Different intra- and intermolecular hydrogenbonding patterns in $(3S,4aS,8aS)-2-[(2R,3S)-3-(2,5-X_2-benzamido)-2-(2,5-X_2-benzoyloxy)-4-phenyl$ butyl]-*N-tert*-butyldecahydroisoquinoline-3-carboxamides (X = H or Cl): compounds with moderateaspartyl protease inhibition activity

Wilson Cunico,^a Maria de Lourdes G. Ferreira,^b James L. Wardell^{b,c} and William T. A. Harrison^c*

^aDepartamento de Química Orgânica, Universidade Federal de Pelotas (UFPel), Campus Universitário, s/n, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil, ^bInstituto de Tecnologia em Fármacos – Farmanguinhos, Fiocruz. R. Sizenando, Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, and ^cDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland. *Correspondence e-mail: w.harrison@abdn.ac.uk

The crystal structures of (3S,4aS,8aS)-2-[(2R,3S)-3-benzamido-2-benzoyloxy-4-phenylbutyl]-*N-tert*-butyldecahydroisoquinoline-3-carboxamide, C₃₈H₄₇N₃O₄, (I), and <math>(3S,4aS,8aS)-2-[(2R,3S)-3-(2,5-dichlorobenzamido)-2-(2,5-dichlorobenzoyloxy)-4-phenylbutyl]-*N-tert*-butyldecahydroisoquinoline-3-carboxamide, C₃₈H₄₃Cl₄N₃O₄, (II), are described. Despite their chemical similarity, they adopt different conformations in the solid state: (I) features a bifurcated intramolecular N-H···(N,O) hydrogen bond from the*tert*-butylamide NH group to the piperidine N atom and the benzoate O atom, whereas (II) has an intramolecular N-H···O link from the benzamide NH group to the*tert*-butylamide O atom. In the crystal of (I), molecules are linked by*C*(4) amide N-H···O hydrogen bonds into chains propagating in the [010] direction, with both donor and acceptor parts of the benzamide group. In the extended structure of (II),*C*(11) N-H···O chains propagating in the [010] direction arise, with the donor being the*tert*-butylamide NH group and the acceptor being the O atom of the benzamide group.

1. Chemical context

Malaria remains one of the most devastating infectious diseases with over 200 million cases and more than 600 000 deaths each year – primarily children under the age of five in sub-Saharan Africa. There is an urgent need for effective drugs with new mechanisms of action, due to the high rate of mutation of the parasite, which leads to the development of resistance of current drugs.

One of the critical stages of the life cycle of the parasite during human infection is the degradation of haemoglobin, which provides nutrients for its growth and maturation (Coombs *et al.*, 2001). Plasmepsins are a family of aspartic proteases involved in the degradation of human haemoglobin by Plasmodium falciparum (Huizing *et al.*, 2015). As the parasite needs the resulting amino acid building blocks for its growth and development, plasmepsins are an important antimalarial drug target. Secondary alcohols (Muthas *et al.*, 2005; Ersmark *et al.*, 2006) and tertiary alcohols (Motwani *et al.*, 2015) have been successfully used to develop potent inhibitors of these enzymes.

Received 20 May 2017 Accepted 25 May 2017

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; malaria; isoquinolinecarboxamide; hydrogen bonding; aspartyl protease inhibition activity.

CCDC references: 1552422; 1552421

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

research communications

Cunico *et al.* (2008) reported the moderate *in vitro* antimalarial activities of the products of reactions of the 2-aminoethyl compound, **3** (see Scheme 1) with various sulfonyl chlorides and acyl chlorides. In the present article, we report the crystal structures of two compounds (see Scheme 2), $C_{38}H_{47}N_3O_4$, (I), and $C_{38}H_{43}Cl_4N_3O_4$, (II), obtained in that study from reactions with acyl chlorides.

2. Structural commentary

Compound (I) crystallizes in the space group $P2_1$ with a single molecule in the asymmetric unit (Fig. 1). The absolute structure was not definitively established based on refinement of the Flack parameter (Parsons *et al.*, 2013) and the configurations of the stereogenic centres (C2 R, C3 S, C7 S, C9 S, C14 S)

Figure 1

The asymmetric unit of (I), showing 50% probability displacement ellipsoids, with most H atoms omitted for clarity. The bifurcated intramolecular hydrogen bond is shown as a double-dashed line.

Table 1Selected torsion angles (°) for (I).

N1-C1-C2-C3	170.4 (3)	C1-C2-C3-C4	59.4 (4)
C1-C2-C3-N3	-66.3 (4)	C4-C3-N3-C5	138.6 (4)
O4-C2-C3-C4	178.4 (3)	C3-C2-O4-C6	131.5 (3)

were set to match those in (II): they are those expected based on the known starting materials. Each atom in the C1-C2-C3-C4 'backbone' of (I) bears a different substituent: C1 is attached to a piperidine+cyclohexane fused-ring system, which in turn bears a tert-butylamide group. C2 is attached to a benzoate group and C3 bears a benzamide group. Finally, C4 is attached to a simple phenyl ring, *i.e.* a benzyl group. Some key torsion angles are presented in Table 1. These show that with respect to the C2–C3 bond, the C1 + C4, C1 + N3 and N3 + O4 pairings are gauche, whereas the C4 + O4 atoms are mutually anti. In terms of the H atoms, H2 is anti to N3 (171°) and H3 is *anti* to C1 (176°): the *gauche* torsion angle between the H atoms is 54°. The N1-C1-C2-C3 torsion angle of $170.4 (3)^{\circ}$ indicates an *anti* conformation and the N1/C7/C8/ C9/C14/C5 and C9-C14 rings have a cis-fused junction (H9- $C9-C14-H14 = -52^{\circ}$). The amide torsion angles C3-N3-C5-C27 and C17-N2-C16-C7 are -178.3 (3) and $-164.7 (4)^{\circ}$, respectively, which reflect the expected nearplanar conformations for these groups. The dihedral angles between the aromatic rings C21-C26 (A), C27-C32 (B) and C33-C38 (C) are A/B = 85.7 (2), A/C = 79.2 (2) and B/C = $17.3 (2)^{\circ}$. The conformation of (I) is supported by a bifurcated intramolecular $N-H\cdots(N,O)$ hydrogen bond (Table 2) arising from the tert-butylamide group: the acceptor atoms are the N atom of the piperidine ring and the O atom of the C=O group of the benzoate group. The bifurcated bond is very asymmetric in terms of angles and the $H \cdots O$ link is long, but given that the assemblage is close to planar (bond-angle sum for the H atom = 353°), we regard it as being just significant.

Compound (II) crystallizes in the space group $P_{2_12_12_1}$ with one molecule in the asymmetric unit (Fig. 2). Here, the absolute structure is very well established (C2 R, C3 S, C7 S, C9 S, C14 S) and is consistent with the starting materials (Cunico *et al.*, 2008). The C1-C2-C3-C4 backbone bears the equivalent substituents to (I), with the difference that the benzyl and amide rings both bear a pair of Cl atoms at the

Table 2Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H1N\cdots O5$	0.90 (5)	2.55 (5)	3.384 (5)	154 (4)
$N2-H1N\cdots N1$	0.90(5)	2.32 (5)	2.773 (4)	111 (4)
$N3-H3N\cdots O3^{i}$	0.93 (5)	2.04 (5)	2.929 (4)	161 (4)
$C18-H18B\cdots O2^{ii}$	0.98	2.39	3.310 (5)	157
C20-H20A···O2	0.98	2.35	2.963 (6)	120
$C29-H29\cdots O5^{i}$	0.95	2.58	3.467 (5)	157

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z$; (ii) $-x + 1, y - \frac{1}{2}, -z + 1$.

meta positions. Selected torsion angles for (II) (Table 3) show similarities but also one major difference with respect to (I). In terms of the central C2-C3 bond in (II), the C1 + C4, C1 + N3and N3 + O4 pairings are gauche, whereas the C4 + O4 atoms are mutually anti. With respect to the H atoms, H2 is anti to N3 (-175°) and H3 is *anti* to C1 (-166°) ; the torsion angle between the H atoms is 69°. Thus, the overall conformation of the atoms about the C2-C3 bond in (II) is essentially the same as in (I), although some of the torsion angles differ by as much as 20°. The N1-C1-C2-C3 gauche torsion angle of $-69.1 (3)^{\circ}$ in (II) is quite different to the value for (I) above, whereas the amide torsion angles C3-N3-C5-C27 $[180.0 (3)^{\circ}]$ and C17-N2-C16-C7 $[-177.5 (3)^{\circ}]$ in (II) are similar. The dihedral angles between the aromatic rings C21-C26 (A), C27–C32 (B) and C33–C38 (C) are A/B = 74.84 (17), A/C = 67.99 (17) and B/C = 68.91 (15)°: it may be seen that the first two of these values are similar to the equivalent data for (I), but the third value is very different, possibly reflecting a reorientation in (II) to minimize unfavourable steric interactions between the bichlorinated rings. Compound (II) features a completely different intramolecular N-H···O hydrogen bond (Table 4) to (I): in (II), a much shorter (and presumably stronger) bond arises from the benzamide NH group to the tert-butylamide O atom, which no doubt correlates with the very different N1-C1-C2-C3 torsion angles for (I) and (II) already mentioned.

Figure 2

The asymmetric unit of (II), showing 50% probability displacement ellipsoids, with most H atoms omitted for clarity. The intramolecular hydrogen bond is shown as a double-dashed line.

Table 3Selected torsion angles (°) for (II).

N1-C1-C2-C3	-69.1(3)	C1-C2-C3-C4	74.4 (3)
C1-C2-C3-N3	-49.5(3)	C4-C3-N3-C5	136.6 (3)
O4-C2-C3-C4	-167.3 (2)	C3-C2-O4-C6	158.0 (2)

 Table 4

 Hydrogen-bond geometry (Å, $^{\circ}$) for (II)

D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$		
0.84 (4)	2.13 (4)	2.931 (3)	160 (3)		
0.88(4)	1.99 (4)	2.834 (3)	159 (3)		
0.99	2.55	3.149 (4)	119		
0.98	2.36	2.975 (4)	120		
0.95	2.40	3.324 (4)	163		
	$\begin{array}{c} D-H\\ \hline 0.84 (4)\\ 0.88 (4)\\ 0.99\\ 0.98\\ 0.95 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$D-H$ $H\cdots A$ $D\cdots A$ 0.84 (4) 2.13 (4) 2.931 (3) 0.88 (4) 1.99 (4) 2.834 (3) 0.99 2.55 3.149 (4) 0.98 2.36 2.975 (4) 0.95 2.40 3.324 (4)		

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

3. Supramolecular features

In the crystal of (I), molecules are linked by classical C(4) amide N-H···O hydrogen bonds into chains propagating in the [010] direction, with adjacent molecules related by the 2_1 screw axis. Both donor and acceptor are part of the benzamide group (Fig. 3). Two weak C-H···O interactions are also observed.

In the extended structure of (II), C(11) [010] N-H···O chains arise, with the donor being the *tert*-butylamide NH group and the acceptor being the O atom of the benzamide ring (Fig. 4). Adjacent molecules are again related by a 2_1 screw axis.

In short, for (I), the *tert*-butylamide NH moiety forms an intramolecular hydrogen bond and the benzamide NH group forms an intermolecular link, whereas for (II), the situation is reversed: the benzamide NH group forms the intramolecular

A fragment of a [010] hydrogen-bonded chain in (I), showing 20% probability displacement ellipsoids; the pendant rings and C-bound H atoms have been omitted for clarity. [Symmetry code as in Table 2; additionally (iii) -x, $y - \frac{1}{2}$, -z.]

research communications

 Table 5

 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{38}H_{47}N_3O_4$	$C_{38}H_{43}Cl_4N_3O_4$
M_r	609.78	747.55
Crystal system, space group	Monoclinic, P2 ₁	Orthorhombic, $P2_12_12_1$
Temperature (K)	100	100
a, b, c (Å)	11.4866 (3), 9.4448 (2), 16.8257 (5)	10.4539 (1), 15.1917 (1), 24.3677 (2)
α, β, γ (°)	90, 109.227 (3), 90	90, 90, 90
$V(A^3)$	1723.58 (8)	3869.90 (6)
Ζ	2	4
Radiation type	Cu Ka	Cu Kα
$\mu (\text{mm}^{-1})$	0.60	3.12
Crystal size (mm)	$0.52 \times 0.15 \times 0.05$	$0.25 \times 0.20 \times 0.04$
Data collection		
Diffractometer	Rigaku Mercury CCD	Rigaku Mercury CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 2004)	Multi-scan (SADABS; Sheldrick, 2004)
T_{\min}, T_{\max}	0.654, 0.971	0.611, 0.886
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	24074, 5349, 4547	44109, 7278, 7140
R _{int}	0.068	0.046
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.610	0.610
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.056, 0.151, 1.07	0.038, 0.100, 1.05
No. of reflections	5349	7278
No. of parameters	415	451
No. of restraints	1	0
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.35, -0.26	0.28, -0.32
Absolute structure	Flack x determined using 1316 quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 3021 quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)] \text{ (Parsons et al., 2013)}$
Absolute structure parameter	-0.4 (2)	-0.006 (7)

Computer programs: CrysAlis PRO (Rigaku, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

bond and the *tert*-butyl NH group forms the intermolecular link.

4. Database survey

A survey of of the Cambridge Structural Database (Groom et al., 2016: updated to April 2017) for the grouping of atoms

Figure 4

A fragment of a [010] hydrogen-bonded chain in (II), showing 20% probability displacement ellipsoids; the pendant rings and C-bound H atoms have been omitted for clarity. [Symmetry code as in Table 4; additionally (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.]

about the C1–C2–C3–C4 fragment in (I) and (II) yielded 24 matches. The most similar are the isostructural halide salts YURSUB and YURTAI of the anti-HIV drug saquinavir mesylate (Fandaruff *et al.*, 2015), which also act as protease inhibitors. The other hits have little similarity to the title compounds.

5. Synthesis and crystallisation

As summarized in Scheme 1, compounds (I) and (II) were prepared as described previously (Cunico *et al.*, 2008) and recrystallized from methanol solution. (I): colourless needles, m.p. 475–476 K, ESI–HRMS (M + H): calculated for C₃₈H₄₈N₃O₄: 610.3645, found: 610.3638. (II): colourless slabs, m.p. 459–460 K, ESI–HRMS (M + H): calculated for C₃₈H₄₄³⁵Cl₄N₃O₄: 746.2086, found: 746.2078.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The N-bound H atoms were located in difference maps and their positions were freely refined. The C-bound H atoms were placed geometrically (C-H = 0.95-1.00 Å) and refined as riding atoms. The constraint $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$ was applied in all cases. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections.

References

- Coombs, G. H., Goldberg, D. E., Klemba, M., Berry, C., Kay, J. & Mottram, J. C. (2001). *Trends Parasitol.* 17, 532–537.
- Cunico, W., Ferreira, M. L. G., Ferreira, T. G., Penido, C., Henriques, M. G. M. O., Krettli, L. G., Varottic, F. P. & Krettli, A. U. (2008). *Lett. Drug Des. Discov.* pp. 178–181.
- Ersmark, K., Nervall, M., Gutiérrez-de-Terán, H., Hamelink, E., Janka, L. K., Clemente, J. C., Dunn, B. M., Gogoll, A., Samuelsson, B., Aqvist, J. & Hallberg, A. (2006). *Bioorg. Med. Chem.* 14, 2197– 2208.

- Fandaruff, C., Chelazzi, L., Braga, D., Cuffini, S. L., Silva, M. A. S., Resende, J. A. L. C., Dichiarante, E. & Grepioni, F. (2015). *Cryst. Growth Des.* 15, 5233–5239.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Huizing, A. P., Mondal, M. & Hirsch, A. K. (2015). J. Med. Chem. 58, 5151–5163.
- Motwani, H. V., De Rosa, M., Odell, L. R., Hallberg, A. & Larhed, M. (2015). Eur. J. Med. Chem. 90, 462–490.
- Muthas, D., Noteberg, D., Sabnis, Y. A., Hamelink, E., Vrang, L., Samuelsson, B., Karlén, A. & Hallberg, A. (2005). *Bioorg. Med. Chem.* 13, 5371–5390.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rigaku (2014). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2017). E73, 913-917 [https://doi.org/10.1107/S2056989017007800]

Different intra- and intermolecular hydrogen-bonding patterns in $(3S,4aS,8aS)-2-[(2R,3S)-3-(2,5-X_2-benzamido)-2-(2,5-X_2-benzoyloxy)-4-phenyl-butyl]-$ *N-tert*-butyldecahydroisoquinoline-3-carboxamides (*X*= H or Cl): compounds with moderate aspartyl protease inhibition activity

Wilson Cunico, Maria de Lourdes G. Ferreira, James L. Wardell and William T. A. Harrison

Computing details

For both compounds, data collection: *CrysAlis PRO* (Rigaku, 2014); cell refinement: *CrysAlis PRO* (Rigaku, 2014); data reduction: *CrysAlis PRO* (Rigaku, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3* (Farrugia, 2012); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(I) (3*S*,4a*S*,8a*S*)-2-[(2*R*,3*S*)-3-Benzamido-2-benzoyloxy-4-phenylbutyl]-*N-tert*-butyldecahydroisoquinoline-3-carboxamide

Crystal data

 $C_{38}H_{47}N_{3}O_{4}$ $M_{r} = 609.78$ Monoclinic, $P2_{1}$ a = 11.4866 (3) Å b = 9.4448 (2) Å c = 16.8257 (5) Å $\beta = 109.227$ (3)° V = 1723.58 (8) Å³ Z = 2

Data collection

Rigaku Mercury CCD diffractometer ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.654, T_{\max} = 0.971$ 24074 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.151$ S = 1.07 F(000) = 656 $D_x = 1.175 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 8813 reflections $\theta = 5.4-69.6^{\circ}$ $\mu = 0.60 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.52 \times 0.15 \times 0.05 \text{ mm}$

5349 independent reflections 4547 reflections with $I > 2\sigma(I)$ $R_{int} = 0.068$ $\theta_{max} = 70.1^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -14 \rightarrow 13$ $k = -11 \rightarrow 9$ $l = -20 \rightarrow 19$

5349 reflections415 parameters1 restraintPrimary atom site location: structure-invariant direct methods

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0894P)^2 + 0.2672P]$ where $P = (F_o^2 + 2F_c^2)/3$

$$(\Delta/\sigma)_{\rm max} < 0.001$$

Special details

$$\begin{split} &\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3} \\ &\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3} \\ & {\rm Absolute \ structure: \ Flack \ x \ determined \ using} \\ & 1316 \ {\rm quotients} \ [({\rm I}+)-({\rm I}-)]/[({\rm I}+)+({\rm I}-)] \ ({\rm Parsons \ et \ al., \ 2013}) \\ & {\rm Absolute \ structure \ parameter: \ -0.4 \ (2)} \end{split}$$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.1094 (4)	0.3195 (4)	0.1956 (2)	0.0347 (8)	
H1A	0.1950	0.3530	0.2069	0.042*	
H1B	0.0566	0.3672	0.1438	0.042*	
C2	0.1046 (3)	0.1585 (4)	0.1806 (2)	0.0322 (8)	
H2	0.1668	0.1113	0.2295	0.039*	
C3	0.1262 (3)	0.1138 (4)	0.0997 (2)	0.0310 (8)	
Н3	0.1265	0.0079	0.0988	0.037*	
C4	0.2513 (3)	0.1625 (4)	0.0978 (2)	0.0353 (8)	
H4A	0.2491	0.2665	0.0900	0.042*	
H4B	0.3140	0.1414	0.1530	0.042*	
C5	-0.0678 (3)	0.0764 (4)	-0.0162 (2)	0.0322 (8)	
C6	-0.0309 (4)	0.0410 (4)	0.2415 (2)	0.0344 (9)	
C7	0.1555 (3)	0.4553 (4)	0.3252 (2)	0.0362 (8)	
H7	0.1668	0.5406	0.2933	0.043*	
C8	0.1086 (4)	0.5037 (5)	0.3955 (3)	0.0408 (9)	
H8A	0.1674	0.5733	0.4311	0.049*	
H8B	0.1060	0.4213	0.4312	0.049*	
C9	-0.0194 (4)	0.5709 (5)	0.3631 (3)	0.0408 (9)	
H9	-0.0135	0.6587	0.3314	0.049*	
C10	-0.0665 (4)	0.6127 (5)	0.4343 (3)	0.0469 (10)	
H10A	-0.1408	0.6726	0.4114	0.056*	
H10B	-0.0027	0.6698	0.4759	0.056*	
C11	-0.0984 (4)	0.4852 (5)	0.4784 (3)	0.0510 (12)	
H11A	-0.0224	0.4307	0.5069	0.061*	
H11B	-0.1330	0.5179	0.5218	0.061*	
C12	-0.1913 (4)	0.3899 (5)	0.4161 (3)	0.0497 (11)	
H12A	-0.2702	0.4415	0.3917	0.060*	
H12B	-0.2072	0.3054	0.4457	0.060*	
C13	-0.1435 (4)	0.3435 (5)	0.3454 (3)	0.0430 (10)	
H13A	-0.0704	0.2821	0.3691	0.052*	
H13B	-0.2079	0.2871	0.3038	0.052*	
C14	-0.1088 (4)	0.4686 (5)	0.3014 (2)	0.0381 (9)	
H14	-0.1863	0.5225	0.2732	0.046*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C15	-0.0557 (3)	0.4256 (4)	0.2330 (3)	0.0379 (9)
H15A	-0.1128	0.3580	0.1944	0.046*
H15B	-0.0501	0.5105	0.1999	0.046*
C16	0.2805 (4)	0.3896 (5)	0.3683 (3)	0.0389 (9)
C17	0.3889 (4)	0.1660 (5)	0.4317 (3)	0.0395 (9)
C18	0.4024 (4)	0.1975 (5)	0.5232 (3)	0.0430 (10)
H18A	0.4144	0.2995	0.5336	0.064*
H18B	0.4737	0.1462	0.5604	0.064*
H18C	0.3277	0.1673	0.5345	0.064*
C19	0.3574 (4)	0.0085 (5)	0.4131 (3)	0.0484 (11)
H19A	0.2764	-0.0113	0.4182	0.073*
H19B	0 4200	-0.0499	0.4533	0.073*
H19C	0.3556	-0.0135	0.3557	0.073*
C20	0.5072 (4)	0.1970 (6)	0.5557 0.4129(3)	0.075 0.0516 (12)
H20A	0.5284	0.2973	0.4235	0.077*
H20R	0.4952	0.1751	0.3538	0.077*
H20C	0.5742	0.1386	0.4492	0.077*
C21	0.2000 (3)	0.1380	0.4792 0.0296 (2)	0.077
C21	0.2909(3)	-0.0514(5)	0.0290(2)	0.0343(0)
U22	0.3112 (4)	-0.1080	0.0303 (3)	0.0381 (9)
П22 С23	0.2900 0.2533(4)	-0.1089 -0.1124(5)	-0.0200(3)	0.040°
U23	0.3333 (4)	-0.1124 (3)	-0.0299 (3)	0.0449 (10)
П23	0.3080	-0.2113	-0.0282	0.034°
U24	0.3743 (4)	-0.0323(0)	-0.0919 (3)	0.0508 (11)
H24	0.4034	-0.0756	-0.1328	0.061°
025	0.3523 (4)	0.1131 (6)	-0.0941 (3)	0.0523 (11)
H25	0.3657	0.1698	-0.1369	0.063*
C26	0.3109 (4)	0.1745 (5)	-0.0337(3)	0.0444 (10)
H26	0.2959	0.2736	-0.0358	0.053*
C27	-0.1602 (3)	0.1360 (4)	-0.0933 (2)	0.0315 (8)
C28	-0.1291 (4)	0.2311 (4)	-0.1467 (2)	0.0335 (8)
H28	-0.0470	0.2653	-0.1323	0.040*
C29	-0.2175 (4)	0.2756 (4)	-0.2206 (3)	0.0370 (9)
H29	-0.1955	0.3395	-0.2568	0.044*
C30	-0.3380 (4)	0.2273 (4)	-0.2417 (3)	0.0386 (9)
H30	-0.3984	0.2582	-0.2923	0.046*
C31	-0.3700 (4)	0.1339 (4)	-0.1889 (3)	0.0382 (9)
H31	-0.4525	0.1011	-0.2033	0.046*
C32	-0.2825 (3)	0.0883 (4)	-0.1156 (3)	0.0353 (8)
H32	-0.3052	0.0240	-0.0798	0.042*
C33	-0.1626 (3)	0.0098 (4)	0.2289 (2)	0.0346 (8)
C34	-0.2557 (4)	0.0418 (5)	0.1540 (3)	0.0400 (9)
H34	-0.2354	0.0806	0.1081	0.048*
C35	-0.3772 (4)	0.0176 (5)	0.1463 (3)	0.0481 (11)
H35	-0.4406	0.0405	0.0952	0.058*
C36	-0.4071 (4)	-0.0400 (5)	0.2126 (3)	0.0493 (11)
H36	-0.4910	-0.0566	0.2068	0.059*
C37	-0.3155 (4)	-0.0735 (5)	0.2872 (3)	0.0506 (11)
H37	-0.3363	-0.1127	0.3328	0.061*

C38	-0.1931 (4)	-0.0496 (5)	0.2950 (3)	0.0449 (10)	
H38	-0.1298	-0.0738	0.3458	0.054*	
N1	0.0677 (3)	0.3598 (3)	0.26662 (19)	0.0332 (7)	
N2	0.2845 (3)	0.2467 (4)	0.3755 (2)	0.0369 (8)	
H1N	0.208 (4)	0.209 (6)	0.358 (3)	0.044*	
N3	0.0279 (3)	0.1602 (3)	0.02500 (19)	0.0301 (7)	
H3N	0.027 (4)	0.252 (6)	0.005 (3)	0.036*	
O2	0.3711 (3)	0.4674 (3)	0.3992 (2)	0.0506 (8)	
03	-0.0799 (2)	-0.0457 (3)	0.00716 (17)	0.0344 (6)	
O4	-0.0177 (2)	0.1111 (3)	0.17533 (16)	0.0329 (6)	
O5	0.0540 (2)	0.0080 (4)	0.30361 (18)	0.0449 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.036 (2)	0.0253 (19)	0.040 (2)	-0.0010 (16)	0.0092 (16)	0.0009 (15)
C2	0.0261 (17)	0.0251 (19)	0.043 (2)	0.0008 (15)	0.0086 (15)	0.0016 (16)
C3	0.0292 (17)	0.0212 (18)	0.0410 (19)	0.0052 (15)	0.0094 (14)	0.0021 (15)
C4	0.0318 (18)	0.027 (2)	0.045 (2)	-0.0015 (16)	0.0095 (15)	0.0010 (17)
C5	0.0328 (19)	0.023 (2)	0.039 (2)	-0.0003 (15)	0.0090 (15)	-0.0032 (15)
C6	0.037 (2)	0.030 (2)	0.038 (2)	0.0008 (16)	0.0138 (17)	0.0014 (16)
C7	0.037 (2)	0.0251 (19)	0.042 (2)	-0.0047 (16)	0.0062 (16)	0.0014 (17)
C8	0.042 (2)	0.031 (2)	0.045 (2)	-0.0043 (18)	0.0092 (17)	-0.0029 (17)
C9	0.045 (2)	0.027 (2)	0.047 (2)	0.0004 (18)	0.0100 (18)	0.0000 (17)
C10	0.050 (2)	0.032 (2)	0.057 (3)	0.006 (2)	0.015 (2)	-0.005 (2)
C11	0.057 (3)	0.049 (3)	0.048 (2)	0.008 (2)	0.020 (2)	-0.002 (2)
C12	0.052 (3)	0.043 (3)	0.059 (3)	0.002 (2)	0.024 (2)	0.005 (2)
C13	0.043 (2)	0.033 (2)	0.053 (2)	-0.0001 (18)	0.0147 (18)	-0.0012 (19)
C14	0.035 (2)	0.033 (2)	0.044 (2)	0.0068 (17)	0.0097 (16)	0.0013 (17)
C15	0.033 (2)	0.032 (2)	0.045 (2)	0.0014 (16)	0.0073 (16)	0.0013 (16)
C16	0.039 (2)	0.030 (2)	0.043 (2)	-0.0064 (17)	0.0076 (17)	-0.0028 (16)
C17	0.0319 (19)	0.033 (2)	0.046 (2)	0.0001 (17)	0.0033 (16)	-0.0008 (18)
C18	0.041 (2)	0.035 (2)	0.047 (2)	0.0005 (18)	0.0055 (17)	0.0029 (18)
C19	0.044 (2)	0.030 (2)	0.059 (3)	0.0076 (19)	0.001 (2)	-0.004 (2)
C20	0.041 (2)	0.051 (3)	0.060 (3)	0.003 (2)	0.013 (2)	-0.004 (2)
C21	0.0264 (17)	0.032 (2)	0.043 (2)	-0.0004 (16)	0.0082 (14)	0.0002 (17)
C22	0.036 (2)	0.031 (2)	0.047 (2)	-0.0002 (17)	0.0132 (16)	-0.0019 (18)
C23	0.036 (2)	0.036 (2)	0.060 (3)	-0.0019 (18)	0.0131 (19)	-0.007(2)
C24	0.048 (2)	0.050 (3)	0.057 (3)	-0.008(2)	0.020 (2)	-0.011 (2)
C25	0.059 (3)	0.055 (3)	0.050 (2)	-0.006 (2)	0.026 (2)	0.001 (2)
C26	0.047 (2)	0.035 (2)	0.052 (2)	-0.0017 (19)	0.0174 (18)	0.003 (2)
C27	0.0311 (18)	0.0192 (18)	0.042 (2)	0.0015 (15)	0.0095 (15)	-0.0018 (15)
C28	0.0353 (19)	0.0226 (18)	0.041 (2)	0.0007 (16)	0.0099 (16)	-0.0031 (16)
C29	0.043 (2)	0.023 (2)	0.042 (2)	0.0030 (16)	0.0095 (17)	0.0019 (16)
C30	0.038 (2)	0.028 (2)	0.043 (2)	0.0039 (17)	0.0031 (17)	-0.0025 (17)
C31	0.0310 (18)	0.031 (2)	0.048 (2)	0.0012 (16)	0.0063 (16)	-0.0010 (17)
C32	0.0333 (19)	0.0219 (19)	0.048 (2)	-0.0015 (16)	0.0099 (16)	-0.0005 (16)
C33	0.0347 (19)	0.0245 (18)	0.046 (2)	-0.0012 (16)	0.0156 (16)	0.0015 (16)

C34	0.038 (2)	0.034 (2)	0.047 (2)	-0.0014 (17)	0.0115 (17)	0.0035 (18)
C35	0.036 (2)	0.045 (3)	0.059 (3)	-0.004 (2)	0.0104 (19)	0.003 (2)
C36	0.040 (2)	0.043 (3)	0.065 (3)	-0.008 (2)	0.018 (2)	0.004 (2)
C37	0.047 (2)	0.047 (3)	0.062 (3)	-0.002 (2)	0.024 (2)	0.010 (2)
C38	0.042 (2)	0.042 (3)	0.051 (2)	-0.001 (2)	0.0156 (18)	0.008 (2)
N1	0.0307 (16)	0.0262 (17)	0.0396 (17)	-0.0022 (13)	0.0075 (13)	-0.0028 (13)
N2	0.0325 (16)	0.0274 (18)	0.0445 (18)	0.0014 (14)	0.0040 (14)	0.0008 (14)
N3	0.0289 (15)	0.0188 (16)	0.0398 (16)	0.0015 (12)	0.0075 (12)	0.0012 (13)
O2	0.0407 (16)	0.0357 (17)	0.0652 (19)	-0.0084 (14)	0.0038 (14)	-0.0029 (15)
03	0.0356 (13)	0.0185 (13)	0.0470 (15)	0.0024 (11)	0.0111 (11)	0.0009 (11)
O4	0.0303 (12)	0.0283 (14)	0.0391 (13)	-0.0033 (11)	0.0100 (10)	0.0022 (11)
O5	0.0361 (15)	0.0494 (18)	0.0457 (16)	0.0009 (14)	0.0087 (12)	0.0121 (14)

Geometric parameters (Å, °)

C1—N1	1.476 (5)	C17—N2	1.472 (5)
C1—C2	1.539 (5)	C17—C20	1.522 (6)
C1—H1A	0.9900	C17—C18	1.526 (6)
C1—H1B	0.9900	C17—C19	1.538 (6)
C2—O4	1.449 (4)	C18—H18A	0.9800
C2—C3	1.521 (5)	C18—H18B	0.9800
C2—H2	1.0000	C18—H18C	0.9800
C3—N3	1.453 (4)	C19—H19A	0.9800
C3—C4	1.519 (5)	C19—H19B	0.9800
С3—Н3	1.0000	C19—H19C	0.9800
C4—C21	1.507 (6)	C20—H20A	0.9800
C4—H4A	0.9900	C20—H20B	0.9800
C4—H4B	0.9900	C20—H20C	0.9800
C5—O3	1.241 (5)	C21—C26	1.383 (6)
C5—N3	1.346 (5)	C21—C22	1.403 (6)
C5—C27	1.490 (5)	C22—C23	1.383 (6)
C6—O5	1.213 (5)	C22—H22	0.9500
C6—O4	1.346 (5)	C23—C24	1.372 (7)
C6—C33	1.486 (5)	C23—H23	0.9500
C7—N1	1.465 (5)	C24—C25	1.397 (8)
C7—C16	1.512 (6)	C24—H24	0.9500
С7—С8	1.522 (6)	C25—C26	1.383 (7)
С7—Н7	1.0000	C25—H25	0.9500
C8—C9	1.527 (6)	C26—H26	0.9500
C8—H8A	0.9900	C27—C28	1.397 (5)
C8—H8B	0.9900	C27—C32	1.403 (5)
C9—C10	1.520 (6)	C28—C29	1.386 (5)
C9—C14	1.537 (6)	C28—H28	0.9500
С9—Н9	1.0000	C29—C30	1.388 (6)
C10-C11	1.522 (7)	C29—H29	0.9500
C10—H10A	0.9900	C30—C31	1.384 (6)
C10—H10B	0.9900	С30—Н30	0.9500
C11—C12	1.520 (7)	C31—C32	1.380 (6)

C11—H11A	0 9900	C31—H31	0.9500
C11—H11B	0.9900	C32—H32	0.9500
C12-C13	1 529 (6)	C_{33} C_{38}	1 390 (6)
C12 $H12A$	0.9900	C_{33} C_{34}	1 391 (5)
C12_H12R	0.9900	C_{34} C_{35} C_{34} C_{35}	1.378 (6)
$C_{12} = C_{14}$	1.516 (6)	C_{34} H_{34}	0.0500
C13 H13A	0.0000	C_{3}^{+}	1 382 (6)
C12 H12P	0.9900	$C_{35} = C_{30}$	0.0500
C14 C15	0.3300	C36 C37	1.384(7)
C14 = C13	1.524 (0)	C_{26} H_{26}	1.364 (7)
C15 N1	1.0000	C30—H30	1.297(6)
	1.479(3)	C_{27} U27	1.307(0)
C15_H15A	0.9900	$C_{29} H_{29}$	0.9500
CIG-HISB	0.9900		0.9500
C16—02	1.240 (5)	N2—HIN	0.90 (5)
C16—N2	1.354 (5)	N3—H3N	0.93 (5)
N1—C1—C2	112.5 (3)	N2—C17—C18	109.8 (3)
N1—C1—H1A	109.1	C20—C17—C18	111.8 (3)
C2—C1—H1A	109.1	N2—C17—C19	106.4 (3)
N1—C1—H1B	109.1	C20—C17—C19	108.1 (4)
C2—C1—H1B	109.1	C18—C17—C19	109.5 (4)
H1A—C1—H1B	107.8	C17—C18—H18A	109.5
O4—C2—C3	107.4 (3)	C17—C18—H18B	109.5
O4—C2—C1	107.3 (3)	H18A—C18—H18B	109.5
C3—C2—C1	114.4 (3)	C17—C18—H18C	109.5
O4—C2—H2	109.2	H18A—C18—H18C	109.5
С3—С2—Н2	109.2	H18B—C18—H18C	109.5
C1—C2—H2	109.2	С17—С19—Н19А	109.5
N3—C3—C4	111.1 (3)	C17—C19—H19B	109.5
N3—C3—C2	112.4 (3)	H19A—C19—H19B	109.5
C4—C3—C2	111.7 (3)	С17—С19—Н19С	109.5
N3—C3—H3	107.1	H19A—C19—H19C	109.5
C4—C3—H3	107.1	H19B—C19—H19C	109.5
С2—С3—Н3	107.1	C17—C20—H20A	109.5
$C_{21} - C_{4} - C_{3}$	114.4 (3)	С17—С20—Н20В	109.5
C21—C4—H4A	108.7	H20A—C20—H20B	109.5
C3—C4—H4A	108.7	С17—С20—Н20С	109.5
C21—C4—H4B	108.7	H20A—C20—H20C	109.5
C3—C4—H4B	108.7	H20B—C20—H20C	109.5
H4A—C4—H4B	107.6	C26—C21—C22	118.1 (4)
03—C5—N3	122.8 (3)	C26—C21—C4	121.7 (4)
03—C5—C27	120.3 (3)	C22—C21—C4	120.1 (4)
N3-C5-C27	1169(3)	C_{23} C_{22} C_{21} C_{21}	120.2(4)
05-C6-04	124 2 (4)	C_{23} C_{22} H_{22}	119.9
05	124.3 (4)	C21—C22—H22	119.9
04-C6-C33	111.5 (3)	C_{24} C_{23} C_{22}	121.3 (4)
N1 - C7 - C16	113 8 (3)	C24—C23—H23	119.4
N1—C7—C8	111.5 (3)	C22—C23—H23	119.4
	· - · - \ - /		

C16—C7—C8	105.9 (3)	C23—C24—C25	119.0 (4)
N1—C7—H7	108.5	C23—C24—H24	120.5
С16—С7—Н7	108.5	C25—C24—H24	120.5
С8—С7—Н7	108.5	C26—C25—C24	119.8 (5)
С7—С8—С9	113.1 (3)	C26—C25—H25	120.1
С7—С8—Н8А	109.0	C24—C25—H25	120.1
С9—С8—Н8А	109.0	C25—C26—C21	121.5 (4)
C7—C8—H8B	109.0	C25—C26—H26	119.2
С9—С8—Н8В	109.0	C21—C26—H26	119.2
H8A—C8—H8B	107.8	C28—C27—C32	118.7 (3)
C10—C9—C8	112.2 (3)	C28—C27—C5	122.9 (3)
C10-C9-C14	111.3(4)	C_{32} — C_{27} — C_{5}	118.3(3)
C8-C9-C14	109.3(3)	C_{29} C_{28} C_{27}	120.3(4)
C_{10} C_{9} H_{9}	108.0	C29 - C28 - H28	119.9
С8—С9—Н9	108.0	C_{27} C_{28} H_{28}	119.9
$C_{14} - C_{9} - H_{9}$	108.0	$C_{28} - C_{29} - C_{30}$	120.3(4)
$C_{1}^{0} - C_{1}^{0} - C_{1}^{0}$	112.6(4)	$C_{20} = C_{20} = H_{20}$	110.9
C_{2} C_{10} H_{10A}	112.0 (4)	$C_{20} = C_{20} = H_{20}$	119.9
C_{11} C_{10} H_{10A}	109.1	$C_{30} - C_{29} - H_{29}$	119.9 110.8(4)
C_{11} C_{10} H_{10} H_{10} C_{10} H_{10} H	109.1	C_{21} C_{20} U_{20}	119.0 (4)
C_{11} C_{10} H_{10D}	109.1	C_{20} C_{20} H_{20}	120.1
	109.1	$C_{29} = C_{30} = H_{30}$	120.1
HI0A - CI0 - HI0B	107.8	C_{32} C_{31} C_{30}	120.3 (4)
	111.0 (4)	C32—C31—H31	119.9
C12—C11—H11A	109.4	C30—C31—H31	119.9
C10—C11—H11A	109.4	C31—C32—C27	120.6 (4)
C12—C11—H11B	109.4	C31—C32—H32	119.7
C10—C11—H11B	109.4	С27—С32—Н32	119.7
H11A—C11—H11B	108.0	C38—C33—C34	119.5 (4)
C11—C12—C13	110.8 (4)	C38—C33—C6	118.6 (3)
C11—C12—H12A	109.5	C34—C33—C6	121.9 (4)
C13—C12—H12A	109.5	C35—C34—C33	120.1 (4)
C11—C12—H12B	109.5	C35—C34—H34	119.9
C13—C12—H12B	109.5	C33—C34—H34	119.9
H12A—C12—H12B	108.1	C34—C35—C36	120.2 (4)
C14—C13—C12	112.1 (4)	С34—С35—Н35	119.9
C14—C13—H13A	109.2	С36—С35—Н35	119.9
C12—C13—H13A	109.2	C35—C36—C37	120.4 (4)
C14—C13—H13B	109.2	С35—С36—Н36	119.8
C12—C13—H13B	109.2	C37—C36—H36	119.8
H13A—C13—H13B	107.9	C36—C37—C38	119.5 (4)
C13—C14—C15	113.3 (4)	C36—C37—H37	120.2
C13—C14—C9	112.6 (3)	C38—C37—H37	120.2
C15—C14—C9	109.4 (3)	C37—C38—C33	120.3 (4)
C13—C14—H14	107.0	C37—C38—H38	119.8
C15—C14—H14	107.0	C33—C38—H38	119.8
C9—C14—H14	107.0	C7—N1—C1	111.6 (3)
N1-C15-C14	113.2 (3)	C7-N1-C15	111.0(3)
N1-C15-H15A	108.9	C1-N1-C15	108.9(3)
		e e.e	

C14—C15—H15A	108.9	C16—N2—C17	124.8 (3)
N1—C15—H15B	108.9	C16—N2—H1N	111 (3)
C14—C15—H15B	108.9	C17—N2—H1N	120 (3)
H15A—C15—H15B	107.7	C5—N3—C3	122.5 (3)
O2—C16—N2	123.6 (4)	C5—N3—H3N	117 (3)
O2—C16—C7	119.5 (4)	C3—N3—H3N	121 (3)
N2—C16—C7	116.8 (3)	C6-04-C2	118.2 (3)
N_{2} C17 C20	111.1 (4)		(1)
N1-C1-C2-O4	51.4 (4)	N3—C5—C27—C32	-151.0(4)
N1—C1—C2—C3	170.4 (3)	C32—C27—C28—C29	-0.7 (6)
04—C2—C3—N3	52.7 (4)	C5-C27-C28-C29	175.6 (4)
C1 - C2 - C3 - N3	-663(4)	$C_{27} - C_{28} - C_{29} - C_{30}$	0.7 (6)
04-C2-C3-C4	1784(3)	$C_{28} = C_{29} = C_{30} = C_{31}$	-0.2(6)
C1 - C2 - C3 - C4	59 4 (4)	$C_{29} = C_{30} = C_{31} = C_{32}$	-0.2(6)
$N_3 - C_3 - C_4 - C_2 I$	-66 6 (4)	$C_{30} = C_{31} = C_{32} = C_{27}$	0.2(0)
$C_2 - C_3 - C_4 - C_2 I$	167.0(3)	C_{28} C_{27} C_{32} C_{31}	0.1(0)
$N_1 C_7 C_8 C_9$	-54.5(5)	$C_{20} = C_{27} = C_{32} = C_{31}$	-176.2(3)
11 - 07 - 03 - 03	-178.0(3)	$C_{3} - C_{2} - C_{32} - C_{31}$	1/0.2(3)
$C_{10} = C_{10} = C_{10}$	170.9(3)	03 - 00 - 033 - 038	-172.6(4)
$C_{}C_{8}C_{9}C_{10}$	177.0(4)	04-00-035-036	-175.0(4)
C^{-}_{-}	55.0(5)	03-00-033-034	-1/3.7(4)
	-70.2(5)	04-0-033-034	4.0 (0)
	52.6 (5)	$C_{38} - C_{33} - C_{34} - C_{35}$	1.3 (7)
C9—C10—C11—C12	-55.8 (5)	C6-C33-C34-C35	-176.8(4)
C10—C11—C12—C13	56.2 (5)	C33—C34—C35—C36	-0.6 (7)
C11—C12—C13—C14	-55.1 (5)	C34—C35—C36—C37	0.1 (8)
C12—C13—C14—C15	177.6 (3)	C35—C36—C37—C38	-0.3 (8)
C12—C13—C14—C9	52.7 (5)	C36—C37—C38—C33	1.0 (7)
C10—C9—C14—C13	-51.0 (5)	C34—C33—C38—C37	-1.5 (7)
C8—C9—C14—C13	73.5 (4)	C6—C33—C38—C37	176.7 (4)
C10—C9—C14—C15	-178.0 (3)	C16—C7—N1—C1	-63.7 (4)
C8—C9—C14—C15	-53.6 (4)	C8—C7—N1—C1	176.5 (3)
C13—C14—C15—N1	-69.4 (4)	C16—C7—N1—C15	174.5 (3)
C9—C14—C15—N1	57.3 (4)	C8—C7—N1—C15	54.8 (4)
N1—C7—C16—O2	159.3 (4)	C2-C1-N1-C7	130.4 (3)
C8—C7—C16—O2	-77.9 (5)	C2-C1-N1-C15	-106.6 (3)
N1-C7-C16-N2	-25.0 (5)	C14—C15—N1—C7	-57.9 (4)
C8—C7—C16—N2	97.9 (4)	C14—C15—N1—C1	178.8 (3)
C3—C4—C21—C26	117.9 (4)	O2-C16-N2-C17	10.8 (7)
C3—C4—C21—C22	-63.6 (5)	C7-C16-N2-C17	-164.7 (4)
C26—C21—C22—C23	1.7 (6)	C20-C17-N2-C16	-57.7 (6)
C4—C21—C22—C23	-176.8 (3)	C18—C17—N2—C16	66.5 (5)
C21—C22—C23—C24	-1.0 (6)	C19—C17—N2—C16	-175.1 (4)
C22—C23—C24—C25	-0.1 (7)	O3—C5—N3—C3	1.0 (6)
C23—C24—C25—C26	0.5 (7)	C27—C5—N3—C3	-178.3 (3)
C24—C25—C26—C21	0.2 (7)	C4—C3—N3—C5	138.6 (4)
C22—C21—C26—C25	-1.3 (6)	C2—C3—N3—C5	-95.4 (4)
C4—C21—C26—C25	177.2 (4)	O5—C6—O4—C2	-4.2 (6)
	× /		\ /

O3—C5—C27—C28	-146.7 (4)	C33—C6—O4—C2	175.5 (3)
N3—C5—C27—C28	32.6 (5)	C3—C2—O4—C6	131.5 (3)
O3—C5—C27—C32	29.7 (5)	C1—C2—O4—C6	-105.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
N2—H1 <i>N</i> ···O5	0.90 (5)	2.55 (5)	3.384 (5)	154 (4)
N2—H1 <i>N</i> …N1	0.90 (5)	2.32 (5)	2.773 (4)	111 (4)
N3—H3 <i>N</i> ····O3 ⁱ	0.93 (5)	2.04 (5)	2.929 (4)	161 (4)
C18—H18 <i>B</i> ····O2 ⁱⁱ	0.98	2.39	3.310 (5)	157
C20—H20A····O2	0.98	2.35	2.963 (6)	120
C29—H29…O5 ⁱ	0.95	2.58	3.467 (5)	157

Symmetry codes: (i) -x, y+1/2, -z; (ii) -x+1, y-1/2, -z+1.

(II) (3*S*,4a*S*,8a*S*)-2-[(2*R*,3*S*)-3-(2,5-Dichlorobenzamido)-2-(2,5-dichlorobenzoyloxy)-4-phenylbutyl]-*N-tert*-butyldecahydroisoquinoline-3-carboxamide

Crystal data

$C_{38}H_{43}Cl_4N_3O_4$	$D_{\rm x} = 1.283 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 747.55$	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
Orthorhombic, $P2_12_12_1$	Cell parameters from 40379 reflections
a = 10.4539(1) Å	$\theta = 3.4 - 70.0^{\circ}$
b = 15.1917(1) Å	$\mu = 3.12 \text{ mm}^{-1}$
c = 24.3677(2) Å	T = 100 K
V = 3869.90 (6) Å ³	Slab, colourless
Z = 4	$0.25 \times 0.20 \times 0.04 \text{ mm}$
F(000) = 1568	
Data collection	
Rigaku Mercury CCD	7278 independent reflections
diffractometer	7140 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.046$
Absorption correction: multi-scan	$\theta_{\text{max}} = 70.1^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$
(SADABS; Sheldrick, 2004)	$h = -12 \rightarrow 12$
$T_{\min} = 0.611, T_{\max} = 0.886$	$k = -15 \rightarrow 18$
44109 measured reflections	$l = -29 \longrightarrow 29$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.100$ S = 1.057278 reflections 451 parameters 0 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0552P)^2 + 1.8039P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.32 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 3021 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons *et al.*, 2013) Absolute structure parameter: -0.006 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.3339 (3)	0.3116 (2)	0.28983 (12)	0.0291 (6)	
H1A	0.4228	0.3055	0.2764	0.035*	
H1B	0.2948	0.3629	0.2712	0.035*	
C2	0.2587 (3)	0.2289 (2)	0.27568 (12)	0.0300 (6)	
H2	0.1702	0.2335	0.2910	0.036*	
C3	0.3188 (3)	0.1407 (2)	0.29311 (12)	0.0291 (6)	
Н3	0.2717	0.0929	0.2734	0.035*	
C4	0.3109 (3)	0.1206 (2)	0.35483 (13)	0.0330 (7)	
H4A	0.3595	0.1657	0.3755	0.040*	
H4B	0.2205	0.1235	0.3669	0.040*	
C5	0.4901 (3)	0.09795 (19)	0.22901 (12)	0.0283 (6)	
C6	0.1687 (3)	0.2720 (2)	0.18833 (14)	0.0339 (7)	
C7	0.4476 (3)	0.37726 (19)	0.36694 (12)	0.0269 (6)	
H7	0.4450	0.4368	0.3495	0.032*	
C8	0.4452 (3)	0.3883 (2)	0.42941 (12)	0.0304 (6)	
H8A	0.4500	0.3297	0.4471	0.036*	
H8B	0.5209	0.4228	0.4411	0.036*	
C9	0.3234 (3)	0.4354 (2)	0.44809 (13)	0.0327 (7)	
Н9	0.3238	0.4952	0.4309	0.039*	
C10	0.3151 (4)	0.4484 (2)	0.51013 (14)	0.0399 (7)	
H10A	0.3968	0.4735	0.5235	0.048*	
H10B	0.2464	0.4913	0.5183	0.048*	
C11	0.2880 (4)	0.3630 (3)	0.54077 (14)	0.0455 (8)	
H11A	0.2758	0.3760	0.5802	0.055*	
H11B	0.3625	0.3232	0.5372	0.055*	
C12	0.1691 (4)	0.3171 (3)	0.51853 (16)	0.0503 (9)	
H12A	0.0930	0.3542	0.5257	0.060*	
H12B	0.1571	0.2603	0.5378	0.060*	
C13	0.1815 (3)	0.3005 (2)	0.45668 (14)	0.0407 (8)	
H13A	0.2534	0.2596	0.4498	0.049*	
H13B	0.1021	0.2727	0.4428	0.049*	
C14	0.2048 (3)	0.3865 (2)	0.42625 (13)	0.0347 (7)	
H14	0.1289	0.4252	0.4327	0.042*	
C15	0.2175 (3)	0.3736 (2)	0.36460 (13)	0.0318 (6)	
H15A	0.1428	0.3399	0.3511	0.038*	
H15B	0.2164	0.4319	0.3464	0.038*	
C16	0.5715 (3)	0.33129 (19)	0.35033 (12)	0.0255 (6)	
C17	0.7959 (3)	0.3617 (2)	0.31935 (14)	0.0311 (6)	
C18	0.8574 (3)	0.2958 (3)	0.3576 (2)	0.0518 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H18A	0.8061	0.2418	0.3584	0.078*
H18B	0.8622	0.3208	0.3947	0.078*
H18C	0.9439	0.2821	0.3446	0.078*
C19	0.7847 (4)	0.3250 (3)	0.26108 (16)	0.0478 (9)
H19A	0.7327	0.2714	0.2616	0.072*
H19B	0.8702	0.3112	0.2470	0.072*
H19C	0.7441	0.3689	0.2373	0.072*
C20	0.8752 (3)	0.4461 (2)	0.31835 (15)	0.0369 (7)
H20A	0.8331	0.4897	0.2949	0.055*
H20B	0.9606	0.4333	0.3038	0.055*
H20C	0.8829	0.4694	0.3557	0.055*
C21	0.3644 (4)	0.0305 (2)	0.36758 (13)	0.0378 (7)
C22	0.4947 (4)	0.0212 (3)	0.38043 (15)	0.0451 (8)
H22	0.5464	0.0723	0.3843	0.054*
C23	0.5494 (5)	-0.0614(3)	0.38766 (17)	0.0558 (10)
H23	0.6376	-0.0664	0.3965	0.067*
C24	0.4763 (6)	-0.1352(3)	0.38198(17)	0.0620 (12)
H24	0 5144	-0.1916	0 3858	0.074*
C25	0.3478 (5)	-0.1284(3)	0.37081 (18)	0.0601 (12)
H25	0.2969	-0.1800	0.3679	0.072*
C26	0.2912(4)	-0.0445(2)	0.36356 (16)	0.072
H26	0 2024	-0.0400	0.3559	0.060*
C27	0.6317(3)	0 10128 (19)	0.21805(13)	0.0296 (6)
C28	0.0317(3) 0.7207(3)	0.0856(2)	0 25959 (14)	0.0235(7)
H28	0.6934	0.0722	0.2958	0.0555 (7)
C29	0.8505 (3)	0.0722 0.0899 (2)	0.24673 (15)	0.0363 (7)
C30	0.8902(3)	0.0099(2) 0.1106(2)	0.19463 (16)	0.0385(7)
H30	0.8922 (3)	0.1100 (2)	0.19403 (10)	0.0565 (7)
C31	0.8013 (3)	0.1140 0.1254(2)	0.15382(15)	0.046
C32	0.6013(3)	0.1204(2) 0.12013(19)	0.15382(13) 0.16489(13)	0.0305(7)
U32 H32	0.6100	0.12013 (17)	0.1366	0.0318(0)
C33	0.1663 (3)	0.1293 0.2464 (2)	0.1300 0.12927(13)	0.038 0.0331 (7)
C34	0.1003(3) 0.2152(3)	0.2404(2) 0.1651(2)	0.12927(13) 0.11265(14)	0.0331(7) 0.0341(7)
U34	0.2132 (3)	0.1051 (2)	0.11203 (14)	0.0341(7)
C35	0.2383	0.1278 0.1402(2)	0.1379 0.05848 (14)	0.041 0.0361(7)
C36	0.1333(3) 0.1413(3)	0.1402(2) 0.1945(2)	0.03848(14) 0.02003(14)	0.0301(7)
U30 H36	0.1413 (5)	0.1945 (2)	-0.0172	0.0390(7)
C37	0.1350	0.1709 0.2754(2)	0.0172 0.03776(15)	0.047 0.0306(7)
C38	0.0900(3) 0.1059(3)	0.2734(2) 0.3019(2)	0.03770(13) 0.09184(15)	0.0330(7)
U20	0.1039 (3)	0.3019(2)	0.1022	0.0377(7)
1130 N1	0.0721 0.2252(2)	0.3370 0.32700 (16)	0.1033	0.045°
IN I NI2	0.5552(2)	0.32700(10) 0.32628(17)	0.34911(10) 0.32856(10)	0.0209(3)
	0.0072(2)	0.38028(17)	0.33630(10) 0.3363(14)	0.0271(3)
ПIN N2	0.031(4) 0.4522(2)	0.440(3) 0.12605(16)	0.3303(14) 0.27526(10)	0.033°
IND LIONI	0.4323(2)	0.13093(10)	0.27330(10) 0.2045(15)	0.0278(3)
П2IN 02	0.510(4)	0.100(2)	0.2943(13)	0.033*
02	0.38132 (19)	0.24931(13)	0.34972 (9)	0.0289 (4)
03	0.41/(2)	0.061/0(14)	0.19576(9)	0.0328 (5)
04	0.2526 (2)	0.22167 (14)	0.21627 (9)	0.0322 (4)

O5	0.1021 (2)	0.32785 (16)	0.20878 (10)	0.0423 (6)
C11	0.96231 (8)	0.07105 (6)	0.29804 (4)	0.0481 (2)
Cl2	0.85139 (8)	0.14928 (6)	0.08777 (4)	0.0480 (2)
C13	0.24876 (9)	0.03602 (6)	0.03774 (4)	0.0465 (2)
Cl4	0.01738 (10)	0.34193 (6)	-0.00931 (4)	0.0512 (2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0196 (12)	0.0323 (15)	0.0355 (15)	0.0010 (11)	-0.0018 (12)	-0.0014 (12)
C2	0.0208 (13)	0.0339 (15)	0.0352 (15)	-0.0008 (12)	-0.0024 (12)	-0.0035 (12)
C3	0.0211 (13)	0.0293 (14)	0.0370 (15)	-0.0019 (11)	0.0016 (12)	-0.0011 (12)
C4	0.0298 (15)	0.0296 (15)	0.0395 (16)	-0.0019 (12)	0.0019 (13)	-0.0014 (13)
C5	0.0230 (14)	0.0251 (13)	0.0369 (15)	0.0010 (11)	-0.0014 (12)	-0.0036 (12)
C6	0.0234 (14)	0.0331 (16)	0.0452 (17)	0.0005 (13)	-0.0064 (13)	0.0006 (13)
C7	0.0178 (13)	0.0267 (14)	0.0362 (15)	-0.0012 (11)	0.0003 (11)	-0.0007 (11)
C8	0.0228 (13)	0.0319 (15)	0.0364 (15)	-0.0038 (12)	-0.0005 (12)	-0.0019 (12)
C9	0.0299 (15)	0.0318 (15)	0.0365 (16)	-0.0012 (13)	0.0037 (13)	0.0006 (12)
C10	0.0424 (18)	0.0403 (18)	0.0370 (16)	-0.0024 (14)	0.0042 (14)	-0.0017 (14)
C11	0.054 (2)	0.047 (2)	0.0358 (17)	-0.0020 (16)	0.0048 (15)	0.0032 (15)
C12	0.052 (2)	0.052 (2)	0.048 (2)	-0.0100 (18)	0.0109 (17)	0.0066 (17)
C13	0.0362 (17)	0.0417 (18)	0.0442 (18)	-0.0095 (14)	0.0065 (15)	0.0009 (15)
C14	0.0253 (14)	0.0387 (17)	0.0401 (17)	0.0016 (13)	0.0059 (12)	-0.0006 (13)
C15	0.0199 (14)	0.0337 (16)	0.0417 (17)	0.0023 (12)	0.0016 (12)	-0.0036 (13)
C16	0.0180 (12)	0.0292 (15)	0.0292 (13)	-0.0016 (11)	-0.0014 (10)	0.0004 (11)
C17	0.0180 (13)	0.0272 (14)	0.0480 (17)	-0.0006 (11)	0.0045 (12)	0.0042 (13)
C18	0.0219 (15)	0.046 (2)	0.088 (3)	-0.0029 (14)	-0.0063 (17)	0.026 (2)
C19	0.049 (2)	0.044 (2)	0.051 (2)	-0.0072 (16)	0.0195 (17)	-0.0077 (16)
C20	0.0225 (14)	0.0325 (16)	0.0557 (19)	-0.0026 (12)	0.0025 (14)	0.0076 (14)
C21	0.0472 (19)	0.0304 (16)	0.0358 (16)	-0.0009 (15)	0.0006 (14)	0.0002 (13)
C22	0.049 (2)	0.0421 (19)	0.0438 (19)	0.0047 (16)	-0.0052 (16)	0.0011 (15)
C23	0.062 (3)	0.053 (2)	0.052 (2)	0.012 (2)	-0.006 (2)	0.0051 (18)
C24	0.096 (4)	0.042 (2)	0.048 (2)	0.016 (2)	-0.006 (2)	0.0015 (17)
C25	0.091 (4)	0.0340 (19)	0.056 (2)	-0.012 (2)	-0.006 (2)	-0.0001 (17)
C26	0.066 (3)	0.0379 (19)	0.0471 (19)	-0.0139 (18)	-0.0119 (18)	0.0062 (16)
C27	0.0217 (14)	0.0256 (14)	0.0416 (16)	0.0008 (11)	0.0001 (12)	-0.0066 (12)
C28	0.0255 (15)	0.0314 (15)	0.0437 (17)	0.0010 (12)	0.0003 (12)	-0.0056 (13)
C29	0.0214 (14)	0.0329 (16)	0.0546 (19)	0.0036 (12)	-0.0048 (14)	-0.0096 (14)
C30	0.0255 (15)	0.0283 (15)	0.062 (2)	0.0003 (12)	0.0058 (14)	-0.0119 (14)
C31	0.0311 (16)	0.0308 (16)	0.0476 (18)	-0.0032 (12)	0.0060 (14)	-0.0076 (14)
C32	0.0256 (14)	0.0263 (14)	0.0436 (17)	-0.0019 (12)	0.0003 (13)	-0.0057 (12)
C33	0.0241 (14)	0.0340 (16)	0.0411 (16)	-0.0003 (13)	-0.0041 (13)	0.0017 (13)
C34	0.0244 (14)	0.0362 (16)	0.0418 (16)	0.0002 (12)	-0.0024 (12)	0.0021 (14)
C35	0.0332 (16)	0.0354 (16)	0.0397 (16)	-0.0014 (13)	-0.0010 (13)	0.0010 (13)
C36	0.0371 (18)	0.0451 (18)	0.0365 (17)	-0.0038 (15)	-0.0013 (14)	0.0021 (14)
C37	0.0325 (16)	0.0402 (18)	0.0460 (18)	-0.0040 (14)	-0.0052 (14)	0.0090 (15)
C38	0.0287 (15)	0.0354 (17)	0.0491 (19)	-0.0012 (13)	-0.0061 (14)	0.0028 (14)
N1	0.0177 (11)	0.0294 (12)	0.0336 (12)	-0.0025 (10)	0.0009 (10)	-0.0021 (10)

N2	0.0201 (11)	0.0249 (12)	0.0364 (13)	-0.0005 (10)	0.0006 (10)	0.0002 (10)
N3	0.0198 (11)	0.0277 (12)	0.0358 (13)	0.0006 (10)	-0.0018 (10)	-0.0039 (10)
O2	0.0217 (9)	0.0253 (10)	0.0395 (11)	-0.0011 (8)	-0.0028 (8)	0.0001 (8)
03	0.0254 (10)	0.0300 (11)	0.0432 (12)	0.0010 (8)	-0.0046 (9)	-0.0076 (9)
04	0.0250 (10)	0.0356 (11)	0.0361 (11)	0.0038 (9)	-0.0054 (9)	-0.0030 (9)
05	0.0332 (11)	0.0429 (13)	0.0507 (14)	0.0121 (10)	-0.0066 (10)	-0.0081 (11)
C11	0.0266 (4)	0.0544 (5)	0.0632 (5)	0.0083 (4)	-0.0099 (4)	-0.0119 (4)
Cl2	0.0419 (4)	0.0490 (5)	0.0529 (5)	-0.0093 (4)	0.0139 (4)	-0.0051 (4)
C13	0.0514 (5)	0.0428 (4)	0.0452 (4)	0.0061 (4)	0.0023 (4)	-0.0044 (3)
Cl4	0.0557 (5)	0.0457 (5)	0.0523 (5)	0.0007 (4)	-0.0155 (4)	0.0113 (4)

Geometric parameters (Å, °)

C1—N1	1.463 (4)	C17—N2	1.473 (4)
C1—C2	1.522 (4)	C17—C18	1.512 (5)
C1—H1A	0.9900	C17—C20	1.527 (4)
C1—H1B	0.9900	C17—C19	1.530 (5)
C2—O4	1.453 (4)	C18—H18A	0.9800
C2—C3	1.540 (4)	C18—H18B	0.9800
С2—Н2	1.0000	C18—H18C	0.9800
C3—N3	1.462 (4)	C19—H19A	0.9800
C3—C4	1.537 (4)	C19—H19B	0.9800
С3—Н3	1.0000	C19—H19C	0.9800
C4—C21	1.511 (4)	C20—H20A	0.9800
C4—H4A	0.9900	C20—H20B	0.9800
C4—H4B	0.9900	С20—Н20С	0.9800
C5—O3	1.238 (4)	C21—C26	1.376 (5)
C5—N3	1.335 (4)	C21—C22	1.405 (5)
C5—C27	1.505 (4)	C22—C23	1.391 (5)
C6—O5	1.206 (4)	С22—Н22	0.9500
C6—O4	1.348 (4)	C23—C24	1.364 (7)
C6—C33	1.491 (5)	С23—Н23	0.9500
C7—N1	1.467 (3)	C24—C25	1.374 (8)
C7—C16	1.526 (4)	C24—H24	0.9500
C7—C8	1.532 (4)	C25—C26	1.416 (6)
С7—Н7	1.0000	С25—Н25	0.9500
C8—C9	1.530 (4)	С26—Н26	0.9500
C8—H8A	0.9900	C27—C32	1.389 (5)
C8—H8B	0.9900	C27—C28	1.395 (4)
C9—C10	1.527 (4)	C28—C29	1.395 (4)
C9—C14	1.540 (4)	C28—H28	0.9500
С9—Н9	1.0000	C29—C30	1.379 (5)
C10—C11	1.523 (5)	C29—Cl1	1.735 (3)
C10—H10A	0.9900	C30—C31	1.393 (5)
C10—H10B	0.9900	С30—Н30	0.9500
C11—C12	1.525 (6)	C31—C32	1.391 (4)
C11—H11A	0.9900	C31—Cl2	1.731 (4)
C11—H11B	0.9900	С32—Н32	0.9500

C12—C13	1.534 (5)	C33—C38	1.394 (5)
C12—H12A	0.9900	C33—C34	1.397 (5)
C12—H12B	0.9900	C34—C35	1.383 (5)
C13—C14	1.522 (5)	C34—H34	0.9500
С13—Н13А	0.9900	C35—C36	1.388 (5)
C13—H13B	0.9900	C35—Cl3	1.740 (3)
C14-C15	1 521 (4)	C36—C37	1.385(5)
C14—H14	1 0000	C36—H36	0.9500
C15—N1	1.0000 1.470(4)	C_{37} $-C_{38}$	1.382(5)
C15 $H15A$	0 9900	C_{37} $-C_{14}$	1.302(3) 1.736(3)
C15 H15R	0.0000	C_{28} H_{28}	0.0500
C16 02	0.3900 1 247 (4)	N2 H1N	0.9300
$C_{10} = 02$	1.247(4) 1.225(4)		0.04(4)
C10—N2	1.335 (4)	N3—H2N	0.88 (4)
N1—C1—C2	111.1 (2)	N2—C17—C20	106.8 (2)
N1—C1—H1A	109.4	C18—C17—C20	109.6 (3)
C2—C1—H1A	109.4	N2-C17-C19	108.5 (3)
N1—C1—H1B	109.4	C18—C17—C19	111.4 (3)
C2—C1—H1B	109.4	C20—C17—C19	109.4 (3)
H1A—C1—H1B	108.0	C17—C18—H18A	109.5
04—C2—C1	108.1 (2)	C17—C18—H18B	109.5
04-C2-C3	103.1 (2)	H18A—C18—H18B	109.5
C1 - C2 - C3	116 5 (2)	C17—C18—H18C	109.5
$04-C^{2}-H^{2}$	109.6	H18A - C18 - H18C	109.5
C1 - C2 - H2	109.6	H18B-C18-H18C	109.5
$C_1 = C_2 = H_2$	109.6	C_{17} C_{19} H_{194}	109.5
$C_3 = C_2 = H_2$	109.0 100.5(2)	C17 C19 H10R	109.5
$N_3 = C_3 = C_4$	109.3(2) 110.0(2)	$H_{10A} = C_{10} = H_{10B}$	109.5
$N_3 = C_3 = C_2$	110.0(2)	C17 C10 U10C	109.5
$V_4 - V_3 - V_2$	114.9 (2)	$H_{10A} = C_{10} = H_{10C}$	109.5
$N_3 = C_3 = H_3$	107.4	H19A—C19—H19C	109.5
C4—C3—H3	107.4	H19B—C19—H19C	109.5
C2—C3—H3	107.4	C17 - C20 - H20A	109.5
C21—C4—C3	111.2 (3)	С17—С20—Н20В	109.5
C21—C4—H4A	109.4	H20A—C20—H20B	109.5
C3—C4—H4A	109.4	C17—C20—H20C	109.5
C21—C4—H4B	109.4	H20A—C20—H20C	109.5
C3—C4—H4B	109.4	H20B—C20—H20C	109.5
H4A—C4—H4B	108.0	C26—C21—C22	118.2 (3)
O3—C5—N3	124.7 (3)	C26—C21—C4	122.0 (3)
O3—C5—C27	120.0 (3)	C22—C21—C4	119.7 (3)
N3—C5—C27	115.3 (3)	C23—C22—C21	121.2 (4)
O5—C6—O4	124.5 (3)	C23—C22—H22	119.4
O5—C6—C33	124.9 (3)	C21—C22—H22	119.4
O4—C6—C33	110.5 (3)	C24—C23—C22	119.9 (4)
N1—C7—C16	111.3 (2)	С24—С23—Н23	120.0
N1—C7—C8	109.8 (2)	С22—С23—Н23	120.0
C16—C7—C8	109.1 (2)	C23—C24—C25	120.4 (4)
N1—C7—H7	108.9	C23—C24—H24	119.8

С16—С7—Н7	108.9	C25—C24—H24	119.8
С8—С7—Н7	108.9	C_{24} C_{25} C_{26}	120.1 (4)
C9 - C8 - C7	111 1 (2)	C24—C25—H25	120.0
C9—C8—H8A	109.4	C26-C25-H25	120.0
C7 - C8 - H8A	109.1	$C_{20} = C_{20} = C_{20}$	120.0 120.3(4)
C_{0} C_{8} H8B	109.1	C21 C26 C25	110.0
C7 C8 H8B	109.4	$C_{21} = C_{20} = H_{20}$	110.0
	102.4	$C_{23} = C_{20} = 1120$	117.7 121.0(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.0 113.7(3)	$C_{32} = C_{27} = C_{28}$	121.0(3) 1176(3)
$C_{10} = C_{9} = C_{14}$	113.7(3) 111.0(2)	$C_{32} - C_{27} - C_{5}$	117.0(3)
$C^{0} = C^{0} = C^{14}$	111.0(3)	$C_{20} = C_{27} = C_{37}$	121.4(3)
$C_{0} = C_{0} = C_{14}$	110.0(2)	$C_{29} = C_{28} = C_{27}$	118.5 (5)
C^{0}	107.5	$C_{29} = C_{20} = H_{20}$	120.7
Са—С9—Н9	107.5	$C_2/-C_{28}-H_{28}$	120.7
C14—C9—H9	107.5	$C_{30} = C_{29} = C_{28}$	121.7(3)
	112.7 (3)	$C_{30} = C_{29} = C_{11}$	119.2 (2)
	109.1	C28—C29—CII	119.1 (3)
C9—C10—H10A	109.1	C29—C30—C31	118.6 (3)
C11—C10—H10B	109.1	C29—C30—H30	120.7
C9—C10—H10B	109.1	C31—C30—H30	120.7
H10A—C10—H10B	107.8	C32—C31—C30	121.3 (3)
C10—C11—C12	111.5 (3)	C32—C31—Cl2	119.2 (3)
C10—C11—H11A	109.3	C30—C31—Cl2	119.4 (3)
C12—C11—H11A	109.3	C27—C32—C31	118.9 (3)
C10—C11—H11B	109.3	С27—С32—Н32	120.6
C12—C11—H11B	109.3	C31—C32—H32	120.6
H11A—C11—H11B	108.0	C38—C33—C34	120.8 (3)
C11—C12—C13	110.8 (3)	C38—C33—C6	118.8 (3)
C11—C12—H12A	109.5	C34—C33—C6	120.3 (3)
C13—C12—H12A	109.5	C35—C34—C33	118.3 (3)
C11—C12—H12B	109.5	С35—С34—Н34	120.8
C13—C12—H12B	109.5	С33—С34—Н34	120.8
H12A—C12—H12B	108.1	C34—C35—C36	122.3 (3)
C14—C13—C12	110.6 (3)	C34—C35—Cl3	119.3 (3)
C14—C13—H13A	109.5	C36—C35—Cl3	118.3 (3)
C12—C13—H13A	109.5	C37—C36—C35	117.8 (3)
C14—C13—H13B	109.5	С37—С36—Н36	121.1
C12—C13—H13B	109.5	C35—C36—H36	121.1
H13A—C13—H13B	108.1	C38—C37—C36	122.1 (3)
C15—C14—C13	112.6 (3)	C38—C37—C14	119.7 (3)
C_{15} C_{14} C_{9}	1095(2)	$C_{36} - C_{37} - C_{14}$	118.2(3)
C_{13} C_{14} C_{9}	109.0(2) 112.0(3)	C_{37} C_{38} C_{33}	118.2(3)
C_{15} C_{14} H_{14}	107.5	C37 - C38 - H38	120.6
C13— $C14$ — $H14$	107.5	C_{33} C_{38} H_{38}	120.6
C9-C14-H14	107.5	C1 - N1 - C7	112 5 (2)
N1-C15-C14	112 9 (3)	C1 - N1 - C15	108.8(2)
N1-C15-H15A	109.0	C7 - N1 - C15	110.0(2)
C14— $C15$ — $H15A$	109.0	$C_{16} N_{2} C_{17}$	1265(3)
N1	109.0	C16 N2 H1N	120.3(3)
	107.0	010 112 1111	110(3)

C14—C15—H15B	109.0	C17—N2—H1N	114 (3)
H15A—C15—H15B	107.8	C5—N3—C3	123.4 (3)
O2—C16—N2	123.9 (3)	C5—N3—H2N	118 (2)
O2—C16—C7	122.1 (2)	C3—N3—H2N	119 (2)
N2—C16—C7	114.0 (2)	C6—O4—C2	119.3 (2)
N2—C17—C18	111.1 (3)		
N1—C1—C2—O4	175.5 (2)	C27—C28—C29—C11	179.7 (2)
N1—C1—C2—C3	-69.1 (3)	C28—C29—C30—C31	-1.6(5)
O4—C2—C3—N3	68.7 (3)	Cl1—C29—C30—C31	179.8 (2)
C1—C2—C3—N3	-49.5 (3)	C29—C30—C31—C32	0.5 (5)
04—C2—C3—C4	-167.3(2)	C_{29} C_{30} C_{31} C_{12}	-178.7(2)
C1-C2-C3-C4	74 4 (3)	C_{28} C_{27} C_{32} C_{31}	-16(5)
N_{3} C_{3} C_{4} C_{21}	-594(3)	$C_{2} = C_{2} = C_{2} = C_{2} = C_{3}$	1787(3)
$C_2 - C_3 - C_4 - C_2 I$	176 4 (3)	C_{30} C_{31} C_{32} C_{27}	11(5)
N1 - C7 - C8 - C9	-586(3)	$C_{12} = C_{31} = C_{32} = C_{27}$	-1797(2)
$C_{16} - C_{7} - C_{8} - C_{9}$	1792(2)	05-06-033-038	153(5)
C7 C8 C9 C10	179.2(2) 170.0(3)	04 - C6 - C33 - C38	-167.0(3)
C7 C8 C9 C14	547(3)	05 - C6 - C33 - C34	-1500(3)
$C^{8} = C^{10} = C^{11}$	-72.6(4)	04 - C6 - C33 - C34	139.9(3)
$C_{0} = C_{0} = C_{10} = C_{11}$	-72.0(4)	$C_{4} = C_{0} = C_{3} = C_{3$	1/.0(4)
C14 - C9 - C10 - C11	52.1(4)	$C_{30} = C_{33} = C_{34} = C_{35}$	-1.0(3)
C_{9} C_{10} C_{11} C_{12} C_{12}	-55.9(4)	$C_0 = C_{33} = C_{34} = C_{35}$	1/3.5(3)
C10-C11-C12-C13	55.9 (4)	C_{33} — C_{34} — C_{35} — C_{36}	2.6 (5)
C11 - C12 - C13 - C14	-57.1(4)	C_{33} — C_{34} — C_{35} — C_{13}	-1/5.4(2)
C12—C13—C14—C15	-179.9(3)	C34 - C35 - C36 - C37	-1.5 (5)
C12—C13—C14—C9	56.2 (4)	Cl3—C35—C36—C37	176.5 (3)
C10—C9—C14—C15	-179.2 (3)	C35—C36—C37—C38	-0.7 (5)
C8—C9—C14—C15	-52.4 (3)	C35—C36—C37—Cl4	-177.4 (3)
C10—C9—C14—C13	-53.5 (4)	C36—C37—C38—C33	1.7 (5)
C8—C9—C14—C13	73.3 (3)	Cl4—C37—C38—C33	178.3 (2)
C13—C14—C15—N1	-69.1 (3)	C34—C33—C38—C37	-0.5 (5)
C9—C14—C15—N1	56.2 (3)	C6—C33—C38—C37	-175.6 (3)
N1—C7—C16—O2	-35.0 (4)	C2—C1—N1—C7	153.7 (2)
C8—C7—C16—O2	86.4 (3)	C2-C1-N1-C15	-84.0 (3)
N1—C7—C16—N2	147.1 (2)	C16—C7—N1—C1	-57.2 (3)
C8—C7—C16—N2	-91.6 (3)	C8—C7—N1—C1	-178.2 (2)
C3—C4—C21—C26	-85.2 (4)	C16—C7—N1—C15	-178.8 (2)
C3—C4—C21—C22	90.5 (4)	C8—C7—N1—C15	60.3 (3)
C26—C21—C22—C23	1.5 (5)	C14—C15—N1—C1	175.6 (2)
C4—C21—C22—C23	-174.3 (3)	C14—C15—N1—C7	-60.7 (3)
C21—C22—C23—C24	0.4 (6)	O2-C16-N2-C17	4.7 (5)
C22—C23—C24—C25	-2.0 (6)	C7—C16—N2—C17	-177.5 (3)
C23—C24—C25—C26	1.8 (7)	C18—C17—N2—C16	-53.9 (4)
C22—C21—C26—C25	-1.7 (5)	C20-C17-N2-C16	-173.3 (3)
C4—C21—C26—C25	174.0 (4)	C19—C17—N2—C16	68.9 (4)
C24—C25—C26—C21	0.1 (6)	O3—C5—N3—C3	0.8 (5)
O3—C5—C27—C32	42.1 (4)	C27—C5—N3—C3	180.0 (3)
N3—C5—C27—C32	-137.1 (3)	C4—C3—N3—C5	136.6 (3)

O3—C5—C27—C28	-137.6 (3)	C2—C3—N3—C5	-96.3 (3)
N3—C5—C27—C28	43.2 (4)	O5—C6—O4—C2	4.8 (5)
C32—C27—C28—C29	0.5 (5)	C33—C6—O4—C2	-172.9 (2)
C5—C27—C28—C29	-179.8 (3)	C1—C2—O4—C6	-78.2 (3)
C27—C28—C29—C30	1.2 (5)	C3—C2—O4—C6	158.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A
N2—H1N····O3 ⁱ	0.84 (4)	2.13 (4)	2.931 (3)	160 (3)
N3—H2 <i>N</i> ···O2	0.88 (4)	1.99 (4)	2.834 (3)	159 (3)
C4—H4 <i>A</i> …N1	0.99	2.55	3.149 (4)	119
C18—H18A···O2	0.98	2.36	2.975 (4)	120
С34—Н34…О3	0.95	2.40	3.324 (4)	163

Symmetry code: (i) -x+1, y+1/2, -z+1/2.