

ISSN 2056-9890

Received 15 March 2017
Accepted 27 April 2017

Edited by I. D. Brown, McMaster University, Canada

Keywords: crystal structure; magnesium phosphate; anionic framework.

CCDC reference: 1546558
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Synthesis and crystal structure of a new magnesium phosphate $\mathrm{Na}_{3} \mathrm{RbMg}_{7}\left(\mathrm{PO}_{4}\right)_{6}$

Teycir Ben Hamed,* Amal Boukhris, Abdessalem Badri and Mongi Ben Amara

Unité de recherche, Matériaux Inorganiques, Faculté des Sciences, Université de Monastir, 5019, Monastir, Tunisia. *Correspondence e-mail: teycirbenhamed@yahoo.fr

A new magnesium phosphate, $\mathrm{Na}_{3} \mathrm{RbMg}_{7}\left(\mathrm{PO}_{4}\right)_{6}$ [trisodium rubidium heptamagnesium hexakis(orthophosphate)], has been synthesized as single crystals by the flux method and exhibits a new structure type. Its original structure is built up from $\mathrm{MgO}_{x}(x=5$ and 6$)$ polyhedra linked directly to each other through common corners or edges and reinforced by corner-sharing with PO_{4} tetrahedra. The resulting anionic three-dimensional framework leads to the formation of channels along the [010] direction, in which the Na^{+}cations are located, while the Rb^{+}cations are located in large interstitial cavities.

1. Chemical context

Magnesium phosphates are of increasing interest because of their potential applications as host materials for optically active rare earth ions (Seo, 2013; Kim et al., 2013; Boukhris et al., 2015). Moreover, these materials are very attractive in terms of basic research because they exhibit a rich structural chemistry due to their polymorphism (Ait Benhamou et al., 2010; Orlova et al., 2015).

Among the variety of magnesium monophosphates synthesized and characterized up to now, only four compounds belong to the system $\mathrm{Na}_{3} \mathrm{PO}_{4}-\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, namely $\mathrm{NaMgPO}_{4}, \mathrm{NaMg}_{4}\left(\mathrm{PO}_{4}\right)_{3}, \mathrm{Na}_{2} \mathrm{Mg}_{5}\left(\mathrm{PO}_{4}\right)_{4}$ and $\mathrm{Na}_{4} \mathrm{Mg}\left(\mathrm{PO}_{4}\right)_{2}$ (Imura \& Kawahara, 1997; Ben Amara et al., 1983; Yamakawa et al., 1994; Ghorbel et al., 1974). NaMgPO_{4} compound crystallizes in the orthorhombic system with space group $P 2_{1} 2_{1} 2_{1}$. Its structure involves MgO_{6} and MgO_{5} polyhedra linked by the monophosphate groups that form a three-dimensional framework. $\mathrm{NaMg}_{4}\left(\mathrm{PO}_{4}\right)_{3}$ is also orthorhombic, space group Pnma. Its structure is built up from three kinds of MgO_{5} units sharing edges and corners and linked to each other by the PO_{4} tetrahedra, leading to a three-dimensional framework. $\mathrm{Na}_{2} \mathrm{Mg}_{5}\left(\mathrm{PO}_{4}\right)_{4}$, synthesized under pressure, crystallizes in the triclinic system. Its structure results from a three-dimensional framework of MgO_{6} and MgO_{5} polyhedra connected either directly via common corners or by means of the phosphate groups. $\mathrm{Na}_{4} \mathrm{Mg}\left(\mathrm{PO}_{4}\right)_{2}$ exhibits two polymorphs, which were only identified by their powder diffraction patterns.

Starting from these compounds, suitable replacements of magnesium and/or sodium by large cations induces their transformation into several structural types for different Mg / P atomic ratios. $\mathrm{Na} M \mathrm{Mg}\left(\mathrm{PO}_{4}\right)_{2}(M=\mathrm{Ca}, \mathrm{Sr}$ and Ba$)$ compounds are related to the glaserite-type structure (Alkemper \& Fuess, 1998; Boukhris et al., 2012, 2013). They adopt an anionic twodimensional network with different symmetries as a function of the size of the M^{2+} cation. For an atomic ratio $M: \mathrm{P}$ of 7:6,

Figure 1
A view of the $\mathrm{Na}_{3} \mathrm{RbMg}_{7}\left(\mathrm{PO}_{4}\right)_{6}$ structure along [010]. Colour key: MgO_{x} ($x=5$ and 6; blue polyhedra), PO_{4} (purple polyhedra), Rb (green spheres) and Na (yellow spheres).
magnesium phosphate compounds adopt a three-dimensional network related to the fillowite-type structure, as observed in $\mathrm{Na}_{4} \mathrm{Ca}_{4} \mathrm{Mg}_{21}\left(\mathrm{PO}_{4}\right)_{18}, \mathrm{Na}_{2} \mathrm{CaMg}_{7}\left(\mathrm{PO}_{4}\right)_{6}$ and $\mathrm{Na}_{2.5} \mathrm{Y}_{0.5} \mathrm{Mg}_{7}{ }^{-}$

Figure 2
A view down the b axis, showing $A B C B^{\prime}$ rows made of PO_{4} tetrahedra and Mg, Na and Rb atoms.
$\left(\mathrm{PO}_{4}\right)_{6}$ (Domanskii et al., 1982; McCoy et al., 1994; Jerbi et al., 2010a). All of them crystallize with trigonal symmetry (space group $R \overline{3}$) and differ only by their cationic distributions. Three-dimensional anionic networks includes also original structures such as those observed in $\mathrm{Na}_{18} \mathrm{Ca}_{13} \mathrm{Mg}_{5}\left(\mathrm{PO}_{4}\right)_{18}$, $\mathrm{NaCa} 9 \mathrm{Mg}\left(\mathrm{PO}_{4}\right)_{7}, \mathrm{Na}_{7} \operatorname{Ln} \mathrm{Mg}_{13}\left(\mathrm{PO}_{4}\right)_{12} \quad(\operatorname{Ln}=\mathrm{La}, \mathrm{Eu}, \mathrm{Nd})$ (Yamakawa et al., 1994; Morozov et al., 1997; Jerbi et al., 2010b, 2012).

As a contribution to the investigation of the abovementioned systems, we report here the structural characterization of a new magnesium phosphate $\mathrm{Na}_{3} \mathrm{RbMg}_{7}\left(\mathrm{PO}_{4}\right)_{6}$, which is, to our knowledge, the first magnesium phosphate revealing an original structure for an atomic ratio Mg / P equal to $7 / 6$.

2. Structural commentary

To the best of our knowledge, $\mathrm{Na}_{3} \mathrm{RbMg}_{7}\left(\mathrm{PO}_{4}\right)_{6}$ exhibits a new structure type. A projection along the [010] direction of its structure (Fig. 1) clearly evidences the three-dimensional character of its anionic framework, which is built up from five different polyhedra $\mathrm{MgO}_{x}(x=5,6)$ and three kinds of PO_{4} tetrahedra connected together by sharing edges and corners. The Na^{+}cations are located within channels running along the [010] direction while the Rb^{+}cations are found in the large interstitial cavities.

A projection of the structure on the (012) plane (Fig. 2) shows that it can also be described on the basis of three kinds of rows $(A, B$ and $C)$ running parallel to the [100] direction. The first row (A; Fig. 3), consists of units with edge-sharing between one $\mathrm{Na}_{1} \mathrm{O}_{8}$ and two $\mathrm{Na}_{2} \mathrm{O}_{6}$ polyhedra. Such units alternate with ${\mathrm{Mg} 1 \mathrm{O}_{5}}^{\text {polyhedra, leading to the sequence }}$

Figure 3
A view of parallel rows of $A B C$ polyhedra.
$-\mathrm{Mg} 1-\mathrm{Na} 2-\mathrm{Na} 1-\mathrm{Na} 2-$. The second row (B) consists of cornersharing $\mathrm{P}_{2} \mathrm{O}_{4}, \mathrm{P}_{3} \mathrm{O}_{4},{\mathrm{Mg} 4 \mathrm{O}_{6} \text { and } \mathrm{Mg} 5 \mathrm{O}_{5} \text { polyhedra, forming }}^{2}$ the sequence $-\mathrm{P} 3-\mathrm{Mg} 4-\mathrm{P} 2-\mathrm{Mg} 5-$. Rows B and B^{\prime} are symmetrical with respect to the inversion centre located on the A row. The last row (C) includes units with corner-sharing between $\mathrm{P1O}_{4}$ tetrahedra and $\mathrm{Mg}_{2} \mathrm{O}_{10}$ dimers, which consist of edge-sharing $\mathrm{MgiO}_{6}(i=2,3)$ octahedra. These units alternate with RbO_{12} polyhedra to form a $-\mathrm{P} 1-[\mathrm{Mg} 2, \mathrm{Mg} 3]-\mathrm{P} 1-\mathrm{Rb}-$ sequence. These rows, connected to each other through common corners or edges, occur with a sequence of $A B C B^{\prime}$.

There are five distinct Mg sites. The Mg 1 atom is displaced slightly from the inversion center, statistically occupying two symmetry-related positions. As a consequence, the ${\mathrm{Mg} 1 \mathrm{O}_{6}}$ polyhedron exhibits two distances that are long [2.241 (5) Å] compared to the other $\mathrm{Mg} 1-\mathrm{O}$ distances, which vary from 1.969 (10) to 2.030 (10) \AA. Thus, this environment can be considered as $[4+1]$. The average value of $2.005(10) \AA$ calculated from the four short distances is slightly higher but consistent with that of 1.930 (2) \AA reported for the tetracoordinated Mg^{2+} cation in KMgPO_{4} (Wallez et al.,1998). Sites Mg 2 and Mg 3 are located on twofold rotation axes and have slightly distorted octahedral environments with $\mathrm{Mg}-\mathrm{O}$ distances varying from 2.052 (3) to 2.202 (2) \AA for Mg 2 and from 2.042 (2) to 2.169 (2) \AA for Mg 3 . The corresponding average values of 2.123 and $2.103 \AA$, respectively, are in a good agreement with that of $2.14 \AA$ observed for hexa-coordinated Mg^{2+} ions in $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (Jaulmes et al., 1997). Site Mg 4 is [5 + 1]-coordinated, with five short distances varying from 1.981 (3) to 2.050 (3) \AA and a sixth longer distance of 2.5734 (3) A. A similar environment has already been observed in $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (Jaulmes et al., 1997). Site Mg 5 is fivecoordinated with $\mathrm{Mg}-\mathrm{O}$ distances ranging from 2.020 (3) to 2.148 (3) \AA. The corresponding mean distance of $2.07 \AA$ is close to that of $2.08 \AA$ observed for Mg^{2+} with the same coordination in $\mathrm{NaMg}_{4}\left(\mathrm{PO}_{4}\right)_{3}$ (Ben Amara et al., 1983). The $\mathrm{P}-\mathrm{O}$ distances within the PO_{4} tetrahedra are in the range of 1.518 (2)-1.552 (2) A with an overall mean value of $1.539 \AA$, very close to that of $1.537 \AA$ predicted by Baur (1974) for monophosphate groups.

Figure 4
The environment of the (a) Na^{+}, (b) Na^{+}and (c) Rb^{+}cations, showing displacement ellipsoids drawn at the 50% probability level.

Table 1
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$\mathrm{Na}_{3} \mathrm{RbMg}_{7}\left(\mathrm{PO}_{4}\right)_{6}$
894.43
Monoclinic, $C 2 / c$
293
$12.734(3), 10.685(3), 15.498(5)$
$112.83(2)$
$1943.5(10)$
4
$\mathrm{Mo} \mathrm{K} \alpha$
3.47
$0.16 \times 0.10 \times 0.07$
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Enraf-Nonius Turbo CAD-4
Part of the refinement model (ΔF)
(Parkin et al., 1995)
0.377, 0.485

2333, 2333, 1968
0.020

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.036,0.100,1.07$
No. of reflections 2333
No. of parameters
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

196
0.87, - 1.49

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), XCAD4 (Harms \& Wocadlo, 1995), SIR92 (Altomare et al., 1993), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg et al., 1999) and WinGX (Farrugia, 2012).

The environments of the alkali cations are shown in Fig. 4. Those of the two crystallographic distinct Na sites were determined assuming a maximum sodium-oxygen distance $L_{\text {max }}$ of $3.13 \AA$, as suggested by Donnay \& Allmann (1970). As in the case of the Mg 1 atom, the sodium atom Na 1 is also moved slightly away from the inversion center and statistically occupying two symmetry-related positions. This moving probably occurs to accommodate the environment of the Na 1 site, which then consists of eight oxygen atoms with $\mathrm{Na}-\mathrm{O}$ distances varying from 2.303 (7) to 2.963 (6) \AA. Na2 is bound to only six oxygen atoms, with $\mathrm{Na} 2-\mathrm{O}$ distances in the range 2.246 (3)-2.962 (3) \AA. The Rb^{+}ion is located on a twofold rotation axis and occupies a single site whose environment was determined assuming all $\mathrm{Rb}-\mathrm{O}$ distances to be shorter than the shortest distance between Rb^{+}and its nearest cation. This environment then consists of twelve oxygen atoms with $\mathrm{Rb}-$ O distances ranging from 2.923 (3) to 3.517 (2) \AA.

3. Synthesis and crystallization

Single crystals of $\mathrm{Na}_{3} \mathrm{RbMg}_{7}\left(\mathrm{PO}_{4}\right)_{6}$ were grown in a flux of sodium molybdate, $\mathrm{Na}_{2} \mathrm{MoO}_{4}$, with a $\mathrm{P}: \mathrm{Mo}$ atomic ratio of 2:1. Appropriate amounts of the starting reactants $\left(\mathrm{NH}_{4}\right) \mathrm{H}_{2} \mathrm{PO}_{4}$, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{Rb}_{2} \mathrm{CO}_{3},\left(\mathrm{MgCO}_{3}\right)_{4} \mathrm{Mg}(\mathrm{OH})_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot-$ $2 \mathrm{H}_{2} \mathrm{O}$ were dissolved in nitric acid and the obtained solution was evaporated to dryness. The residue was homogenized by grinding in an agate mortar, and subsequently heated in a platinum crucible for 24 h at 673 K and then for 12 h at 873 K . After being reground, the sample was melted for 2 h at 1273 K
and then cooled slowly down to room temperature at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$. The solidified melt was washed with boiling water to dissolve the flux. Colourless, irregularly shaped crystals were extracted from the final product.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The refinement was performed on the basis of electric neutrality and similar works. The atomic positions are determined by comparison with the refinements reported by Jerbi et al. (2010a) and McCoy et al. (1994).

References

Ait Benhamou, R., Wallez, G., Loiseau, P., Viana, B., Elaatmani, M., Daoud, M. \& Zegzouti, A. (2010). J. Solid State Chem. 183, 20822086.

Alkemper, J. \& Fuess, H. (1998). Z. Kristallogr. 213, 282-287.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.
Ben Amara, M., Vlasse, M., Olazcuaga, R., Le Flem, G. \& Hagenmuller, P. (1983). Acta Cryst. C39, 936-939.
Boukhris, A., Glorieux, B. \& Ben Amara, M. (2015). J. Mol. Struct. 1083, 319-329.
Boukhris, A., Hidouri, M., Glorieux, B. \& Ben Amara, M. (2013). J. Rare Earths, 31, 849-856.
Boukhris, A., Hidouri, M., Glorieux, B. \& Ben Amara, M. (2012). Mater. Chem. Phys. 137, 26-33.
Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany.

Domanskii, A. I., Smolin, Yu. I., Shepelev, Yu. F. \& Majling, J. (1982). Sov. Phys. Crystallogr. 27, 535-537.
Donnay, G. \& Allmann, R. (1970). Am. Mineral. 55, 1003-1015.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Net.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Ghorbel, A., d'Yvoire, F. \& Dorrmieux-Morin, C. (1974). Bull. Soc. Chim. Fr. pp. 1239-1242.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Imura, H. \& Kawahara, A. (1997). Acta Cryst. C53, 1733-1735.
Jaulmes, S., Elfakir, A., Quarton, M., Brunet, F. \& Chopin, C. (1997). J. Solid State Chem. 129, 341-345.

Jerbi, H., Hidouri, M. \& Ben Amara, M. (2010a). J. Rare Earths, 28, 481-487.
Jerbi, H., Hidouri, M., Glorieux, B., Darriet, J., Garcia, A., Jubera, V. \& Ben Amara, M. (2010b). J. Solid State Chem. 183, 1752-1760.
Jerbi, H., Hidouri, M. \& Ben Amara, M. (2012). Acta Cryst. E68, 144.
Kim, S. W., Hasegawa, T., Ishigaki, T. K., Uematsu, K., Toda, K. \& Sato, M. (2013). ECS Solid State Letters, 2, R49-R51.
McCoy, T. J., Steele, I. M., Keil, K., Leonard, B. F. \& Endress, M. (1994). Am. Mineral. 79, 375-380.

Morozov, V. A., Presnyakov, I. A., Belik, A. A., Khasanov, S. S. \& Lazoryak, B. I. (1997). Kristallografiya, 42, 825-836.
Orlova, M., Khainakov, S., Michailov, D., Perfler, L., Langes, Ch., Kahlenberg, V. \& Orlova, A. (2015). J. Solid State Chem. 221, 224229.

Parkin, S., Moezzi, B. \& Hope, H. (1995). J. Appl. Cryst. 28, 53-56.
Seo, H. J. (2013). J. Ceram. Process. Res. 14(1), 22-25.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Wallez, G., Colbeau-Justin, C., Le Mercier, T., Quarton, M. \& Robert, F. (1998). J. Solid State Chem. 136, 175-180.

Yamakawa, J., Yamada, T. \& Kawahara, A. (1994). Acta Cryst. C50, 986-988.

supporting information

Acta Cryst. (2017). E73, 817-820 [https://doi.org/10.1107/S2056989017006363]
Synthesis and crystal structure of a new magnesium phosphate $\mathrm{Na}_{3} \mathrm{RbMg}_{7}\left(\mathrm{PO}_{4}\right)_{6}$
Teycir Ben Hamed, Amal Boukhris, Abdessalem Badri and Mongi Ben Amara

Computing details

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf-Nonius, 1994); data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg et al., 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Trisodium rubidium heptamagnesium hexakis(orthophosphate)

Crystal data

$\mathrm{Mg}_{7} \mathrm{Na}_{3} \mathrm{O}_{24} \mathrm{P}_{6} \mathrm{Rb}$
$M_{r}=894.43$
Monoclinic, $C 2 / c$
$a=12.734$ (3) \AA
$b=10.685$ (3) \AA
$c=15.498$ (5) \AA
$\beta=112.83$ (2) ${ }^{\circ}$
$V=1943.5(10) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius Turbo CAD-4
diffractometer
non-profiled $\omega / 2 \tau$ scans
Absorption correction: part of the refinement model (ΔF)
(Parkin et al., 1995)
$T_{\text {min }}=0.377, T_{\text {max }}=0.485$
2333 measured reflections
2333 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.100$
$S=1.07$
2333 reflections
196 parameters
$F(000)=1744$
$D_{\mathrm{x}}=3.057 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=7.5-10.8^{\circ}$
$\mu=3.47 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colourless
$0.16 \times 0.10 \times 0.07 \mathrm{~mm}$

1968 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-16 \rightarrow 15$
$k=0 \rightarrow 14$
$l=0 \rightarrow 20$
2 standard reflections every 60 min
intensity decay: -2%

0 restraints
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0549 P)^{2}+7.6361 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.87 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.49 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Rb	0.5000	$0.74607(5)$	0.7500	$0.02406(16)$	
Na 1	$0.2552(5)$	$0.7550(6)$	$0.0226(3)$	$0.0279(12)$	0.5
Na 2	$-0.01858(14)$	$0.76242(14)$	$0.98277(13)$	$0.0226(4)$	
Mg 1	$0.2487(8)$	$0.2471(9)$	$0.0142(4)$	$0.0098(10)$	0.5
Mg 2	0.0000	$0.58859(15)$	0.7500	$0.0071(3)$	
Mg 3	0.5000	$0.62142(14)$	0.2500	$0.0059(3)$	
Mg 4	$0.18422(9)$	$0.54259(10)$	$0.12717(7)$	$0.0065(2)$	
Mg 5	$0.19042(9)$	$0.99696(11)$	$0.14183(7)$	$0.0081(2)$	
P 1	$0.28980(7)$	$0.76938(7)$	$0.27439(6)$	$0.00668(18)$	
O 11	$0.41297(19)$	$0.7658(2)$	$0.27801(17)$	$0.0097(5)$	
O12	$0.25429(18)$	$0.9074(2)$	$0.27435(15)$	$0.0084(4)$	
O13	$0.2043(2)$	$0.7106(3)$	$0.18543(18)$	$0.0164(5)$	
O14	$0.2884(2)$	$0.6963(2)$	$0.36018(17)$	$0.0146(5)$	
P 2	$0.41165(6)$	$0.50005(7)$	$0.08098(5)$	$0.00531(18)$	
O21	$0.53692(18)$	$0.5150(2)$	$0.15135(15)$	$0.0084(4)$	
O22	$0.38853(19)$	$0.5698(2)$	$0.98959(16)$	$0.0113(5)$	
O23	$0.34627(19)$	$0.5654(2)$	$0.13363(15)$	$0.0085(4)$	
O24	$0.38345(19)$	$0.3619(2)$	$0.06370(17)$	$0.0119(5)$	
P3	$0.09357(6)$	$0.50198(7)$	$0.92791(5)$	$0.00484(18)$	
O31	$-0.03126(18)$	$0.4851(2)$	$0.86059(16)$	$0.0100(5)$	
O32	$0.10990(18)$	$0.6126(2)$	$0.99444(15)$	$0.0103(5)$	
O33	$0.15211(18)$	$0.5301(2)$	$0.85956(16)$	$0.0109(5)$	
O34	$0.1418(2)$	$0.3884(2)$	$0.99025(18)$	$0.0136(5)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rb	$0.0278(3)$	$0.0250(3)$	$0.0200(3)$	0.000	$0.0099(2)$	0.000
Na 1	$0.0132(16)$	$0.0218(17)$	$0.050(4)$	$-0.0034(12)$	$0.014(3)$	$0.009(3)$
Na 2	$0.0180(8)$	$0.0166(7)$	$0.0412(10)$	$-0.0006(6)$	$0.0202(7)$	$-0.0027(6)$
Mg 1	$0.0043(9)$	$0.0081(11)$	$0.015(3)$	$0.0002(8)$	$0.001(2)$	$-0.001(3)$
Mg 2	$0.0052(7)$	$0.0109(7)$	$0.0054(7)$	0.000	$0.0021(5)$	0.000
Mg 3	$0.0044(7)$	$0.0099(7)$	$0.0050(6)$	0.000	$0.0037(5)$	0.000
Mg 4	$0.0035(5)$	$0.0114(5)$	$0.0052(5)$	$-0.0010(4)$	$0.0024(4)$	$0.0014(4)$
Mg 5	$0.0036(5)$	$0.0166(6)$	$0.0055(5)$	$0.0009(4)$	$0.0033(4)$	$-0.0002(4)$
P 1	$0.0030(3)$	$0.0093(4)$	$0.0098(4)$	$-0.0003(3)$	$0.0046(3)$	$-0.0010(3)$
O 11	$0.0045(10)$	$0.0115(11)$	$0.0158(11)$	$0.0007(8)$	$0.0070(9)$	$0.0000(9)$
O 12	$0.0059(10)$	$0.0106(11)$	$0.0097(11)$	$0.0019(8)$	$0.0042(9)$	$-0.0004(8)$
O 13	$0.0076(11)$	$0.0216(13)$	$0.0179(12)$	$-0.0027(10)$	$0.0026(9)$	$-0.0117(11)$

O14	$0.0149(12)$	$0.0142(12)$	$0.0203(13)$	$0.0005(10)$	$0.0129(10)$	$0.0051(10)$
P2	$0.0029(4)$	$0.0105(4)$	$0.0038(4)$	$-0.0006(3)$	$0.0028(3)$	$-0.0011(3)$
O21	$0.0027(10)$	$0.0169(11)$	$0.0056(10)$	$-0.0002(8)$	$0.0017(8)$	$-0.0028(8)$
O22	$0.0098(11)$	$0.0191(12)$	$0.0060(10)$	$-0.0007(9)$	$0.0043(9)$	$0.0011(9)$
O23	$0.0065(10)$	$0.0139(11)$	$0.0072(10)$	$0.0000(8)$	$0.0049(8)$	$-0.0026(9)$
O24	$0.0081(11)$	$0.0112(11)$	$0.0165(12)$	$-0.0023(9)$	$0.0049(9)$	$-0.0042(9)$
P3	$0.0025(4)$	$0.0090(4)$	$0.0040(4)$	$0.0005(3)$	$0.0024(3)$	$0.0008(3)$
O31	$0.0027(10)$	$0.0181(12)$	$0.0089(11)$	$-0.0016(9)$	$0.0018(8)$	$-0.0003(9)$
O32	$0.0091(11)$	$0.0144(11)$	$0.0082(11)$	$0.0003(9)$	$0.0041(9)$	$-0.0034(9)$
O33	$0.0044(10)$	$0.0232(12)$	$0.0066(10)$	$0.0001(9)$	$0.0037(8)$	$0.0014(9)$
O34	$0.0093(11)$	$0.0141(11)$	$0.0197(12)$	$0.0061(9)$	$0.0080(9)$	$0.0088(10)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

$\mathrm{Rb}-\mathrm{O} 24^{\text {i }}$	2.923 (3)	Mg2-O33 ${ }^{\text {xi }}$	2.115 (2)
$\mathrm{Rb}-\mathrm{O} 24^{\mathrm{ii}}$	2.923 (3)	Mg2-O33	2.115 (2)
$\mathrm{Rb}-\mathrm{O} 13{ }^{\text {iii }}$	3.163 (3)	Mg2-O31	2.202 (2)
$\mathrm{Rb}-\mathrm{O} 13{ }^{\text {iv }}$	3.163 (3)	Mg2-O31 ${ }^{\text {xi }}$	2.202 (2)
$\mathrm{Rb}-\mathrm{O} 31{ }^{\text {v }}$	3.186 (2)	Mg3-O11	2.042 (2)
$\mathrm{Rb}-\mathrm{O} 31{ }^{\text {vi }}$	3.186 (2)	$\mathrm{Mg} 3-\mathrm{O} 11^{\text {xvii }}$	2.042 (2)
$\mathrm{Rb}-\mathrm{O} 21^{\mathrm{i}}$	3.301 (2)	Mg3-O21	2.100 (2)
$\mathrm{Rb}-\mathrm{O} 21^{\text {ii }}$	3.301 (2)	$\mathrm{Mg} 3-\mathrm{O} 21^{\text {xvi }}$	2.100 (2)
$\mathrm{Rb}-\mathrm{O} 14^{\text {iii }}$	3.452 (3)	$\mathrm{Mg} 3-\mathrm{O} 23{ }^{\text {xvi }}$	2.169 (2)
$\mathrm{Rb}-\mathrm{O} 14^{\mathrm{iv}}$	3.452 (3)	Mg3-O23	2.169 (2)
$\mathrm{Rb}-\mathrm{O} 12{ }^{\text {iv }}$	3.517 (2)	Mg4-O13	1.981 (3)
$\mathrm{Rb}-\mathrm{O} 12{ }^{\text {iii }}$	3.517 (2)	$\mathrm{Mg} 4-\mathrm{O} 12^{\mathrm{xv}}$	2.026 (3)
Na1-O32 ${ }^{\text {vii }}$	2.303 (7)	$\mathrm{Mg} 4-\mathrm{O} 23$	2.041 (2)
Na - $\mathrm{O} 322^{\text {iv }}$	2.318 (7)	$\mathrm{Mg} 4-\mathrm{O} 32^{\text {vii }}$	2.043 (3)
Na - $\mathrm{O} 222^{\text {iv }}$	2.573 (7)	Mg4-O31 ${ }^{\text {xvii }}$	2.050 (2)
$\mathrm{Na} 1-\mathrm{O} 23$	2.620 (7)	Mg4-O34 ${ }^{\text {vii }}$	2.573 (3)
Na1-O22 ${ }^{\text {vii }}$	2.782 (7)	$\mathrm{Mg} 5-\mathrm{O} 22^{\text {iv }}$	2.020 (3)
Na - O 13	2.878 (5)	$\mathrm{Mg} 5-\mathrm{O} 21^{\text {xix }}$	2.026 (2)
$\mathrm{Na}-\mathrm{O}^{\text {3 }}{ }^{\text {iv }}$	2.886 (6)	$\mathrm{Mg} 5-\mathrm{O} 33^{\text {iv }}$	2.034 (2)
Na1-O23 ${ }^{\text {viii }}$	2.963 (6)	Mg5-O12	2.121 (3)
$\mathrm{Na} 2-\mathrm{O} 32$	2.246 (3)	Mg5-O14 ${ }^{\text {xx }}$	2.148 (3)
$\mathrm{Na} 2-\mathrm{O} 24{ }^{\text {ix }}$	2.340 (3)	P1-O13	1.521 (3)
Na2-O22 ${ }^{\text {x }}$	2.365 (3)	P1-O12	1.542 (2)
$\mathrm{Na} 2-\mathrm{O} 4^{\text {xi }}$	2.396 (3)	P1-O11	1.548 (2)
Na2-O14xii	2.495 (3)	P1-O14	1.548 (2)
Na2-O11 ${ }^{\text {xii }}$	2.962 (3)	P2-O24	1.518 (2)
Mg -034 ${ }^{\text {vii }}$	1.969 (10)	$\mathrm{P} 2-\mathrm{O} 22^{\text {vii }}$	1.524 (2)
Mg1-O24	2.004 (10)	P2-O23	1.541 (2)
Mg - $024{ }^{\text {xiii }}$	2.017 (10)	P2-O21	1.552 (2)
Mg1-O34 ${ }^{\text {xiv }}$	2.030 (10)	P3-O34	1.524 (2)
Mg1-O14 ${ }^{\text {xv }}$	2.241 (4)	P3-O32	1.528 (2)
Mg2-O11 ${ }^{\text {iv }}$	2.052 (3)	P3-031	1.537 (2)
Mg 2 -O11 ${ }^{\text {xii }}$	2.052 (3)	P3-O33	1.543 (2)

$\mathrm{O} 24^{\mathrm{i}}-\mathrm{Rb}-\mathrm{O} 24^{\mathrm{ii}}$	133.51 (9)
$\mathrm{O} 24-\mathrm{Rb}-\mathrm{O} 13{ }^{\text {iii }}$	84.83 (7)
$\mathrm{O} 24{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 13{ }^{\text {iii }}$	101.86 (7)
$\mathrm{O} 24-\mathrm{Rb}-\mathrm{O} 13^{\mathrm{iv}}$	101.86 (7)
$\mathrm{O} 24{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 13{ }^{\text {iv }}$	84.83 (7)
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 13^{\text {iv }}$	163.19 (10)
$\mathrm{O} 24-\mathrm{Rb}-\mathrm{O} 31{ }^{\text {v }}$	136.57 (6)
$\mathrm{O} 24{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 31^{\mathrm{v}}$	84.63 (6)
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 31^{v}$	110.05 (7)
$\mathrm{O} 13{ }^{\text {iv }}-\mathrm{Rb}-\mathrm{O} 31^{\text {v }}$	54.74 (6)
$\mathrm{O} 24{ }^{\mathrm{i}}-\mathrm{Rb}-\mathrm{O} 31^{\text {vi }}$	84.63 (6)
$\mathrm{O} 24{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 31{ }^{\text {vi }}$	136.57 (6)
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 3{ }^{\text {vi }}$	54.74 (6)
$\mathrm{O} 13{ }^{\text {iv }}-\mathrm{Rb}-\mathrm{O} 31^{\text {vi }}$	110.05 (7)
$\mathrm{O} 31^{\mathrm{v}}-\mathrm{Rb}-\mathrm{O} 31^{\text {vi }}$	73.42 (9)
$\mathrm{O} 24{ }^{\mathrm{i}}-\mathrm{Rb}-\mathrm{O} 21^{\text {i }}$	47.00 (6)
$\mathrm{O} 24{ }^{\mathrm{ii}}-\mathrm{Rb}-\mathrm{O} 21^{\mathrm{i}}$	90.86 (6)
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 21^{\text {i }}$	72.22 (6)
$\mathrm{O} 13{ }^{\text {iv }}-\mathrm{Rb}-\mathrm{O} 21^{\text {i }}$	123.54 (6)
$\mathrm{O} 31^{\mathrm{v}}-\mathrm{Rb}-\mathrm{O} 21^{\mathrm{i}}$	175.28 (6)
$\mathrm{O} 31{ }^{\text {vi}}-\mathrm{Rb}-\mathrm{O} 21^{\text {i }}$	110.99 (6)
$\mathrm{O} 24-\mathrm{Rb}-\mathrm{O} 21^{\text {ii }}$	90.86 (6)
$\mathrm{O} 24{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 21{ }^{\text {ii }}$	47.00 (6)
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 21^{\text {ii }}$	123.54 (6)
$\mathrm{O} 13{ }^{\text {iv }}-\mathrm{Rb}-\mathrm{O} 21^{\text {ii }}$	72.22 (7)
$\mathrm{O} 31{ }^{\mathrm{v}}-\mathrm{Rb}-\mathrm{O} 21^{\text {ii }}$	110.99 (6)
$\mathrm{O} 31{ }^{\text {vi}}-\mathrm{Rb}-\mathrm{O} 21^{\text {ii }}$	175.28 (6)
$\mathrm{O} 21{ }^{\mathrm{i}}-\mathrm{Rb}-\mathrm{O} 21^{\text {ii }}$	64.66 (8)
$\mathrm{O} 24-\mathrm{Rb}-\mathrm{O} 14^{\text {iii }}$	126.45 (6)
$\mathrm{O} 244^{\mathrm{ii}}-\mathrm{Rb}-\mathrm{O} 14{ }^{\text {iii }}$	63.05 (6)
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 14^{\text {iii }}$	44.16 (6)
$\mathrm{O} 13{ }^{\text {iv }}-\mathrm{Rb}-\mathrm{O} 14^{\text {iii }}$	131.70 (6)
$\mathrm{O} 31{ }^{\mathrm{v}}-\mathrm{Rb}-\mathrm{O} 14{ }^{\text {iii }}$	85.51 (6)
$\mathrm{O} 31{ }^{\text {vi}}-\mathrm{Rb}-\mathrm{O} 14^{\text {iii }}$	78.00 (6)
$\mathrm{O} 21-\mathrm{Rb}-\mathrm{O} 14^{\mathrm{iii}}$	93.70 (6)
$\mathrm{O} 21{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 14^{\text {iii }}$	103.71 (6)
$\mathrm{O} 24^{\mathrm{i}}-\mathrm{Rb}-\mathrm{O} 14^{\text {iv }}$	63.05 (6)
$\mathrm{O} 244^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 14^{\mathrm{iv}}$	126.45 (6)
O13 ${ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 14^{\text {iv }}$	131.70 (6)
$\mathrm{O} 13^{\mathrm{iv}}-\mathrm{Rb}-\mathrm{O} 14^{\text {iv }}$	44.16 (6)
$\mathrm{O} 31{ }^{\mathrm{v}}-\mathrm{Rb}-\mathrm{O} 14^{\text {iv }}$	78.00 (6)
$\mathrm{O} 31{ }^{\text {vi}}-\mathrm{Rb}-\mathrm{O} 14^{\text {iv }}$	85.51 (6)
$\mathrm{O} 21^{\mathrm{i}}-\mathrm{Rb}-\mathrm{O} 14^{\mathrm{iv}}$	103.71 (6)
$\mathrm{O} 21{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 14^{\mathrm{iv}}$	93.70 (6)
$\mathrm{O} 14{ }^{\text {iiii }}-\mathrm{Rb}-\mathrm{O} 14^{\text {iv }}$	159.44 (9)
$\mathrm{O} 24^{\mathrm{i}}-\mathrm{Rb}-\mathrm{O} 12^{\text {iv }}$	67.45 (6)
$\mathrm{O} 244^{\mathrm{ii}}-\mathrm{Rb}-\mathrm{O} 12{ }^{\text {iv }}$	90.89 (6)
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 12^{\text {iv }}$	150.50 (6)

101.86 (7)
101.86 (7)
84.83 (7)
163.19 (10)
136.57 (6)
84.63 (6)
110.05 (7)
54.74 (6)
136.57 (6)
54.74 (6)
110.05 (7)
47.00 (6)
90.86 (6)
72.22 (6)
123.54 (6)
175.28 (6)
110.99 (6)
90.86 (6)
47.00 (6)
123.54 (6)
72.22 (7)
110.99 (6)
175.28 (6)
64.66 (8)
126.45 (6)
63.05 (6)
44.16 (6)
131.70 (6)
85.51 (6)
93.70 (6)
103.71 (6)
126.45 (6)
131.70 (6)
44.16 (6)
78.00 (6)
85.51 (6)
103.71 (6)
93.70 (6)
159.44 (9)
67.45 (6)
150.50 (6)
$3^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 12^{\text {i }}$

$\mathrm{O} 24^{\mathrm{ix}}$ - $\mathrm{Na} 2-\mathrm{O} 22^{\mathrm{x}}$	92.29 (10)
$\mathrm{O} 32-\mathrm{Na} 2-\mathrm{O} 34{ }^{\text {xi }}$	90.71 (10)
$\mathrm{O} 24{ }^{\text {ix }}-\mathrm{Na} 2-\mathrm{O} 34{ }^{\text {xi }}$	71.97 (10)
$\mathrm{O} 22^{\mathrm{x}}$ - $\mathrm{Na} 2-\mathrm{O} 34{ }^{\text {xi }}$	159.77 (12)
$\mathrm{O} 32-\mathrm{Na} 2-\mathrm{O} 14^{\text {xii }}$	131.25 (11)
$\mathrm{O} 24^{\mathrm{ix}}$ - $\mathrm{Na} 2-\mathrm{O} 14^{\text {xii }}$	75.82 (9)
$\mathrm{O} 22^{\mathrm{x}}$ - $\mathrm{Na} 2-\mathrm{O} 14^{\text {xii }}$	114.69 (10)
$\mathrm{O} 34{ }^{\text {xi }}-\mathrm{Na} 2-\mathrm{O} 14^{\text {xii }}$	74.54 (9)
$\mathrm{O} 32-\mathrm{Na} 2-\mathrm{O} 11^{\text {xii }}$	85.19 (9)
$\mathrm{O} 24^{\text {ix }}-\mathrm{Na} 2-\mathrm{O} 11^{\text {xii }}$	128.61 (10)
$\mathrm{O} 22^{\mathrm{x}}$ - $\mathrm{Na} 2-\mathrm{O} 11^{\text {xii }}$	99.52 (9)
$\mathrm{O} 34^{\mathrm{xi}}$ - $\mathrm{Na} 2-\mathrm{O} 11^{\text {xii }}$	100.27 (10)
O14 ${ }^{\text {xii }}$ - $\mathrm{Na} 2-\mathrm{O} 11^{\text {xii }}$	53.75 (8)
O34 ${ }^{\text {vii }}$ - $\mathrm{Mg} 1-\mathrm{O} 24$	91.7 (4)
$\mathrm{O} 34^{\text {vii }}-\mathrm{Mg} 1-\mathrm{O} 24{ }^{\text {xiii }}$	88.6 (4)
$\mathrm{O} 24-\mathrm{Mg} 1-\mathrm{O} 24{ }^{\text {xiii }}$	166.9 (2)
$\mathrm{O} 34{ }^{\text {vii }}-\mathrm{Mg} 1-\mathrm{O} 34{ }^{\text {xiv }}$	167.0 (2)
$\mathrm{O} 24-\mathrm{Mg} 1-\mathrm{O} 34{ }^{\text {xiv }}$	87.2 (4)
$\mathrm{O} 24^{\text {xiii }}-\mathrm{Mg} 1-\mathrm{O} 34^{\text {xiv }}$	89.6 (4)
O34 ${ }^{\text {vii }}-\mathrm{Mg} 1-\mathrm{O} 14^{\mathrm{xv}}$	89.2 (3)
$\mathrm{O} 24-\mathrm{Mg} 1-\mathrm{O} 14^{\mathrm{xv}}$	104.7 (3)
$\mathrm{O} 24^{\text {xiii }}-\mathrm{Mg} 1-\mathrm{O} 14^{\mathrm{xv}}$	88.4 (3)
$\mathrm{O} 34{ }^{\text {xiv }}-\mathrm{Mg} 1-\mathrm{O} 14^{\text {xv }}$	103.6 (3)
O11 ${ }^{\text {iv }}$ - Mg2-O11 ${ }^{\text {xii }}$	81.37 (14)
$\mathrm{O} 11^{\text {iv }}-\mathrm{Mg} 2-\mathrm{O} 33{ }^{\text {xvi }}$	117.11 (10)
O11 ${ }^{\text {xii }}$ - $\mathrm{Mg} 2-\mathrm{O} 33{ }^{\text {xvi }}$	89.56 (10)
O11 ${ }^{\text {iv }}$-Mg2-O33	89.56 (10)
O11 ${ }^{\text {xii }}-\mathrm{Mg} 2-\mathrm{O} 33$	117.11 (10)
O 33 xvi- $\mathrm{Mg} 2-\mathrm{O} 33$	145.64 (16)
O11 ${ }^{\text {iv }}-\mathrm{Mg} 2-\mathrm{O} 31$	145.19 (10)
O11 ${ }^{\text {xii }}-\mathrm{Mg} 2-\mathrm{O} 31$	86.60 (9)
O33 ${ }^{\text {xvi }}$ - $\mathrm{Mg} 2-\mathrm{O} 31$	95.21 (10)
$\mathrm{O} 33-\mathrm{Mg} 2-\mathrm{O} 31$	67.21 (9)
$\mathrm{O} 11^{\text {iv }}-\mathrm{Mg} 2-\mathrm{O} 31^{\text {xvi }}$	86.60 (9)
O11 ${ }^{\text {xii }}$ - $\mathrm{Mg} 2-\mathrm{O} 31^{\text {xvi }}$	145.19 (10)
$\mathrm{O} 33{ }^{\text {xvi }}-\mathrm{Mg} 2-\mathrm{O} 31^{\text {xvi }}$	67.21 (9)
$\mathrm{O} 33-\mathrm{Mg} 2-\mathrm{O} 31^{\text {xvi }}$	95.20 (9)
$\mathrm{O} 31-\mathrm{Mg} 2-\mathrm{O} 31^{\text {xvi }}$	119.70 (14)
O11-Mg3-O11 ${ }^{\text {xvii }}$	81.88 (14)
$\mathrm{O} 11-\mathrm{Mg} 3-\mathrm{O} 21$	149.00 (10)
O11 ${ }^{\text {xvii }}-\mathrm{Mg} 3-\mathrm{O} 21$	87.76 (9)
$\mathrm{O} 11-\mathrm{Mg} 3-\mathrm{O} 21^{\text {xvii }}$	87.76 (9)
O11 ${ }^{\text {xvii }}-\mathrm{Mg} 3-\mathrm{O} 21^{\text {xvii }}$	149.00 (10)
$\mathrm{O} 21-\mathrm{Mg} 3-\mathrm{O} 21^{\text {xvii }}$	114.43 (14)
$\mathrm{O} 11-\mathrm{Mg} 3-\mathrm{O} 23^{\text {xvii }}$	114.89 (10)
O11 ${ }^{\text {xvii }}$ - $\mathrm{Mg} 3-\mathrm{O} 23^{\text {xvii }}$	89.77 (9)
$\mathrm{O} 21-\mathrm{Mg} 3-\mathrm{O} 23{ }^{\text {xvi }}$	94.09 (9)
$\mathrm{O} 21^{\text {xvii }}-\mathrm{Mg} 3-\mathrm{O} 23^{\text {xvii }}$	68.28 (9)

42.77 (6)
97.43 (6)
128.18 (6)
81.20 (5)
50.59 (5)
153.49 (6)
43.24 (6)
90.89 (6)
67.45 (6)
42.77 (6)
150.50 (6)
128.18 (6)
97.43 (6)
50.59 (5)
81.20 (5)
43.24 (6)
153.49 (6)
124.43 (8)
163.38 (18)
88.3 (2)
94.9 (3)
74.4 (2)
112.8 (3)
137.03 (19)
89.9 (2)
83.2 (2)
166.37 (17)
54.84 (15)
150.6 (12)
67.64 (15)
129.0 (2)
77.79 (16)
59.29 (12)
113.9 (2)
138.3 (2)
56.44 (15)
64.67 (16)
103.37 (17)
123.6 (2)
75.63 (12)
102.1 (2)
67.63 (16)
52.91 (14)
168.2 (2)
114.48 (15)
130.4 (2)
86.8 (2)

O11-Mg3-O23	89.77 (9)
O11 ${ }^{\text {xvii }}-\mathrm{Mg} 3-\mathrm{O} 23$	114.89 (10)
$\mathrm{O} 21-\mathrm{Mg} 3-\mathrm{O} 23$	68.28 (9)
$\mathrm{O} 21^{\text {xvii }}-\mathrm{Mg} 3-\mathrm{O} 23$	94.09 (9)
$\mathrm{O} 23{ }^{\text {xvii }}-\mathrm{Mg} 3-\mathrm{O} 23$	147.97 (14)
$\mathrm{O} 13-\mathrm{Mg} 4-\mathrm{O} 12^{\text {xv }}$	111.06 (11)
$\mathrm{O} 13-\mathrm{Mg} 4-\mathrm{O} 23$	85.41 (10)
$\mathrm{O} 12{ }^{\text {xv }}-\mathrm{Mg} 4-\mathrm{O} 23$	87.74 (10)
$\mathrm{O} 13-\mathrm{Mg} 4-\mathrm{O} 32^{\text {vii }}$	93.13 (12)
$\mathrm{O} 12^{\mathrm{xv}}-\mathrm{Mg} 4-\mathrm{O} 32^{\text {vii }}$	155.80 (11)
$\mathrm{O} 23-\mathrm{Mg} 4-\mathrm{O} 32{ }^{\text {vii }}$	94.02 (10)
$\mathrm{O} 13-\mathrm{Mg} 4-\mathrm{O} 31^{\text {xviii }}$	92.75 (11)
$\mathrm{O} 12^{\text {xv }}-\mathrm{Mg} 4-\mathrm{O} 31^{\text {xviii }}$	86.03 (10)
$\mathrm{O} 23-\mathrm{Mg} 4-\mathrm{O} 31^{\text {xviii }}$	172.38 (11)
$\mathrm{O} 32^{\text {vii }}-\mathrm{Mg} 4-\mathrm{O} 31^{\text {xviii }}$	93.46 (10)
$\mathrm{O} 13-\mathrm{Mg} 4-\mathrm{O} 34^{\text {vii }}$	154.80 (11)
$\mathrm{O} 12{ }^{\text {xv }}-\mathrm{Mg} 4-\mathrm{O} 34{ }^{\text {vii }}$	93.48 (10)
$\mathrm{O} 23-\mathrm{Mg} 4-\mathrm{O} 34{ }^{\text {vii }}$	90.10 (9)
$\mathrm{O} 32{ }^{\text {vii }}-\mathrm{Mg} 4-\mathrm{O} 34{ }^{\text {vii }}$	62.42 (9)
O31 ${ }^{\text {xviii }} \mathrm{Mg} 4-\mathrm{O} 34{ }^{\text {vii }}$	94.64 (9)
$\mathrm{O} 22^{\mathrm{iv}}-\mathrm{Mg} 5-\mathrm{O} 21^{\text {xix }}$	89.44 (10)
$\mathrm{O} 22^{\text {iv }}-\mathrm{Mg} 5-\mathrm{O} 33^{\text {iv }}$	92.64 (10)
$\mathrm{O} 21^{\text {xix }}$ - $\mathrm{Mg} 5-\mathrm{O} 33^{\text {iv }}$	175.75 (11)
$\mathrm{O} 22^{\mathrm{iv}}-\mathrm{Mg} 5-\mathrm{O} 12$	132.14 (11)
$\mathrm{O} 21{ }^{\text {xix }}-\mathrm{Mg} 5-\mathrm{O} 12$	89.48 (10)
$\mathrm{O} 33^{\text {iv }}-\mathrm{Mg} 5-\mathrm{O} 12$	86.38 (10)
$\mathrm{O} 22^{\mathrm{iv}}-\mathrm{Mg} 5-\mathrm{O} 14^{\text {xx }}$	110.57 (11)
$\mathrm{O} 21^{\text {xix }}$ - $\mathrm{Mg} 5-\mathrm{O} 14^{\text {xx }}$	92.12 (10)
O33 ${ }^{\text {iv }}-\mathrm{Mg} 5-\mathrm{O} 14^{\text {xx }}$	90.63 (10)
$\mathrm{O} 12-\mathrm{Mg} 5-\mathrm{O} 14^{\text {xx }}$	117.28 (10)
O13-P1-O12	106.71 (14)
O13-P1-O11	112.40 (14)
O12-P1-O11	108.47 (12)
O13-P1-O14	109.11 (15)
O12-P1-O14	112.44 (13)
O11-P1-O14	107.79 (13)
$\mathrm{O} 24-\mathrm{P} 2-\mathrm{O} 22^{\text {vii }}$	111.34 (14)
$\mathrm{O} 24-\mathrm{P} 2-\mathrm{O} 23$	113.25 (13)
$\mathrm{O} 22{ }^{\text {vii }}$-P2-O23	108.74 (13)
$\mathrm{O} 24-\mathrm{P} 2-\mathrm{O} 21$	109.41 (13)
$\mathrm{O} 22{ }^{\text {vii }} \mathrm{P} 2-\mathrm{O} 21$	112.20 (13)
$\mathrm{O} 23-\mathrm{P} 2-\mathrm{O} 21$	101.56 (12)
O34-P3-O32	105.79 (14)
O34-P3-O31	113.15 (14)
O32-P3-O31	112.52 (13)
O34-P3-O33	114.02 (13)
O32-P3-O33	109.69 (14)

supporting information

$\mathrm{O} 32-\mathrm{Na} 2-\mathrm{O} 24^{\mathrm{ix}}$	$143.52(12)$	$\mathrm{O} 31-\mathrm{P} 3-\mathrm{O} 33$	$101.82(13)$
$\mathrm{O} 32-\mathrm{Na} 2-\mathrm{O} 22^{\mathrm{x}}$	$95.11(10)$		

Symmetry codes: (i) $x,-y+1, z+1 / 2$; (ii) $-x+1,-y+1,-z+1$; (iii) $x+1 / 2,-y+3 / 2, z+1 / 2$; (iv) $-x+1 / 2,-y+3 / 2,-z+1$; (v) $x+1 / 2, y+1 / 2, z$; (vi) $-x+1 / 2, y+1 / 2$, $-z+3 / 2$; (vii) $x, y, z-1$; (viii) $-x+1 / 2,-y+3 / 2,-z$; (ix) $x-1 / 2, y+1 / 2, z+1$; (x) $-x+1 / 2,-y+3 / 2,-z+2$; (xi) $-x,-y+1,-z+2$; (xii) $x-1 / 2,-y+3 / 2, z+1 / 2$; (xiii) $-x+1 / 2,-y+1 / 2,-z$; (xiv) $-x+1 / 2,-y+1 / 2,-z+1 ;(\mathrm{xv})-x+1 / 2, y-1 / 2,-z+1 / 2 ;(\mathrm{xvi})-x, y,-z+3 / 2 ;(\mathrm{xvii})-x+1, y,-z+1 / 2 ;$ (xviii) $-x,-y+1,-z+1 ;($ (xix $)$ $x-1 / 2, y+1 / 2, z$; (xx) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

