CRYSTALLOGRAPHIC COMMUNICATIONS

Received 10 April 2017
Accepted 23 April 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; $\mathrm{BaMn} 2 \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$; $\mathrm{SrMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$; transition metal; phosphates; solid-state reaction synthesis.

CCDC references: 1545505; 1545504

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structures of two alkaline earth ($M=B a$ and Sr) dimanganese(II) iron(III) tris(orthophosphates)

Ghaleb Alhakmi,* Abderrazzak Assani, Mohamed Saadi and Lahcen El Ammari

Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco. *Correspondence e-mail: g_alhakmi@yahoo.fr

Two new orthophosphates, $\mathrm{BaMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$ [barium dimanganese(II) iron(III) tris(orthophosphate)] and $\mathrm{SrMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$ [strontium dimanganese(II) iron(III) tris(orthophosphate)], were synthesized by solid-state reactions. They are isotypic and crystallize in the orthorhombic system with space group type Pbcn . Their crystal structures comprise infinite zigzag chains of edge-sharing FeO_{6} octahedra (point group symmetry .2.) and $\mathrm{Mn}_{2} \mathrm{O}_{10}$ double octahedra running parallel to [001], linked by two types of PO_{4} tetrahedra. The so-formed threedimensional framework delineates channels running along [001], in which the alkaline earth cations (site symmetry .2.) are located within a neighbourhood of eight O atoms.

1. Chemical context

Considerable attention has been devoted to the preparation of new inorganic materials with open-framework structures (Rao et al., 2001; Bouzidi et al., 2015) due to their structural diversity covering a wide range of chemical compositions (Zhou et al., 2002). In particular, transition-metal-based open-framework phosphates represent a highly attractive class of materials in industrial processes. In fact, their special framework structures lead to interesting properties that depend not only on the inclusion guest in the pores, but also on the chosen transition metal (Durio et al., 2002; López et al., 2004; Férey et al., 2005). Typical examples are ion-exchangers (Jignasa et al., 2006; Kullberg \& Clearfield, 1981) and compounds with special magnetic (Chouaibi et al., 2001; Ferdov et al., 2008) and catalytic properties (Weng et al., 2009).

In this context, our group focuses on the synthesis and characterization of new transition-metal phosphates crystallizing either in alluaudite- (Moore, 1971) or α - CrPO_{4}-type structures (Attfield et al., 1988). In attempts to obtain new compounds belonging to the latter structure type, we have synthesized and structurally characterized several new phosphates, including those with oxidation states of both +II and + III for manganese. These compounds have the general formula $M \mathrm{Mn}^{\mathrm{III}} \mathrm{Mn}_{2}{ }^{\mathrm{II}}\left(\mathrm{PO}_{4}\right)_{3}(M=\mathrm{Pb}, \mathrm{Sr}, \mathrm{Ba})$ (Alhakmi et al., $2013 a, b$; Assani et al., 2013) and adopt the $\alpha-\mathrm{CrPO}_{4}$ structure type. Recently, the phosphates $\mathrm{Na}_{2} \mathrm{Co}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$ (Bouraima et al., 2015) and $\mathrm{Na}_{1.67} \mathrm{Zn}_{1.67} \mathrm{Fe}_{1.33}\left(\mathrm{PO}_{4}\right)_{3}$ (Khmiyas et al., 2015) with an alluaudite-like structure were also reported. As a continuation in this regard, we have now extended our investigations to the quaternary system $M \mathrm{O} / \mathrm{MnO} / \mathrm{Fe}_{2} \mathrm{O}_{3} /$ $\mathrm{P}_{2} \mathrm{O}_{5}$, where M is a divalent cation. The present work deals with the synthesis and the crystal structures of two new isotypic alkaline earth manganese iron phosphates, namely,

Figure 1
The principal building units in the structure of $\mathrm{BaMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $x,-y+1, z+\frac{1}{2}$; (ii) $-x+\frac{3}{2},-y+\frac{3}{2},-z+2$; (iii) $x, y, z+1$; (iv) $-x+\frac{3}{2},-y+\frac{3}{2},-z+1$; (v) $-x+1, y,-z+\frac{3}{2}$; (vi) $x, y, z-1$; (vii) $-x+1, y,-z+\frac{1}{2}$; (viii) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (ix) $-x+1,-y+1,-z+1$; (x) $x,-y+1, z-\frac{1}{2}$; (xi) $-x+2, y,-z+\frac{3}{2}$; (xii) $-x+2,-y+1,-z+1$.]

Figure 2
The principal building units in the structure of $\mathrm{SrMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $x,-y+1, z+\frac{1}{2}$; (ii) $-x+\frac{3}{2},-y+\frac{3}{2},-z+2$; (iii) $x, y, z+1$; (iv) $-x+\frac{3}{2},-y+\frac{3}{2},-z+1$; (v) $-x+1, y,-z+\frac{3}{2}$; (vi) $x, y, z-1$; (vii) $-x+1, y,-z+\frac{1}{2}$; (viii) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (ix) $-x+1,-y+1,-z+1$; (x) $x,-y+1, z-\frac{1}{2}$; (xi) $-x+2, y,-z+\frac{3}{2}$; (xii) $-x+2,-y+1,-z+1$.]

Figure 3
Edge-sharing $\left[\mathrm{FeO}_{6}\right]$ octahedra and $\mathrm{Mn}_{2} \mathrm{O}_{10}$ dimers forming an infinite zigzag chain running parallel to [001]. Data are from $\mathrm{BaMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$.
$\mathrm{BaMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$ and $\mathrm{SrMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$. Their structures show a similarity with that of $A M_{4}\left(\mathrm{PO}_{4}\right)_{3}$ phosphates where A is a monovalent cation and M a divalent cation (Daidouh et al., 1999; Assaaoudi et al., 2006).

2. Structural commentary

The principal building units in the crystal structures of both phosphates are distorted FeO_{6} and MnO_{6} octahedra, PO_{4} tetrahedra and Ba^{2+} or Sr^{2+} cations as shown in Figs. 1 and 2. In each structure, two MnO_{6} octahedra are linked together by a common edge to give a $\mathrm{Mn}_{2} \mathrm{O}_{10}$ dimer to which FeO_{6} octahedra (point group symmetry .2.) are alternately connected on both sides. In this way, infinite zigzag chains parallel to [001] are formed (Fig. 3). Adjacent chains are linked together by sharing corners with two types of PO_{4} tetrahedra, forming a layer-like arrangement parallel to (010) as shown in Fig. 4. Such layers are stacked along [010] to form a three-dimensional framework (Fig. 5) with two types of channels running parallel to [001] in which the alkaline earth cations are located on a twofold rotation axis. They are coordinated by eight oxygen atoms (Figs. 1 and 6), with bond lengths ranging from 2.6803 (10) to 2.8722 (11) \AA for the BaO_{8} polyhedron and of 2.6020 (9) to 2.7358 (11) \AA for the SrO_{8} polyhedron.

Figure 4
A layer perpendicular to (010), resulting from the connection of metal oxide chains through PO_{4} tetrahedra. Data are from $\mathrm{BaMn} 2 \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$.

Table 1
Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$\mathrm{BaMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$	$\mathrm{SrMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$
$M_{\text {r }}$	587.98	538.25
Crystal system, space group	Orthorhombic, Pbcn	Orthorhombic, Pbcn
Temperature (K)	296	296
$a, b, c(\AA)$	6.5899 (2), 17.6467 (4), 8.5106 (2)	6.4304 (3), 17.8462 (7), 8.4906 (3)
$V\left(\AA^{3}\right)$	989.70 (4)	974.37 (7)
Z	4	4
Radiation type	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	8.41	10.00
Crystal size (mm)	$0.32 \times 0.25 \times 0.22$	$0.30 \times 0.27 \times 0.23$
Data collection		
Diffractometer	Bruker X8 APEX	Bruker X8 APEX
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.596, 0.748	0.404, 0.748
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	29422, 3088, 2731	23889, 2843, 2564
$R_{\text {int }}$	0.033	0.031
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.907	0.887
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.018, 0.044, 1.05	0.021, 0.048, 1.08
No. of reflections	3088	2843
No. of parameters	89	89
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.29, -1.11	1.19, -0.81

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Bond-valence-sum calculations (Brown \& Altermatt, 1985) are in good agreement with the expected values for alkaline earth, manganese(II) and iron(III) cations and the phosphorus(V) atom. $\mathrm{BaMn} n_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$ (values in valence units): $\mathrm{Ba}^{2+} 2.10 ; \mathrm{Mn}^{2+} 2.00 ; \mathrm{Fe}^{3+} 3.12 ; \mathrm{P}^{\mathrm{V}} 4.94 . \mathrm{SrMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}: \mathrm{Sr}^{2+}$ 1.80; $\mathrm{Mn}^{2+} 2.07 ; \mathrm{Fe}^{3+} 3.18 ; \mathrm{P}^{\mathrm{V}} 5.00$.

3. Database survey

A comparison between the structures of the title compounds and those of other phosphates such as the $A M_{4}\left(\mathrm{PO}_{4}\right)_{3}$

Figure 5
A view of stacked layers along [010]. Data are from $\mathrm{BaMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$.
compounds ($A=$ monovalent cation and $M=$ divalent cation) (Im et al., 2014), reveals that all these compounds crystallize with orthorhombic symmetry and nearly the same unit-cell parameters despite the differences between their chemical formulae and space groups. In order to give an illustrative picture of the similarity between these two formula types, we can write the general formula of $A M_{4}\left(\mathrm{PO}_{4}\right)_{3}$ compounds as follows: $M^{\prime 2+}\left(A^{+} M^{2+}\right) M_{2}^{2+}\left(\mathrm{PO}_{4}\right)_{3}$ and that of the title compounds as $\mathrm{M}^{\prime 2+} \mathrm{Fe}^{3+} \mathrm{Mn}_{2}^{2+}\left(\mathrm{PO}_{4}\right)_{3}$. The principal structures of the title compounds and that of the $A M_{4}\left(\mathrm{PO}_{4}\right)_{3}$ compounds

Figure 6
Polyhedral representation of the $\mathrm{BaMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$ structure showing Ba^{2+} cations situated in channels running along [001].
are formed by stacking of the same infinite zigzag chains of edge-sharing octahedra. Furthermore, these structures are characterized by the presence of two types of channels in which the large cations are located.

4. Synthesis and crystallization

Single crystals of the title compounds were isolated as a result of solid-state reactions. Stoichiometric amounts of alkaline earth ($M=\mathrm{Ba}, \mathrm{Sr}$), manganese, iron and phosphate precursors in a molar ratio $M: \mathrm{Mn}: \mathrm{Fe}: \mathrm{P}=1: 2: 1: 3$, were dissolved in 40 ml water that was placed into a 100 ml capacity pyrex glass beaker. The mixture was stirred at room temperature for 20 h and was evaporated under stirring at 363 K until dryness. The obtained black powder was ground in an agate mortar and pre-heated at 573 K in a platinum crucible for 24 h to eliminate gaseous materials. Subsequently, the resulting residue was reground and melted for 30 min at 1293 K , followed by slow cooling down to 1093 K at a rate $5 \mathrm{~K} \mathrm{~h}^{-1}$ and a rapid cooling to room temperature by switching off the furnace. In the case of the $\mathrm{BaO}-\mathrm{MnO}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{P}_{2} \mathrm{O}_{5}$ system, the reaction product consisted of two types of crystals, viz. orange crystals of the title compound, $\mathrm{BaMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$, and dark-violet crystals that were identified to be another new phase. In the case of the $\mathrm{SrO}-\mathrm{MnO}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{P}_{2} \mathrm{O}_{5}$ system, the reaction product contained dark-brown crystals corresponding to the title compound, $\mathrm{SrMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$.

5. Refinement

Crystal data, data collection and structure refinement details for the two compounds are summarized in Table 1. For $\mathrm{BaMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$, the maximum and minimum remaining electron densities are located 0.60 and $0.42 \AA$ from atom Ba 1 . For $\mathrm{SrMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$, they are 0.58 and $0.31 \AA$ from Sr 1 .

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University in Rabat, Morocco, for financial support.

References

Alhakmi, G., Assani, A., Saadi, M. \& El Ammari, L. (2013a). Acta Cryst. E69, i40.
Alhakmi, G., Assani, A., Saadi, M., Follet, C. \& El Ammari, L. (2013b). Acta Cryst. E69, i56.
Assaaoudi, H., Fang, Z., Ryan, D. H., Butler, I. S. \& Kozinski, J. A. (2006). Can. J. Chem. 84, 124-133.

Assani, A., Saadi, M., Alhakmi, G., Houmadi, E. \& El Ammari, L. (2013). Acta Cryst. E69, 160.

Attfield, J. P., Cheetham, A. K., Cox, D. E. \& Sleight, A. W. (1988). J. Appl. Cryst. 21, 452-457.
Bouraima, A., Assani, A., Saadi, M., Makani, T. \& El Ammari, L. (2015). Acta Cryst. E71, 558-560.

Bouzidi, C., Frigui, W. \& Zid, M. F. (2015). Acta Cryst. E71, 69-72.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chouaibi, N., Daidouh, A., Pico, C., Santrich, A. \& Veiga, M. L. (2001). J. Solid State Chem. 159, 46-50.

Daidouh, A., Pico, C. \& Veiga, M. L. (1999). Solid State Ionics, 124, 109-117.
Durio, C., Daidouh, A., Chouaibi, N., Pico, C. \& Veiga, M. L. (2002). J. Solid State Chem. 168, 208-216.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Ferdov, S., Reis, M. S., Lin, Z. \& Ferreira, R. A. S. (2008). Inorg. Chem. 47, 10062-10066.
Férey, G., Mellot-Draznieks, C., Serre, C. \& Millange, F. (2005). Acc. Chem. Res. 38, 217-225.
Im, Y., Kim, P. \& Yun, H. (2014). Bull. Korean Chem. Soc. 35, 12251228.

Jignasa, A., Rakesh, T. \& Uma, C. (2006). J. Chem. Sci. 118, 185-189.
Khmiyas, J., Assani, A., Saadi, M. \& El Ammari, L. (2015). Acta Cryst. E71, 690-692.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Kullberg, L. \& Clearfield, A. (1981). J. Phys. Chem. 85, 1585-1589.
López, M.-L., Durio, C., Daidouh, A., Pico, C. \& Veiga, M.-L. (2004). Chem. Eur. J. 10, 1106-1113.
Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.
Rao, C. N. R., Natarajan, S., Choudhury, A., Neeraj, S. \& Ayi, A. A. (2001). Acc. Chem. Res. 34, 80-87.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Weng, W., Lin, Z., Dummer, N. F., Bartley, J. K., Hutchings, G. J. \& Kiely, G. J. (2009). Microsc. Microanal. 15 (Suppl. 2), 1438-1439.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhou, B.-C., Yao, Y.-W. \& Wang, R.-J. (2002). Acta Cryst. C58, i109i110.

supporting information

Crystal structures of two alkaline earth ($M=\mathrm{Ba}$ and Sr) dimanganese(II) iron(III) tris(orthophosphates)

Ghaleb Alhakmi, Abderrazzak Assani, Mohamed Saadi and Lahcen El Ammari

Computing details

For both compounds, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006) for (I); ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) for (II). For both compounds, software used to prepare material for publication: publCIF (Westrip, 2010).

(I) Barium dimanganese(II) iron(III) tris(orthophosphate)

Crystal data

$\mathrm{BaMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$
$M_{r}=587.98$
Orthorhombic, Pbcn
$a=6.5899$ (2) Å
$b=17.6467(4) \AA$
$c=8.5106$ (2) \AA
$V=989.70(4) \AA^{3}$
$Z=4$
$F(000)=1092$
Data collection
Bruker X8 APEX
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.596, T_{\text {max }}=0.748$
$D_{\mathrm{x}}=3.946 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3088 reflections
$\theta=3.3-40.1^{\circ}$
$\mu=8.41 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, orange
$0.32 \times 0.25 \times 0.22 \mathrm{~mm}$

29422 measured reflections
3088 independent reflections
2731 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=40.1^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-8 \rightarrow 11$
$k=-31 \rightarrow 32$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.044$
$S=1.05$
3088 reflections
89 parameters
0 restraints

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0178 P)^{2}+1.2088 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=1.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.11 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL2014 } \\
& \quad(\text { Sheldrick, 2015b), } \\
& \quad \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4} \\
& \text { Extinction coefficient: } 0.00278(15)
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ba1	0.5000	$0.44269(2)$	0.7500	$0.01037(3)$
Fe1	1.0000	$0.31799(2)$	0.7500	$0.00461(4)$
Mn1	$0.83899(3)$	$0.36570(2)$	$0.39874(2)$	$0.00647(4)$
P1	$0.83270(5)$	$0.17935(2)$	$0.53771(3)$	$0.00490(5)$
P2	1.0000	$0.47123(2)$	0.7500	$0.00513(7)$
O1	$1.01958(15)$	$0.12822(6)$	$0.55338(13)$	$0.01186(16)$
O2	$0.66250(15)$	$0.15480(5)$	$0.64868(11)$	$0.00865(14)$
O3	$0.76365(15)$	$0.17592(5)$	$0.36487(10)$	$0.00794(14)$
O4	$0.88706(16)$	$0.26335(5)$	$0.57277(11)$	$0.01031(15)$
O5	$0.89269(15)$	$0.41422(5)$	$0.63609(10)$	$0.00656(13)$
O6	$0.83805(16)$	$0.51729(5)$	$0.83211(12)$	$0.00988(15)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	$0.00562(5)$	$0.01428(5)$	$0.01119(5)$	0.000	$-0.00082(3)$	0.000
Fe1	$0.00537(9)$	$0.00435(8)$	$0.00411(8)$	0.000	$0.00015(7)$	0.000
Mn1	$0.00598(7)$	$0.00785(6)$	$0.00559(7)$	$-0.00021(5)$	$0.00041(6)$	$0.00013(5)$
P1	$0.00360(11)$	$0.00666(10)$	$0.00443(10)$	$-0.00050(9)$	$-0.00036(9)$	$-0.00071(8)$
P2	$0.00571(17)$	$0.00355(13)$	$0.00611(15)$	0.000	$0.00000(13)$	0.000
O1	$0.0058(4)$	$0.0170(4)$	$0.0128(4)$	$0.0047(3)$	$-0.0016(3)$	$-0.0004(3)$
O2	$0.0064(3)$	$0.0126(3)$	$0.0070(3)$	$-0.0017(3)$	$0.0007(3)$	$0.0021(3)$
O3	$0.0066(4)$	$0.0127(3)$	$0.0045(3)$	$0.0002(3)$	$-0.0018(3)$	$-0.0017(3)$
O4	$0.0136(4)$	$0.0087(3)$	$0.0086(3)$	$-0.0047(3)$	$-0.0002(3)$	$-0.0028(3)$
O5	$0.0084(3)$	$0.0058(3)$	$0.0055(3)$	$-0.0007(3)$	$-0.0009(3)$	$-0.0003(2)$
O6	$0.0091(4)$	$0.0071(3)$	$0.0134(4)$	$0.0017(3)$	$0.0011(3)$	$-0.0031(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Ba1-O6	2.6803 (10)	Mn1-O6 ${ }^{\text {vi }}$	2.1413 (9)
$\mathrm{Ba} 1-\mathrm{Ob}^{\text {i }}$	2.6803 (10)	Mn1-O1 ${ }^{\text {ii }}$	2.1466 (10)
$\mathrm{Ba} 1-\mathrm{O} 3^{\text {ii }}$	2.7861 (9)	$\mathrm{Mn} 1-\mathrm{O} 2{ }^{\text {vii }}$	2.1587 (9)
$\mathrm{Ba} 1-\mathrm{O}^{\text {iii }}$	2.7861 (9)	$\mathrm{Mn} 1-\mathrm{O} 2^{\text {v }}$	2.1997 (10)
$\mathrm{Ba}-\mathrm{O} 5$	2.8087 (10)	Mn1-O5	2.2223 (9)
$\mathrm{Ba} 1-\mathrm{O}^{\text {i }}$	2.8087 (10)	Mn1-O4	2.3572 (10)
$\mathrm{Ba}-\mathrm{Ol}^{\text {ii }}$	2.8722 (11)	$\mathrm{P} 1-\mathrm{O} 2$	1.5289 (10)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	2.8722 (11)	P1-O1	1.5325 (10)
Fel-O4	1.9387 (9)	P1-O3	1.5409 (9)
Fe1-O4 ${ }^{\text {iv }}$	1.9387 (9)	P1-O4	1.5540 (9)

$\mathrm{Fe} 1-\mathrm{O3}^{\text {v }}$	1.9965 (9)	P2-O6	1.5126 (10)
Fel-O3iii	1.9965 (9)	$\mathrm{P} 2-\mathrm{OG}^{\text {iv }}$	1.5126 (10)
$\mathrm{Fe} 1-\mathrm{OF}^{\text {iv }}$	2.0792 (9)	P2-O5	1.5659 (9)
Fe1-O5	2.0793 (9)	$\mathrm{P} 2-\mathrm{O} 5{ }^{\text {iv }}$	1.5660 (9)
O6- $\mathrm{Ba} 1-\mathrm{O} 6^{\text {i }}$	121.17 (4)	$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Fe} 1-\mathrm{OF}^{\text {iv }}$	85.00 (4)
$\mathrm{O} 6-\mathrm{Ba} 1-\mathrm{O}^{\text {ii }}$	157.68 (3)	$\mathrm{O}^{2}-\mathrm{Fe}-\mathrm{O}^{\text {iv }}$	83.59 (4)
$\mathrm{O} 6^{\text {i }}-\mathrm{Ba} 1-\mathrm{O}^{\text {ii }}$	79.21 (3)	$\mathrm{O3}^{\text {iii- }}-\mathrm{Fe} 1-\mathrm{OF}^{\text {iv }}$	91.36 (4)
O6-Bal-O3iii	79.21 (3)	O4- $\mathrm{Fe} 1-\mathrm{O} 5$	85.00 (4)
$\mathrm{O} 6^{\mathbf{i}}-\mathrm{Ba} 1-\mathrm{O}^{\text {iii }}$	157.68 (3)	$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 5$	154.09 (4)
$\mathrm{O3}^{\text {iii- }} \mathrm{Ba}-\mathrm{O}^{\text {iii }}$	82.60 (4)	$\mathrm{O} 3{ }^{2}-\mathrm{Fe} 1-\mathrm{O} 5$	91.36 (4)
O6-Bal-O5	53.99 (3)	$\mathrm{O3}^{\text {iii- }}$ - $\mathrm{Fe} 1-\mathrm{O} 5$	83.59 (4)
O6- ${ }^{\text {i }}$ - $1-\mathrm{O} 5$	139.79 (3)	$\mathrm{O} 5^{\mathrm{i}}$ - $\mathrm{Fe} 1-\mathrm{O} 5$	70.50 (5)
O3i--Bal-O5	105.04 (3)	$\mathrm{O} 6^{\mathrm{vi}}-\mathrm{Mn} 1-\mathrm{Ol}^{\text {ii }}$	89.96 (4)
O3iii- - ${ }^{\text {ial }}$-O5	58.11 (3)	$\mathrm{O} 6^{\text {vi }}-\mathrm{Mn} 1-\mathrm{O}^{\text {vii }}$	84.29 (4)
O6- $\mathrm{Ba} 1-\mathrm{O} 5^{\text {i }}$	139.79 (3)	$\mathrm{O}^{\text {iii- }}$ - $\mathrm{Mn} 1-\mathrm{O}^{\text {rii }}$	101.01 (4)
O6- $6^{\text {i }}$ - ${ }^{-}{ }^{\text {O }} 5^{\text {i }}$	53.99 (3)	$\mathrm{O} 6^{\text {vi}}-\mathrm{Mn} 1-\mathrm{O}^{\text {v }}$	96.48 (4)
$\mathrm{O} 3{ }^{\text {ii- }}$ - $\mathrm{Ba} 1-\mathrm{O}^{\text {i }}$	58.11 (3)	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Mnl}-\mathrm{O}^{2}$	173.39 (4)
O3iii- ${ }^{\text {Bal-O }} 5^{\text {i }}$	105.04 (3)	$\mathrm{O} 2^{\text {vii }}-\mathrm{Mn} 1-\mathrm{O}^{\text {v }}$	78.23 (4)
O5-Bal-O5	159.39 (3)	$\mathrm{O}^{6 \mathrm{i}}-\mathrm{Mn} 1-\mathrm{O}$	82.51 (4)
$\mathrm{O} 6-\mathrm{Ba} 1-\mathrm{Ol}^{\text {ii }}$	114.27 (3)	$\mathrm{Ol}^{1 i}-\mathrm{Mn} 1-\mathrm{O} 5$	87.96 (4)
$\mathrm{O} 6^{\text {i }}-\mathrm{Ba} 1-\mathrm{Ol}^{\text {ii }}$	90.97 (3)	$\mathrm{O} 2{ }^{\text {vii }}$-Mn1-O5	164.03 (4)
$\mathrm{O} 3^{\text {ii- }}-\mathrm{Ba} 1-\mathrm{Ol}^{\text {ii }}$	51.86 (3)	$\mathrm{O} 2{ }^{v}-\mathrm{Mn} 1-\mathrm{O} 5$	94.35 (4)
O 3 iii- ${ }^{\text {Bal-O1 }}{ }^{\text {ii }}$	87.88 (3)	$\mathrm{O} 6^{\text {vi}}-\mathrm{Mn} 1-\mathrm{O} 4$	154.91 (4)
$\mathrm{O} 5-\mathrm{Ba}-\mathrm{Ol}^{\text {ii }}$	64.56 (3)	$\mathrm{Ol}^{1 i}-\mathrm{Mn} 1-\mathrm{O} 4$	92.91 (4)
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	105.89 (3)	$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Mn} 1-\mathrm{O} 4$	119.45 (3)
$\mathrm{O} 6-\mathrm{Ba}-\mathrm{Ol}^{\text {iii }}$	90.97 (3)	$\mathrm{O} 2{ }^{\text {v-Mn1-O4 }}$	81.90 (4)
$\mathrm{O} 6^{\text {i- }} \mathrm{Bal-O1} 1^{\text {iii }}$	114.27 (3)	$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{O} 4$	72.70 (3)
O 3 ii- $-\mathrm{Ba} 1-\mathrm{Ol}^{1 i \mathrm{iii}}$	87.88 (3)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	111.65 (6)
O3iii-Bal-O1 ${ }^{\text {iii }}$	51.86 (3)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$	111.22 (5)
$\mathrm{O} 5-\mathrm{Ba} 1-\mathrm{Ol}^{\text {iii }}$	105.89 (3)	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$	107.29 (6)
O5--Bal-O1iii	64.55 (3)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 4$	108.71 (5)
$\mathrm{Ol}{ }^{\text {ii- }}$ - $\mathrm{Bal}^{\text {- }} \mathrm{Ol}^{1 i \mathrm{iij}}$	128.34 (4)	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 4$	111.08 (6)
$\mathrm{O} 4-\mathrm{Fe}-\mathrm{O}^{\text {iv }}$	120.35 (6)	O3-P1-O4	106.79 (5)
$\mathrm{O} 4-\mathrm{Fe}-\mathrm{O}^{v}$	88.85 (4)	O6-P2-O6 ${ }^{\text {iv }}$	115.00 (8)
$\mathrm{O} 4^{\text {iv }}-\mathrm{Fe} 1-\mathrm{O}^{\text {v }}$	94.22 (4)	O6-P2-O5	108.22 (5)
$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O}^{\text {iii }}$	94.22 (4)	O6iv-P2-O5	112.20 (5)
$\mathrm{O} 4^{\text {iv }}-\mathrm{Fe} 1-\mathrm{O}^{\text {iii }}$	88.85 (4)	O6-P2-O5 $5^{\text {iv }}$	112.20 (5)
$\mathrm{O}^{\text {- }}$ - $\mathrm{Fe} 1-\mathrm{O}^{\text {iii }}$	173.83 (5)	O6 ${ }^{\text {iv- }} \mathrm{P} 2-\mathrm{O} 5^{\text {iv }}$	108.22 (5)
$\mathrm{O} 4-\mathrm{Fe}-\mathrm{O}^{\text {iv }}$	154.09 (4)	O5-P2-O5 ${ }^{\text {iv }}$	100.05 (7)

Symmetry codes: (i) $-x+1, y,-z+3 / 2$; (ii) $x-1 / 2,-y+1 / 2,-z+1$; (iii) $-x+3 / 2,-y+1 / 2, z+1 / 2$; (iv) $-x+2, y,-z+3 / 2$; (v) $x+1 / 2,-y+1 / 2,-z+1$; (vi) $x,-y+1$, $z-1 / 2$; (vii) $-x+3 / 2,-y+1 / 2, z-1 / 2$.
(II) Strontium dimanganese(II) iron(III) tris(orthophosphate)

Crystal data

$\mathrm{SrMn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3} \quad$ Orthorhombic, Pbcn
$M_{r}=538.25$
$a=6.4304$ (3) \AA
$b=17.8462(7) \AA$
$c=8.4906$ (3) \AA
$V=974.37(7) \AA^{3}$
$Z=4$
$F(000)=1020$
$D_{\mathrm{x}}=3.669 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$

Data collection

Bruker X8 APEX

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.404, T_{\text {max }}=0.748$

Cell parameters from 2843 reflections
$\theta=3.3-39.1^{\circ}$
$\mu=10.00 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, dark brown
$0.30 \times 0.27 \times 0.23 \mathrm{~mm}$

23889 measured reflections
2843 independent reflections
2564 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=39.1^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-11 \rightarrow 10$
$k=-31 \rightarrow 31$
$l=-8 \rightarrow 15$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0183 P)^{2}+1.2279 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.19 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.81 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL2014 } \\
& \quad(\text { Sheldrick, 2015b), } \\
& \quad \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}
\end{aligned}
$$

Extinction coefficient: 0.0072 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Sr1	0.5000	$0.43233(2)$	0.7500	$0.00986(4)$
Fe1	1.0000	$0.31546(2)$	0.7500	$0.00485(4)$
Mn1	$0.83818(3)$	$0.37163(2)$	$0.39547(2)$	$0.00679(4)$
P1	$0.83555(5)$	$0.17749(2)$	$0.53581(3)$	$0.00571(5)$
P2	1.0000	$0.46759(2)$	0.7500	$0.00485(7)$
O1	$1.02378(15)$	$0.12570(6)$	$0.54770(13)$	$0.01473(18)$
O2	$0.66091(14)$	$0.15203(5)$	$0.64550(11)$	$0.00922(14)$
O3	$0.76936(14)$	$0.17505(5)$	$0.36165(10)$	$0.00794(14)$
O4	$0.89115(17)$	$0.25971(6)$	$0.57468(12)$	$0.01448(18)$
O5	$0.89256(14)$	$0.41164(5)$	$0.63388(10)$	$0.00662(13)$
O6	$0.82775(15)$	$0.51251(5)$	$0.82684(12)$	$0.00991(14)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	$0.00601(7)$	$0.01296(7)$	$0.01060(7)$	0.000	$-0.00134(5)$	0.000
Fe1	$0.00567(9)$	$0.00423(8)$	$0.00466(8)$	0.000	$0.00026(7)$	0.000
Mn1	$0.00547(7)$	$0.00927(7)$	$0.00563(7)$	$-0.00023(5)$	$0.00064(5)$	$-0.00056(5)$
P1	$0.00382(10)$	$0.00858(11)$	$0.00473(10)$	$-0.00077(9)$	$-0.00010(9)$	$-0.00167(8)$
P2	$0.00502(15)$	$0.00357(13)$	$0.00597(15)$	0.000	$-0.00017(12)$	0.000
O1	$0.0066(4)$	$0.0237(5)$	$0.0139(4)$	$0.0062(3)$	$-0.0013(3)$	$0.0010(4)$
O2	$0.0061(3)$	$0.0149(4)$	$0.0067(3)$	$-0.0015(3)$	$0.0009(3)$	$0.0025(3)$
O3	$0.0067(3)$	$0.0125(3)$	$0.0046(3)$	$0.0001(3)$	$-0.0012(3)$	$-0.0013(3)$
O4	$0.0174(4)$	$0.0133(4)$	$0.0128(4)$	$-0.0084(3)$	$0.0029(3)$	$-0.0074(3)$
O5	$0.0085(3)$	$0.0062(3)$	$0.0052(3)$	$-0.0009(3)$	$-0.0016(3)$	$-0.0006(2)$
O6	$0.0085(3)$	$0.0073(3)$	$0.0140(4)$	$0.0019(3)$	$0.0015(3)$	$-0.0032(3)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{Sr} 1-\mathrm{O}^{\text {i }}$	2.6020 (9)	$\mathrm{Mn} 1-\mathrm{O} 1^{\text {i }}$	2.0790 (10)
$\mathrm{Sr} 1-\mathrm{O} 3^{\text {ii }}$	2.6020 (9)	$\mathrm{Mn} 1-\mathrm{O} 2^{\text {v }}$	2.1462 (9)
Sr1-O6 ${ }^{\text {iii }}$	2.6296 (9)	$\mathrm{Mn} 1-\mathrm{O}^{\text {vi }}$	2.1494 (9)
Sr1-O6	2.6296 (10)	$\mathrm{Mn} 1-\mathrm{O} 2{ }^{\text {vii }}$	2.1641 (9)
Sr1-O5	2.7351 (9)	$\mathrm{Mn} 1-\mathrm{O} 5$	2.1748 (9)
Sr1-O5 ${ }^{\text {iii }}$	2.7351 (9)	Mn1-O4	2.5338 (12)
Srl-O1 ${ }^{\text {i }}$	2.7358 (11)	P1-O1	1.5263 (10)
Sr1-O1 ${ }^{\text {ii }}$	2.7358 (11)	P1-O2	1.5281 (9)
Fe1-O4	1.9224 (10)	P1-O3	1.5394 (9)
$\mathrm{Fe} 1-\mathrm{O} 4^{\text {iv }}$	1.9224 (10)	P1-O4	1.5459 (10)
Fel-O3 ${ }^{\text {v }}$	1.9818 (9)	P2-O6	1.5149 (9)
Fel-O3 ${ }^{\text {ii }}$	1.9818 (9)	$\mathrm{P} 2-\mathrm{O}^{\text {iv }}$	1.5149 (9)
$\mathrm{Fe} 1-\mathrm{O} 5$	2.0966 (9)	$\mathrm{P} 2-\mathrm{O} 5^{\text {iv }}$	1.5641 (9)
Fel-O5 ${ }^{\text {iv }}$	2.0966 (9)	P2-O5	1.5641 (9)
O3 ${ }^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{O} 3{ }^{\text {ii }}$	85.14 (4)	$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Fe} 1-\mathrm{O} 5$	155.20 (4)
O3i-Sr1-O6 ${ }^{\text {iii }}$	81.58 (3)	O3v- ${ }^{\text {- }}$ - $1-\mathrm{O} 5$	89.60 (4)
O3ii- ${ }^{\text {ii }} \mathrm{Sr} 1-\mathrm{O}^{\text {iii }}$	161.43 (3)	O3i--Fe1-O5	82.35 (4)
O3 ${ }^{\text {i }} \mathrm{Sr} 1-\mathrm{O} 6$	161.43 (3)	$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O} 5{ }^{\text {iv }}$	155.20 (4)
O3ii-Sr1-O6	81.58 (3)	$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Fe} 1-\mathrm{O} 5^{\text {iv }}$	86.54 (4)
O6iii-Sr1-O6	114.07 (4)	$\mathrm{O}^{\text {v}}-\mathrm{Fe} 1-\mathrm{O}^{\text {iv }}$	82.35 (4)
O3 ${ }^{\text {i }} \mathrm{Sr} 1-\mathrm{O} 5$	107.18 (3)	$\mathrm{O} 3{ }^{\text {ii- }} \mathrm{Fe} 1-\mathrm{O} 5^{\text {iv }}$	89.60 (4)
O3ii-Sr1-O5	60.39 (3)	O5-Fe1-O5 ${ }^{\text {iv }}$	70.09 (5)
O6 $6^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{O} 5$	136.36 (3)	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 2^{\text {v }}$	169.25 (4)
O6-Sr1-O5	54.77 (3)	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O}^{\text {vi }}$	90.60 (4)
O3i-Sr1-O5 ${ }^{\text {iii }}$	60.39 (3)	$\mathrm{O} 2^{\mathrm{v}}-\mathrm{Mn} 1-\mathrm{O}^{\mathrm{vi}}$	100.11 (4)
O3ii- $\mathrm{Sr} 1-\mathrm{O} 5^{\text {iii }}$	107.18 (3)	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 2^{\text {vii }}$	103.58 (4)
$\mathrm{O} 6^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{O} 5^{\text {iii }}$	54.77 (3)	$\mathrm{O} 2{ }^{\text {v }}-\mathrm{Mn} 1-\mathrm{O} 2^{\text {vii }}$	78.47 (4)
O6-Sr1-O5 ${ }^{\text {iii }}$	136.36 (3)	O6 ${ }^{\text {vi}}-\mathrm{Mn} 1-\mathrm{O} 2^{\text {vii }}$	85.52 (4)
O5-Sr1-O5 ${ }^{\text {iii }}$	164.49 (4)	$\mathrm{O1}{ }^{\mathrm{i}}-\mathrm{Mn1}-\mathrm{O} 5$	86.15 (4)
$\mathrm{O} 3 \mathrm{C}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {i }}$	54.30 (3)	$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Mn} 1-\mathrm{O} 5$	93.44 (4)

O3ii-Srl-O1 ${ }^{\text {i }}$	91.49 (3)	O6 ${ }^{\text {vi }}-\mathrm{Mn} 1-\mathrm{O} 5$	86.65 (4)
$\mathrm{O} 6^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {i }}$	91.23 (3)	$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Mn} 1-\mathrm{O} 5$	167.55 (4)
O6-Srl- Ol^{1}	112.98 (3)	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 4$	90.54 (4)
$\mathrm{O} 5-\mathrm{Sr1}-\mathrm{Ol}^{\text {i }}$	64.17 (3)	$\mathrm{O} 2{ }^{\text {v }}-\mathrm{Mn} 1-\mathrm{O} 4$	79.18 (4)
$\mathrm{O} 5^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {i }}$	109.48 (3)	O6 ${ }^{\text {vi }}-\mathrm{Mn} 1-\mathrm{O} 4$	157.72 (4)
O3 ${ }^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {ii }}$	91.49 (3)	$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Mn} 1-\mathrm{O} 4$	115.78 (3)
O3ii- ${ }^{\text {ii }}$ Srl-O1 ${ }^{\text {ii }}$	54.30 (3)	O5-Mn1-O4	71.23 (3)
O6 ${ }^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {ii }}$	112.98 (3)	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$	111.25 (6)
O6-Sr1-O1 ${ }^{\text {ii }}$	91.23 (3)	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$	105.40 (6)
O5-Sr1-O1 ${ }^{\text {ii }}$	109.48 (3)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$	111.95 (5)
$\mathrm{O} 5^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {ii }}$	64.17 (3)	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 4$	112.17 (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {ii }}$	135.52 (5)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 4$	108.80 (6)
$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O} 4{ }^{\text {iv }}$	117.67 (7)	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 4$	107.21 (6)
$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O}^{\text {v }}$	89.54 (4)	O6-P2-O6 ${ }^{\text {iv }}$	116.11 (7)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Fe} 1-\mathrm{O}^{\text {v }}$	95.53 (4)	O6-P2-O5 ${ }^{\text {iv }}$	112.91 (5)
$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O}^{\text {ii }}$	95.53 (4)	O6 $6^{\text {iv }}-\mathrm{P} 2-\mathrm{O} 5^{\text {iv }}$	106.63 (5)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Fe} 1-\mathrm{O} 3{ }^{\text {ii }}$	89.54 (4)	O6-P2-O5	106.64 (5)
$\mathrm{O}^{\mathrm{v}}-\mathrm{Fe} 1-\mathrm{O}^{\text {ii }}$	170.19 (5)	O6 ${ }^{\text {iv }}$-P2-05	112.91 (5)
$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O} 5$	86.54 (4)	$\mathrm{O} 5{ }^{\text {iv }}-\mathrm{P} 2-\mathrm{O} 5$	100.66 (7)

Symmetry codes: (i) $x-1 / 2,-y+1 / 2,-z+1$; (ii) $-x+3 / 2,-y+1 / 2, z+1 / 2$; (iii) $-x+1, y,-z+3 / 2$; (iv) $-x+2, y,-z+3 / 2$; (v) $x+1 / 2,-y+1 / 2,-z+1$; (vi) $x,-y+1$, $z-1 / 2$; (vii) $-x+3 / 2,-y+1 / 2, z-1 / 2$.

