0.36150     | 0.74100     | 0.0550*    |
| H11A | 0.45470     | 0.55700     | 0.93240     | 0.0650*    |
| H12A | 0.44070     | 0.60990     | 1.07740     | 0.0750*    |
| H13A | 0.24060     | 0.66100     | 1.09220     | 0.0710*    |
| H14A | 0.05440     | 0.66000     | 0.96080     | 0.0720*    |
| H15A | 0.06800     | 0.60880     | 0.81400     | 0.0640*    |
| H2B  | 0.91050     | 0.47090     | 0.81830     | 0.0540*    |
| H2NB | 0.624 (2)   | 0.5897 (10) | 0.6809 (15) | 0.059 (6)* |
| H3NB | 0.8595 (18) | 0.4500 (9)  | 0.5492 (14) | 0.045 (5)* |
| H6B  | 1.15590     | 0.28140     | 0.56470     | 0.0650*    |
| H4ND | 1.063 (2)   | 0.4357 (11) | 0.5059 (15) | 0.065 (7)* |
| H7B  | 1.12810     | 0.22320     | 0.70220     | 0.0720*    |
| H4NC | 1.116 (2)   | 0.3777 (10) | 0.4691 (15) | 0.062 (6)* |
| H9B  | 0.87370     | 0.36350     | 0.75900     | 0.0580*    |
| H11B | 0.85550     | 0.50940     | 0.97280     | 0.0620*    |
| H12B | 0.84760     | 0.56270     | 1.11850     | 0.0680*    |
| H13B | 0.74000     | 0.66370     | 1.11550     | 0.0630*    |
| H14B | 0.63570     | 0.71020     | 0.96620     | 0.0690*    |
| H15B | 0.64320     | 0.65700     | 0.81980     | 0.0620*    |
|      |             |             |             |            |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| Cl1A | 0.1159 (5)  | 0.0493 (3)  | 0.0465 (3)  | -0.0072 (3)  | 0.0021 (3)   | 0.0085 (2)   |
| Cl1B | 0.1147 (5)  | 0.0600 (4)  | 0.0563 (3)  | 0.0078 (3)   | 0.0148 (3)   | 0.0152 (3)   |
| N1A  | 0.0554 (9)  | 0.0491 (9)  | 0.0332 (8)  | 0.0080 (8)   | 0.0110 (7)   | -0.0007 (7)  |
| N2A  | 0.0530 (10) | 0.0473 (9)  | 0.0363 (8)  | 0.0095 (9)   | 0.0087 (8)   | -0.0029 (7)  |
| N3A  | 0.0674 (11) | 0.0510 (10) | 0.0297 (8)  | 0.0155 (9)   | 0.0120 (8)   | 0.0032 (7)   |
| N4A  | 0.0593 (11) | 0.0478 (11) | 0.0510 (10) | 0.0010 (9)   | 0.0224 (9)   | -0.0045 (8)  |
| C1A  | 0.0506 (11) | 0.0394 (10) | 0.0353 (9)  | -0.0022 (9)  | 0.0110 (9)   | 0.0019 (8)   |
| C2A  | 0.0547 (11) | 0.0487 (11) | 0.0330 (9)  | 0.0085 (10)  | 0.0059 (9)   | 0.0024 (8)   |
| C3A  | 0.0503 (11) | 0.0394 (10) | 0.0349 (9)  | 0.0028 (9)   | 0.0122 (9)   | 0.0033 (8)   |
| C4A  | 0.0456 (10) | 0.0374 (10) | 0.0349 (9)  | 0.0002 (9)   | 0.0025 (8)   | -0.0057 (8)  |
| C5A  | 0.0448 (10) | 0.0397 (10) | 0.0403 (10) | -0.0049 (9)  | 0.0065 (8)   | -0.0070(8)   |
| C6A  | 0.0520 (12) | 0.0440 (11) | 0.0577 (12) | 0.0048 (10)  | 0.0085 (10)  | -0.0110 (10) |
| C7A  | 0.0652 (14) | 0.0389 (11) | 0.0615 (13) | 0.0079 (11)  | -0.0037 (11) | -0.0020 (10) |
| C8A  | 0.0666 (13) | 0.0386 (11) | 0.0404 (10) | -0.0064 (10) | -0.0032 (10) | -0.0010 (8)  |
| C9A  | 0.0557 (11) | 0.0439 (11) | 0.0363 (10) | -0.0007 (10) | 0.0059 (9)   | -0.0035 (8)  |
| C10A | 0.0543 (11) | 0.0378 (10) | 0.0365 (9)  | -0.0060 (9)  | 0.0130 (9)   | -0.0006 (8)  |
| C11A | 0.0550 (12) | 0.0610 (13) | 0.0452 (11) | -0.0021 (11) | 0.0103 (10)  | -0.0064 (10) |
| C12A | 0.0704 (14) | 0.0710 (14) | 0.0434 (12) | -0.0096 (12) | 0.0070 (11)  | -0.0121 (10) |
|      |             |             |             |              |              |              |

# supporting information

| C13A | 0.0803 (15) | 0.0569 (13) | 0.0451 (12) | -0.0094 (12) | 0.0224 (12) | -0.0136 (10) |
|------|-------------|-------------|-------------|--------------|-------------|--------------|
| C14A | 0.0703 (14) | 0.0598 (13) | 0.0566 (13) | 0.0066 (12)  | 0.0261 (12) | -0.0080 (11) |
| C15A | 0.0580 (12) | 0.0562 (12) | 0.0448 (11) | 0.0044 (11)  | 0.0096 (10) | -0.0028 (9)  |
| N1B  | 0.0612 (10) | 0.0596 (10) | 0.0348 (8)  | 0.0172 (9)   | 0.0124 (8)  | 0.0032 (7)   |
| N2B  | 0.0591 (11) | 0.0596 (11) | 0.0360 (9)  | 0.0234 (9)   | 0.0123 (8)  | 0.0060 (8)   |
| N3B  | 0.0626 (11) | 0.0525 (10) | 0.0327 (8)  | 0.0131 (8)   | 0.0135 (8)  | 0.0021 (8)   |
| N4B  | 0.0554 (11) | 0.0484 (11) | 0.0526 (10) | 0.0004 (9)   | 0.0193 (9)  | -0.0085 (8)  |
| C1B  | 0.0440 (10) | 0.0442 (10) | 0.0359 (9)  | 0.0008 (9)   | 0.0090 (8)  | 0.0053 (8)   |
| C2B  | 0.0483 (11) | 0.0489 (11) | 0.0360 (10) | 0.0101 (9)   | 0.0047 (8)  | 0.0016 (8)   |
| C3B  | 0.0456 (11) | 0.0437 (10) | 0.0384 (10) | 0.0034 (9)   | 0.0112 (9)  | 0.0040 (8)   |
| C4B  | 0.0437 (10) | 0.0413 (10) | 0.0373 (10) | 0.0005 (9)   | 0.0010 (8)  | -0.0048 (8)  |
| C5B  | 0.0446 (10) | 0.0452 (11) | 0.0408 (10) | -0.0032 (9)  | 0.0061 (8)  | -0.0102 (9)  |
| C6B  | 0.0586 (12) | 0.0474 (12) | 0.0565 (12) | 0.0068 (10)  | 0.0117 (10) | -0.0089 (10) |
| C7B  | 0.0703 (14) | 0.0457 (12) | 0.0584 (13) | 0.0114 (11)  | 0.0020 (11) | -0.0052 (10) |
| C8B  | 0.0671 (13) | 0.0460 (12) | 0.0435 (10) | -0.0013 (11) | 0.0016 (10) | -0.0017 (9)  |
| C9B  | 0.0549 (12) | 0.0472 (11) | 0.0401 (10) | 0.0027 (10)  | 0.0066 (9)  | -0.0033 (9)  |
| C10B | 0.0416 (10) | 0.0427 (10) | 0.0380 (9)  | -0.0035 (9)  | 0.0119 (8)  | 0.0025 (8)   |
| C11B | 0.0607 (12) | 0.0507 (12) | 0.0423 (11) | 0.0063 (10)  | 0.0096 (10) | 0.0021 (9)   |
| C12B | 0.0603 (13) | 0.0687 (14) | 0.0383 (10) | -0.0018 (12) | 0.0073 (10) | 0.0015 (10)  |
| C13B | 0.0583 (12) | 0.0567 (12) | 0.0459 (11) | -0.0104 (11) | 0.0178 (10) | -0.0134 (10) |
| C14B | 0.0655 (13) | 0.0531 (12) | 0.0565 (13) | 0.0059 (11)  | 0.0206 (11) | -0.0018 (10) |
| C15B | 0.0596 (12) | 0.0520 (12) | 0.0451 (11) | 0.0099 (10)  | 0.0148 (10) | 0.0075 (9)   |
|      |             |             |             |              |             |              |

## Geometric parameters (Å, °)

| Cl1A—C8A  | 1.764 (2)  | C7A—H7A   | 0.9300     |
|-----------|------------|-----------|------------|
| Cl1B—C8B  | 1.761 (2)  | С9А—Н9А   | 0.9300     |
| N1A—C3A   | 1.337 (2)  | C11A—H11A | 0.9300     |
| N1A—N2A   | 1.376 (2)  | C12A—H12A | 0.9300     |
| N2A—C1A   | 1.352 (2)  | C13A—H13A | 0.9300     |
| N3A—C4A   | 1.408 (2)  | C14A—H14A | 0.9300     |
| N3A—C3A   | 1.395 (2)  | C15A—H15A | 0.9300     |
| N4A—C5A   | 1.422 (3)  | C1B—C2B   | 1.381 (3)  |
| C1A-C10A  | 1.486 (2)  | C1B—C10B  | 1.482 (2)  |
| C1A—C2A   | 1.383 (3)  | C2B—C3B   | 1.417 (2)  |
| C2A—C3A   | 1.412 (2)  | N2B—H2NB  | 0.87 (2)   |
| N2A—H2NA  | 0.87 (2)   | N3B—H3NB  | 0.830 (19) |
| N3A—H3NA  | 0.817 (18) | C4B—C9B   | 1.395 (3)  |
| C4A—C9A   | 1.395 (2)  | C4B—C5B   | 1.424 (3)  |
| N4A—H4NB  | 0.91 (2)   | N4B—H4ND  | 0.89 (2)   |
| N4A—H4NA  | 0.88 (2)   | N4B—H4NC  | 0.89 (2)   |
| C4A—C5A   | 1.419 (3)  | C5B—C6B   | 1.394 (3)  |
| C5A—C6A   | 1.395 (3)  | C6B—C7B   | 1.389 (3)  |
| C6A—C7A   | 1.391 (3)  | C7B—C8B   | 1.386 (3)  |
| C7A—C8A   | 1.391 (3)  | C8B—C9B   | 1.388 (3)  |
| С8А—С9А   | 1.389 (3)  | C10B—C11B | 1.396 (3)  |
| C10A—C15A | 1.398 (3)  | C10B—C15B | 1.395 (3)  |
| C10A—C11A | 1.394 (3)  | C11B—C12B | 1.390 (3)  |
|           |            |           |            |

| C11A—C12A                 | 1.391 (3)                | C12B—C13B                   | 1.388 (3)                |
|---------------------------|--------------------------|-----------------------------|--------------------------|
| C12A—C13A                 | 1.388 (3)                | C13B—C14B                   | 1.376 (3)                |
| C13A—C14A                 | 1.378 (3)                | C14B—C15B                   | 1.397 (3)                |
| C14A—C15A                 | 1.396 (3)                | C2B—H2B                     | 0.9300                   |
| N1B—N2B                   | 1.375 (2)                | С6В—Н6В                     | 0.9300                   |
| N1B-C3B                   | 1 333 (2)                | C7B—H7B                     | 0.9300                   |
| $C_2A = H_2A$             | 0.9300                   | C9B—H9B                     | 0.9300                   |
| N2B_C1B                   | 1.355(2)                 | C11B_H11B                   | 0.9300                   |
| N3B_C4B                   | 1.335(2)<br>1 406(2)     | C12B_H12B                   | 0.9300                   |
| N2P C2P                   | 1.400(2)<br>1.304(2)     | C12B H12B                   | 0.9300                   |
| NAB C5B                   | 1.394(2)<br>1.425(2)     |                             | 0.9300                   |
|                           | 1.423(3)                 | $C_{14}D = H_{14}D$         | 0.9300                   |
| Соа—поа                   | 0.9300                   | СТЗВ—НТЗВ                   | 0.9300                   |
| N2A—N1A—C3A               | 104.40 (14)              | C10A—C15A—H15A              | 120.00                   |
| N1A—N2A—C1A               | 112.47 (15)              | C14A—C15A—H15A              | 120.00                   |
| C3A—N3A—C4A               | 126.32 (15)              | N2B—C1B—C2B                 | 105.97 (15)              |
| N2A—C1A—C2A               | 106 40 (15)              | N2B-C1B-C10B                | 123 35 (17)              |
| N2A— $C1A$ — $C10A$       | 122.97 (16)              | $C^2B$ $C^1B$ $C^{10B}$     | 130.61 (16)              |
| $C^2A$ — $C^1A$ — $C^10A$ | 130.62 (16)              | C1B - C2B - C3B             | 105 88 (15)              |
| C1A - C2A - C3A           | 105 54 (16)              | N1B_N2B_H2NB                | 103.00(13)<br>117.3(14)  |
| N1A N2A H2NA              | 105.54(10)<br>116.4(13)  | C1B-N2B-H2NB                | 117.3(14)<br>129.7(14)   |
| C1A N2A H2NA              | 110.4(13)<br>131.1(13)   | N1B C3B N3B                 | 129.7(14)<br>118 36 (15) |
| N1A C2A N2A               | 131.1(13)<br>118 34 (15) | C2P N2P C4P                 | 116.50(15)<br>126.05(16) |
| NIA - CJA - NJA           | 110.34(13)               | C3D-N3D-C4D<br>C2D N2D U2ND | 120.95(10)               |
| CAA N2A H2NA              | 114.0(13)                | C3D-IN3D-IDIND              | 115.5(15)                |
| C4A—N3A—H3NA              | 115.0 (13)               | C4B—N3B—H3NB                | 115.1 (13)               |
| NIA - C3A - C2A           | 111.19 (16)              | N1B - C3B - C2B             | 110.95 (16)              |
| N3A—C3A—C2A               | 130.28 (17)              | N3B-C3B-C2B                 | 130.52 (17)              |
| H4NB—N4A—H4NA             | 110.1 (18)               | H4ND—N4B—H4NC               | 107.7 (19)               |
| C5A—C4A—C9A               | 119.52 (16)              | C5B—C4B—C9B                 | 119.60 (17)              |
| C5A—N4A—H4NA              | 109.1 (14)               | C5B—N4B—H4NC                | 109.7 (13)               |
| N3A—C4A—C5A               | 117.59 (15)              | N3B—C4B—C5B                 | 117.48 (16)              |
| N3A—C4A—C9A               | 122.89 (16)              | N3B—C4B—C9B                 | 122.91 (17)              |
| C5A—N4A—H4NB              | 109.5 (13)               | C5B—N4B—H4ND                | 109.8 (13)               |
| N4A—C5A—C4A               | 119.00 (16)              | N4B—C5B—C4B                 | 119.34 (16)              |
| N4A—C5A—C6A               | 121.84 (17)              | N4B—C5B—C6B                 | 122.04 (17)              |
| C4A—C5A—C6A               | 119.08 (16)              | C4B—C5B—C6B                 | 118.54 (17)              |
| C5A—C6A—C7A               | 121.47 (18)              | C5B—C6B—C7B                 | 121.84 (18)              |
| C6A—C7A—C8A               | 118.55 (18)              | C6B—C7B—C8B                 | 118.58 (19)              |
| C7A—C8A—C9A               | 121.61 (17)              | C7B—C8B—C9B                 | 121.69 (18)              |
| Cl1A—C8A—C7A              | 119.48 (15)              | Cl1B—C8B—C7B                | 119.31 (16)              |
| Cl1A—C8A—C9A              | 118.89 (15)              | Cl1B—C8B—C9B                | 118.99 (15)              |
| C4A—C9A—C8A               | 119.77 (17)              | C4B—C9B—C8B                 | 119.74 (17)              |
| C1A—C10A—C11A             | 119.28 (17)              | C1B—C10B—C11B               | 119.94 (17)              |
| C1A—C10A—C15A             | 122.31 (16)              | C1B—C10B—C15B               | 122.19 (16)              |
| C11A—C10A—C15A            | 118.41 (16)              | C11B—C10B—C15B              | 117.84 (16)              |
| C10A—C11A—C12A            | 120.49 (19)              | C10B—C11B—C12B              | 120.82 (19)              |
| C11A—C12A—C13A            | 120.58 (19)              | C11B—C12B—C13B              | 120.38 (18)              |
| C12A—C13A—C14A            | 119.55 (19)              | C12B—C13B—C14B              | 119.74 (18)              |

| C13A—C14A—C15A                        | 120.23 (19)  | C13B—C14B—C15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.86 (19)     |
|---------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| C10A—C15A—C14A                        | 120.73 (18)  | C10B—C15B—C14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.34 (17)     |
| N2B—N1B—C3B                           | 104.53 (14)  | C1B—C2B—H2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 127.00          |
| C3A—C2A—H2A                           | 127.00       | C3B—C2B—H2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 127.00          |
| C1A—C2A—H2A                           | 127.00       | C5B—C6B—H6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.00          |
| N1B—N2B—C1B                           | 112.66 (16)  | C7B—C6B—H6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.00          |
| C3B—N3B—C4B                           | 126.95 (16)  | C6B—C7B—H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.00          |
| С5А—С6А—Н6А                           | 119.00       | C8B—C7B—H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.00          |
| C7A - C6A - H6A                       | 119.00       | C4B-C9B-H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.00          |
| C8A—C7A—H7A                           | 121.00       | C8B—C9B—H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.00          |
| C6A - C7A - H7A                       | 121.00       | C10B-C11B-H11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.00          |
| C8A—C9A—H9A                           | 120.00       | C12B— $C11B$ — $H11B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.00          |
| C4A - C9A - H9A                       | 120.00       | C11B $C12B$ $H12B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.00          |
| C10A - C11A - H11A                    | 120.00       | $C_{13B}$ $C_{12B}$ $H_{12B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.00          |
| C12A - C11A - H11A                    | 120.00       | C12B $C12B$ $H12B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.00          |
| C11A - C12A - H12A                    | 120.00       | C12B = C13B = H13B<br>C14B = C13B = H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.00          |
| $C_{12A} = C_{12A} = H_{12A}$         | 120.00       | $C_{14}D_{-}C_{13}D_{-}H_{13}D_{-}H_{14}D_{-}D_{-}D_{-}D_{-}D_{-}D_{-}D_{-}D_{-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.00          |
| $C_{12A} = C_{12A} = H_{12A}$         | 120.00       | C15D - C14D - III4D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.00          |
| C12A = C13A = H13A                    | 120.00       | C10P $C15P$ $H15P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.00          |
| $C_{12A} = C_{13A} = H_{14A}$         | 120.00       | $C_{10} = C_{15} = C$ | 119.00          |
| C15A = C14A = H14A                    | 120.00       | С14Б—С13Б—П13Б                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.00          |
|                                       | 120.00       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| C3A—N1A—N2A—C1A                       | -0.5 (2)     | C3B—N1B—N2B—C1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.2(2)         |
| N2A—N1A—C3A—N3A                       | -175.01 (16) | N2B—N1B—C3B—N3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -174.38 (17)    |
| N2A—N1A—C3A—C2A                       | 0.5 (2)      | N2B—N1B—C3B—C2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2 (2)         |
| N1A—N2A—C1A—C2A                       | 0.2 (2)      | N1B—N2B—C1B—C2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7 (2)         |
| N1A—N2A—C1A—C10A                      | -178.67 (16) | N1B-N2B-C1B-C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 178.09 (17)     |
| C4A—N3A—C3A—N1A                       | -149.84(18)  | C4B—N3B—C3B—N1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -156.03(18)     |
| C4A—N3A—C3A—C2A                       | 35.7 (3)     | C4B—N3B—C3B—C2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.4 (3)        |
| C3A—N3A—C4A—C5A                       | -162.61(18)  | C3B—N3B—C4B—C5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -164.28(18)     |
| C3A—N3A—C4A—C9A                       | 18.2 (3)     | C3B—N3B—C4B—C9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.9 (3)        |
| N2A—C1A—C2A—C3A                       | 0.1 (2)      | N2B-C1B-C2B-C3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1 (2)         |
| C10A - C1A - C2A - C3A                | 178.87 (19)  | C10B-C1B-C2B-C3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -177.05(19)     |
| N2A— $C1A$ — $C10A$ — $C11A$          | -16329(18)   | N2B— $C1B$ — $C10B$ — $C11B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 169.08 (19)     |
| N2A— $C1A$ — $C10A$ — $C15A$          | 17.6 (3)     | N2B— $C1B$ — $C10B$ — $C15B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -12.8(3)        |
| $C_2A$ — $C_1A$ — $C_10A$ — $C_{11}A$ | 181(3)       | C2B— $C1B$ — $C10B$ — $C11B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -143(3)         |
| $C_2A$ — $C_1A$ — $C_10A$ — $C_15A$   | -1610(2)     | C2B— $C1B$ — $C10B$ — $C15B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 163.8(2)        |
| C1A - C2A - C3A - N1A                 | -0.4(2)      | C1B-C2B-C3B-N1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.8(2)         |
| C1A - C2A - C3A - N3A                 | 174 43 (19)  | C1B $C2B$ $C3B$ $N3B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $174\ 08\ (19)$ |
| N3A - C4A - C5A - N4A                 | -24(3)       | N3B-C4B-C5B-N4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -23(3)          |
| N3A - C4A - C5A - C6A                 | -179.06(17)  | N3B - C4B - C5B - C6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -179.09(17)     |
| C9A - C4A - C5A - N4A                 | 176 89 (17)  | C9B-C4B-C5B-N4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 176 51 (17)     |
| C9A - C4A - C5A - C6A                 | 0.2(3)       | C9B-C4B-C5B-C6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.3(3)         |
| N3A - C4A - C9A - C8A                 | 17943(17)    | N3B - C4B - C9B - C8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17898(18)       |
| $C_{5} - C_{4} - C_{9} - C_{8}$       | 0.2(3)       | C5B-C4B-C9B-C8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2(3)          |
| N4A - C5A - C6A - C7A                 | -177.36(18)  | N4B-C5B-C6B-C7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -177.05(10)     |
| C4A - C5A - C6A - C7A                 | -0.7(3)      | C4B - C5B - C6B - C7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.4(3)         |
| $C_{A} = C_{A} = C_{A} = C_{A}$       | 0.7(3)       | $C_{TB} = C_{TB} = C_{TB} = C_{TB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10(3)           |
| UJA-UA-U/A-UAA                        | 0.9 (3)      | CJD-CUD-C/D-COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0 (5)         |

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10A–C15A ring.

| D—H···A                                                 | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H···A |
|---------------------------------------------------------|-------------|----------|--------------|---------|
| $N2A$ — $H2NA$ ···N4 $B^{i}$                            | 0.87 (2)    | 2.44 (2) | 3.127 (3)    | 136 (2) |
| $N3A - H3NA \cdot N1B^{i}$                              | 0.82 (2)    | 2.17 (2) | 2.973 (2)    | 168 (2) |
| $N2B$ — $H2NB$ ···· $N4A^{i}$                           | 0.87 (2)    | 2.50 (2) | 3.159 (3)    | 134 (2) |
| $N3B$ — $H3NB$ ···· $N1A^{i}$                           | 0.83 (2)    | 2.20 (2) | 3.019 (2)    | 169 (2) |
| N4 <i>B</i> —H4 <i>ND</i> ···N1 <i>A</i> <sup>ii</sup>  | 0.89 (2)    | 2.43 (2) | 3.207 (3)    | 146 (2) |
| C11 <i>B</i> —H11 <i>B</i> … <i>Cg</i> 3 <sup>iii</sup> | 0.93        | 2.97     | 3.541 (2)    | 121     |
|                                                         |             |          |              |         |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+2.