research communications

Received 17 March 2017 Accepted 10 April 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; oxirane; bio-based molecule; eugenol derivative; epoxy thermoset prepolymer; hydrogen bonding.

CCDC reference: 1543288

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN access

Crystal structure of the diglycidyl ether of eugenol

Jordan Vigier,^a Camille François,^a Sylvie Pourchet,^a Gilles Boni,^a Laurent Plasseraud,^a* Vincent Placet,^b Stéphane Fontaine^c and Hélène Cattey^a*

^aICMUB CNRS UMR 6302, Université de Bourgogne Franche-Comté, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France, ^bFEMTO Institute, Applied Mechanics Department, UMR CNRS 6174, Université de Bourgogne Franche-Comté, 24 Chemin de l'Epitaphe, 25000 Besançon, France, and ^cDRIVE Laboratory, Institut Supérieur de l'Automobile et des Transports, 49 Rue Melle Bourgeois, 58027 Nevers, France. *Correspondence e-mail: laurent.plasseraud@u-bourgogne.fr, hcattey@u-bourgogne.fr

The diepoxy monomer, $C_{13}H_{16}O_4$ {**DGE-Eu**; systematic name: 2-[3-methoxy-4-(oxiran-2-ylmethoxy)benzyl]oxirane}, was synthesized from eugenol by a threestep reaction. It consists of a 1,2,4-trisubstituted benzene ring substituted by diglycidyl ether, a methoxy group and a methyloxirane group. The threemembered oxirane rings are inclined to the benzene ring by 61.0 (3) and 27.9 (3)°. The methylene C atom of one of the two terminal epoxide rings is positionally disordered [refined occupancy ratio = 0.69 (1):0.31 (1)]. In the crystal, molecules are linked by C-H···O hydrogen bonds, forming layers parallel to the *ab* plane. The layers are linked by C-H··· π interactions, forming a three-dimensional network.

1. Chemical context

The past two decades have witnessed an increasing interest in the environmental quest for the replacement of petroleumbased chemicals by monomers from renewable resources. Advances in particular in the catalytic conversion of biomass have led to a wide range of useful platform molecules (Besson et al., 2014). This sustainable approach is also strongly considered in the field of polymer synthesis (Gandini et al., 2016). In the specific domain of epoxy thermosets, numerous studies have been conducted in order to find alternatives to the diglycidyl ether of bisphenol A (BADGE), which is the main building-block used for formulation resins (Auvergne et al., 2014). Classically, the synthetic approach is based on the functionalization of bio-sourced molecules by the grafting of glycidyl ether groups. In this context and in our ongoing studies on the chemical modification of bio-based building blocks for material applications (Mhanna et al., 2014; Bigot et al., 2016; François et al., 2016), we report herein on the synthesis and crystal structure of the diglycidyl ether of eugenol (DGE-Eu), prepared from eugenol in a three-step synthesis (Qin et al., 2014).

A view of the molecular structure of the title compound (**DGE-Eu**), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The major and minor components of atom C12 (C12*A*/C12*B*) are shown.

2. Structural commentary

The title compound (**DGE-EU**), has an asymmetrical structure, which is depicted in Fig. 1. It is composed of a benzene ring with three oxygenated functional groups: (i) 2-[(λ^1 oxidanyl)methyl]oxirane, (ii) methoxy and (iii) 2-methyloxirane. While atoms O1, O2 and C11 lie in the plane of the benzene ring, the methoxy group (O1/C5/C10) is inclined to the benzene ring by 11.2 (3)°. The two oxirane rings (O3/C8/ C9 and O4/C12A/C13) are inclined to the benzene ring by 61.0 (3) and 27.9 (3)°, respectively. The molecule shows disorder with an occupation factor equal to 0.69 (1) for the major component of the methylene group (C12A) of the oxirane ring (C11/C12/O3). Such disorder is commonly observed for diglycidyl ether derivatives (CSD; Groom *et al.*, 2016).

3. Supramolecular features

The crystal packing of **DGE-Eu** viewed along the *c*-axis is depicted in Fig. 2. All oxygen atoms of **DGE-Eu** are involved

Figure 2

Crystal packing of **DGE-Eu** viewed along the *c* axis, showing the layer-like $C-H\cdots O$ hydrogen-bonded network (dashed lines; see Table 1). Only the major component of atom C12 (C12*A*) is shown. For clarity, only H atoms H7*B*, H11*C*, H12*A*, H13*B* and H7*A* have been included.

Table 1		
Hydrogen-bond geometry	(Å,	°).

Cg is the centroid of the benzene ring (C1–C6).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7-H7B\cdots O4^{i}$	0.99	2.53	3.452 (4)	155
$C11 - H11C \cdot \cdot \cdot O3^{ii}$	0.99	2.43	3.413 (4)	170
$C13-H13B\cdots O1^{ii}$	0.99	2.57	3.358 (4)	136
$C12A - H12A \cdots O3^{ii}$	1.00	2.45	3.177 (5)	129
$C7-H7A\cdots Cg^{iii}$	0.99	2.57	3.465 (4)	150

Symmetry codes: (i) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (ii) x + 1, y, z; (iii) $x, -y + 1, z + \frac{1}{2}$.

in C-H···O hydrogen bonds with surrounding molecules, forming layers lying parallel to the *ab* plane (Fig. 2 and Table 1). In addition, the layers are linked C-H··· π interactions, with the C7-H7A group positioned almost orthogonally to the benzene ring, so forming a three-dimensional network (Table 1 and Fig. 3).

4. Database survey

To date, and to the best of our knowledge, only nine crystallographic structures comprising diglycidyl ether-substituted benzene ring moieties have been deposited in the Cambridge Structural Database (WebCSD v1.1.2, update 2017-04-05; Groom et al., 2016). They include 2,2-bis(3,5-dibromo-4-hydiglycidyl droxybenzene)propane ether (COMNEX: Saf'yanov et al., 1984), 2,2-bis[4-(oxiran-2-ylmethoxy)-3,5-dibromophenyl]propane (COMNEY: Cheban et al., 1985), diglycidyl ether of bisphenol A (DGEBPA: Flippen-Anderson & Gilardi, 1980; DGEBPA01: Heinemann et al., 1993; DGEBPA10: Flippen-Anderson & Gilardi, 1981), p-di(2,3epoxypropyloxy)benzene (EOXHOE: Saf'yanov et al., 1977). 2,2'-[1,3-phenylene-bis(oxymethylene)]bis(oxirane) (FITWOU: Bocelli & Grenier-Loustalot, 1987), 2-(4-{4-[4-(oxiran-2-ylmethoxy)phenoxy]phenoy]phenoxymethyl)oxirane (LAQTII: Song et al., 2012) and 10-[2,5-bis(2,3-epoxy-1-propoxy)phenyl]-9-oxa-10-phosphaphenanthren-10-one

Crystal packing of **DGE-Eu**, viewed along the *a* axis, showing the layer-like $C-H\cdots O$ hydrogen-bonded networks linked by $C-H\cdots \pi$ interactions (dashed lines and blue arrows, respectively; see Table 1). For clarity, only H atoms H7*B*, H11*C*, H12*A*, H13*B* and H7*A* (grey ball) have been included. Only the major component of atom C12 (C12*A*) is shown.

research communications

(LIPSOS: Cho et al., 1999). In some of these compounds, an epoxy ring is disordered, which is also observed for the title compound DGE-Eu. In terms of application, these compounds are used as precursors of thermosetting resins. The polymerization process involving the epoxy rings occurs in the presence of amines and acid anhydrides and leads to cross-linked rigid materials.

5. Synthesis and crystallization

The title compound was prepared from a commercial source of eugenol (Sigma-Aldrich), according to a three-step procedure previously reported in the literature (Qin et al., 2014). The details of the synthesis of the title compound are summarized in Fig. 4. Following purification by silica gel column chromatography, colourless prismatic crystals were obtained by slow evaporation of an ethyl acetate solution, and were finally characterized as DGE-Eu.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were placed at calculated positions and refined using a riding model: C-H =0.95–1.00 Å with $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ and $1.2U_{eq}(C)$ for other H atoms. Atom C12 atom of the epoxypropane (oxirane) group (C11/C12/O3) was found to be disordered over two positions with a refined occupancy ratio of 0.69 (1): 0.31 (1) for atoms C12A:C12B.

Acknowledgements

The authors are grateful for general and financial support from the Centre National de la Recherche Scientifique (CNRS-France) and the University of Bourgogne Franche-Comté (BQR PRES 2014-2016 Bourgogne Franche-Comté). CF is thankful for a PhD fellowship awarded by the Conseil Régional de Bourgogne (France) in the frame of the 'Jeunes Chercheurs Entrepreneurs-2016' program.

Funding information

Funding for this research was provided by: Centre National de la Recherche Scientifique; University of Bourgogne Franche-Comté (award No. BQR PRES 2014-2016 Bourgogne Franche-Comté).

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{13}H_{16}O_4$
M _r	236.26
Crystal system, space group	Monoclinic, Cc
Temperature (K)	115
a, b, c (Å)	9.8262 (5), 13.4434 (7), 9.4251 (8)
β (°)	109.897 (2)
$V(\text{\AA}^3)$	1170.71 (13)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.4 \times 0.35 \times 0.3$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker,
	2014)
T_{\min}, T_{\max}	0.700, 0.747
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	18897, 2680, 2586
R _{int}	0.021
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.121, 1.07
No. of reflections	2680
No. of parameters	160
No. of restraints	2
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.69, -0.28
Absolute structure	Flack x determined using 1234 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.20 (18)

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT2015 (Sheldrick. 2015a), SHELXL2015 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).

References

- Auvergne, R., Caillol, S., David, G., Boutevin, B. & Pascault, J.-P. (2014). Chem. Rev. 114, 1082-1115.
- Besson, M., Gallezot, P. & Pinel, C. (2014). Chem. Rev. 114, 1827-1870.
- Bigot, S., Daghrir, M., Mhanna, A., Boni, G., Pourchet, S., Lecamp, L. & Plasseraud, L. (2016). Eur. Polym. J. 74, 26-37.
- Bocelli, G. & Grenier-Loustalot, M.-F. (1987). Acta Cryst. C43, 1221-1223.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.
- Cheban, I. M., Simonov, I. A., Rotaru, V. K. & Malinovskii, T. I. (1985). Dokl. Akad. Nauk SSSR, 283, 621-624.
- Cho, C.-S., Liau, W.-B. & Chen, L.-W. (1999). Acta Cryst. B55, 525-529.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Eu

Figure 4

Reagents and conditions for the synthesis of DGE-Eu from eugenol (Qin et al., 2014): (i) acetic anhydride, 358 K; (ii) m-chloroperoxybenzoic acid, CH₂Cl₂, room temperature; (iii) epichlorohydrin, NaOH, C₂H₅OH, 358 K.

Flippen-Anderson, J. L. & Gilardi, R. (1980). ACA, ser. 2. 8, 36a.

- Flippen-Anderson, J. L. & Gilardi, R. (1981). Acta Cryst. B37, 1433–1435.
- François, C., Pourchet, S., Boni, G., Fontaine, S., Gaillard, Y., Placet, V., Galkin, M. V., Orebom, A., Samec, J. & Plasseraud, L. (2016). *RSC Adv.* 6, 68732–68738.
- Gandini, A., Lacerda, T. M., Carvalho, A. J. F. & Trovatti, E. (2016). *Chem. Rev.* **116**, 1637–1669.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Heinemann, F., Hartung, H. & Derling, S. (1993). Z. Kristallogr. 207, 299–301.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

- Mhanna, A., Sadaka, F., Boni, G., Brachais, C.-H., Brachais, L., Couvercelle, J.-P., Plasseraud, L. & Lecamp, L. (2014). J. Am. Oil Chem. Soc. **91**, 337–348.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Qin, J., Liu, H., Zhang, P., Wolcott, M. & Zhang, J. (2014). Polym. Int. 63, 760–765.
- Saf'yanov, Y. N., Bochkova, T. N., Golovachev, V. P. & Kuz'min, É. A. (1977). *Zh. Struk. Khim.* **18**, 402–405.
- Saf'yanov, Y. N., Golovachev, V. P. & Kuz'min, É. A. (1984). Zh. Struk. Khim. 25, 156–157.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Song, T., Liu, J. & Yang, S. (2012). Acta Cryst. E68, 0719.

supporting information

Acta Cryst. (2017). E73, 694-697 [https://doi.org/10.1107/S2056989017005370]

Crystal structure of the diglycidyl ether of eugenol

Jordan Vigier, Camille François, Sylvie Pourchet, Gilles Boni, Laurent Plasseraud, Vincent Placet, Stéphane Fontaine and Hélène Cattey

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: SHELXT2015 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2015* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

F(000) = 504

 $D_{\rm x} = 1.340 {\rm Mg} {\rm m}^{-3}$

2-[3-Methoxy-4-(oxiran-2-ylmethoxy)benzyl]oxirane

Crystal data

C₁₃H₁₆O₄ $M_r = 236.26$ Monoclinic, Cc Hall symbol: C -2yc a = 9.8262 (5) Å b = 13.4434 (7) Å c = 9.4251 (8) Å $\beta = 109.897$ (2)° V = 1170.71 (13) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: X-ray tube, Siemens KFF Mo 2K-180 Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{\min} = 0.700, T_{\max} = 0.747$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.121$ S = 1.072680 reflections 160 parameters 2 restraints Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9992 reflections $\theta = 2.7 - 33.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 115 KPrism. colourless $0.4 \times 0.35 \times 0.3 \text{ mm}$ 18897 measured reflections 2680 independent reflections 2586 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.021$ $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$ $h = -12 \rightarrow 12$ $k = -17 \rightarrow 17$ $l = -12 \rightarrow 12$ Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

> H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0641P)^2 + 1.3035P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} < 0.001$	Absolute structure: Flack x determined using
$\Delta \rho_{\rm max} = 0.69 \text{ e } \text{\AA}^{-3}$	1234 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et
$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$	<i>al.</i> , 2013)
	Absolute structure parameter: 0.20 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.3186 (2)	0.75130 (14)	0.4046 (2)	0.0215 (4)	
O2	0.3043 (2)	0.59282 (15)	0.5548 (2)	0.0221 (4)	
O3	0.0296 (3)	0.4884 (2)	0.5717 (4)	0.0511 (9)	
O4	0.8644 (3)	0.79876 (18)	0.4484 (3)	0.0406 (7)	
C1	0.6472 (3)	0.6219 (2)	0.3926 (3)	0.0204 (6)	
C2	0.6394 (3)	0.5387 (2)	0.4744 (3)	0.0203 (5)	
H2	0.7121	0.4890	0.4925	0.024*	
C3	0.5262 (3)	0.5260 (2)	0.5313 (3)	0.0204 (6)	
Н3	0.5220	0.4677	0.5867	0.025*	
C4	0.4203 (3)	0.5984 (2)	0.5068 (3)	0.0169 (5)	
C5	0.4272 (3)	0.6842 (2)	0.4242 (3)	0.0171 (5)	
C6	0.5397 (3)	0.6949 (2)	0.3680 (3)	0.0187 (5)	
H6	0.5441	0.7527	0.3119	0.022*	
C7	0.2935 (3)	0.5033 (3)	0.6333 (4)	0.0287 (7)	
H7A	0.3828	0.4935	0.7213	0.034*	
H7B	0.2807	0.4452	0.5655	0.034*	
C8	0.1678 (4)	0.5132 (3)	0.6838 (5)	0.0382 (8)	
H8	0.1691	0.5701	0.7526	0.046*	
C9	0.0890 (4)	0.4237 (4)	0.6998 (5)	0.0522 (12)	
H9A	0.1274	0.3584	0.6826	0.063*	
H9B	0.0428	0.4238	0.7782	0.063*	
C10	0.3084 (3)	0.8287 (2)	0.2985 (4)	0.0269 (6)	
H10A	0.3053	0.7997	0.2020	0.040*	
H10B	0.3929	0.8724	0.3366	0.040*	
H10C	0.2201	0.8674	0.2839	0.040*	
C11	0.7701 (3)	0.6367 (3)	0.3324 (4)	0.0278 (7)	
H11A	0.8071	0.5708	0.3159	0.033*	0.690 (11)
H11B	0.7323	0.6706	0.2334	0.033*	0.690 (11)
H11C	0.8536	0.5974	0.3965	0.033*	0.310 (11)
H11D	0.7401	0.6074	0.2299	0.033*	0.310 (11)
C13	0.9712 (4)	0.7691 (2)	0.3826 (4)	0.0324 (7)	
H13A	0.9471	0.7781	0.2725	0.039*	0.690 (11)
H13B	1.0745	0.7788	0.4434	0.039*	0.690 (11)
H13C	1.0477	0.7222	0.4401	0.039*	0.310 (11)
H13D	1.0014	0.8187	0.3216	0.039*	0.310 (11)

supporting information

C12A	0.8911 (4)	0.6954 (3)	0.4331 (5)	0.0203 (11)	0.690 (11)
H12A	0.9476	0.6614	0.5295	0.024*	0.690 (11)
C12B	0.8184 (12)	0.7317 (8)	0.3230 (12)	0.032 (3)*	0.310 (11)
H12B	0.7600	0.7658	0.2274	0.038*	0.310 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0200 (9)	0.0204 (9)	0.0264 (10)	0.0043 (7)	0.0107 (7)	0.0072 (8)
O2	0.0216 (10)	0.0238 (10)	0.0222 (9)	-0.0004 (8)	0.0089 (8)	0.0056 (8)
03	0.0229 (12)	0.0500 (17)	0.070 (2)	-0.0009 (11)	0.0028 (12)	0.0306 (16)
04	0.0437 (14)	0.0246 (12)	0.0679 (18)	-0.0074 (10)	0.0379 (13)	-0.0174 (12)
C1	0.0174 (12)	0.0230 (13)	0.0210 (13)	-0.0033 (11)	0.0067 (10)	-0.0078 (11)
C2	0.0186 (12)	0.0202 (12)	0.0194 (12)	0.0029 (10)	0.0029 (10)	-0.0036 (10)
C3	0.0226 (13)	0.0187 (12)	0.0168 (12)	-0.0001 (10)	0.0026 (10)	0.0014 (9)
C4	0.0165 (12)	0.0195 (13)	0.0129 (11)	-0.0036 (9)	0.0026 (10)	0.0003 (9)
C5	0.0160 (11)	0.0170 (12)	0.0167 (11)	0.0005 (9)	0.0035 (9)	-0.0010 (9)
C6	0.0191 (12)	0.0175 (12)	0.0198 (12)	-0.0019 (9)	0.0068 (10)	-0.0008 (9)
C7	0.0218 (14)	0.0326 (16)	0.0299 (15)	0.0008 (12)	0.0067 (11)	0.0146 (13)
C8	0.0330 (17)	0.042 (2)	0.0429 (19)	0.0016 (15)	0.0170 (15)	0.0098 (16)
C9	0.0247 (16)	0.056 (2)	0.075 (3)	0.0001 (16)	0.0159 (18)	0.040 (2)
C10	0.0292 (15)	0.0234 (14)	0.0304 (15)	0.0051 (12)	0.0133 (12)	0.0108 (12)
C11	0.0215 (13)	0.0314 (16)	0.0346 (16)	-0.0047 (12)	0.0146 (12)	-0.0140 (12)
C13	0.0323 (16)	0.0259 (14)	0.049 (2)	-0.0044 (13)	0.0267 (15)	-0.0069 (14)
C12A	0.021 (2)	0.020 (2)	0.023 (2)	0.0008 (15)	0.0118 (16)	-0.0013 (15)

Geometric parameters (Å, °)

01—C5	1.361 (3)	C8—H8	1.0000
O1—C10	1.423 (3)	C8—C9	1.467 (5)
O2—C4	1.364 (3)	С9—Н9А	0.9900
O2—C7	1.435 (3)	С9—Н9В	0.9900
O3—C8	1.447 (5)	C10—H10A	0.9800
O3—C9	1.441 (4)	C10—H10B	0.9800
O4—C13	1.444 (4)	C10—H10C	0.9800
O4—C12A	1.430 (4)	C11—H11A	0.9900
O4—C12B	1.432 (11)	C11—H11B	0.9900
C1—C2	1.374 (4)	C11—H11C	0.9900
C1—C6	1.402 (4)	C11—H11D	0.9900
C1-C11	1.513 (4)	C11—C12A	1.473 (5)
С2—Н2	0.9500	C11—C12B	1.375 (12)
С2—С3	1.400 (4)	C13—H13A	0.9900
С3—Н3	0.9500	C13—H13B	0.9900
C3—C4	1.386 (4)	C13—H13C	0.9900
C4—C5	1.406 (4)	C13—H13D	0.9900
С5—С6	1.386 (4)	C13—C12A	1.443 (5)
С6—Н6	0.9500	C13—C12B	1.499 (12)
C7—H7A	0.9900	C12A—H12A	1.0000

supporting information

С7—Н7В	0.9900	C12B—H12B	1.0000
C7—C8	1.473 (5)		
C5—O1—C10	116.4 (2)	O1—C10—H10B	109.5
C4—O2—C7	115.7 (2)	O1—C10—H10C	109.5
C9—O3—C8	61.1 (2)	H10A—C10—H10B	109.5
C12A—O4—C13	60.3 (2)	H10A—C10—H10C	109.5
C12B—O4—C13	62.8 (5)	H10B—C10—H10C	109.5
C2—C1—C6	118.7 (3)	C1—C11—H11A	108.8
C2—C1—C11	121.4 (3)	C1—C11—H11B	108.8
C6-C1-C11	119.9 (3)	C1—C11—H11C	107.6
C1—C2—H2	119.4	C1—C11—H11D	107.6
C1 - C2 - C3	121.1 (3)	H11A—C11—H11B	107.7
C3—C2—H2	119.4	H11C—C11—H11D	107.0
С2—С3—Н3	120.0	C12A—C11—C1	113.6 (3)
C4-C3-C2	120.0 (2)	C12A—C11—H11A	108.8
C4—C3—H3	120.0	C12A—C11—H11B	108.8
$0^{2}-C^{4}-C^{3}$	124.8 (2)	C12B-C11-C1	118 9 (5)
02 - C4 - C5	115.6(2)	C12B— $C11$ — $H11C$	107.6
C_{3} $-C_{4}$ $-C_{5}$	119.6 (2)	C12B— $C11$ — $H11D$	107.6
01 - C5 - C4	115.8(2)	04— $C13$ — $H13A$	117.8
01 - C5 - C6	1247(2)	04— $C13$ — $H13B$	117.8
C6-C5-C4	119.5 (2)	O4-C13-H13C	118.0
C1—C6—H6	119.6 (_)	04-013-1130	118.0
C5-C6-C1	121.2 (2)	O4-C13-C12B	58.2 (5)
С5—С6—Н6	119.4	H13A—C13—H13B	115.0
02—C7—H7A	110.1	H13C-C13-H13D	115.1
O2—C7—H7B	110.1	C12A-C13-O4	59.4 (2)
Q2—C7—C8	108.0 (3)	C12A—C13—H13A	117.8
H7A—C7—H7B	108.4	C12A—C13—H13B	117.8
С8—С7—Н7А	110.1	C12B—C13—H13C	118.0
С8—С7—Н7В	110.1	C12B—C13—H13D	118.0
O3—C8—C7	115.2 (3)	O4—C12A—C11	116.8 (3)
O3—C8—H8	116.8	O4—C12A—C13	60.4 (2)
03-C8-C9	59.3 (2)	O4—C12A—H12A	114.7
С7—С8—Н8	116.8	C11—C12A—H12A	114.7
C9—C8—C7	119.3 (4)	C13—C12A—C11	124.5 (4)
С9—С8—Н8	116.8	C13—C12A—H12A	114.7
O3—C9—C8	59.7 (2)	O4—C12B—C13	59.0 (5)
О3—С9—Н9А	117.8	O4—C12B—H12B	112.2
О3—С9—Н9В	117.8	C11—C12B—O4	123.4 (8)
С8—С9—Н9А	117.8	C11—C12B—C13	127.6 (8)
С8—С9—Н9В	117.8	C11—C12B—H12B	112.2
Н9А—С9—Н9В	114.9	C13—C12B—H12B	112.2
O1—C10—H10A	109.5		
O1-C5-C6-C1	-179.6 (3)	C3—C4—C5—O1	179.6 (2)
O2-C4-C5-01	0.9 (3)	C3—C4—C5—C6	0.2 (4)

$\begin{array}{c} 02 - C4 - C5 - C6 \\ 02 - C7 - C8 - 03 \\ 02 - C7 - C8 - C9 \\ 04 - C13 - C12A - C11 \\ 04 - C13 - C12B - C11 \\ C1 - C2 - C3 - C4 \\ C1 - C11 - C12A - C13 \\ C1 - C11 - C12A - C13 \\ C1 - C11 - C12B - O4 \\ C1 - C11 - C12B - C13 \\ C2 - C1 - C6 - C5 \\ C2 - C1 - C11 - C12A \\ C2 - C1 - C11 - C12B \\ C2 - C3 - C4 - O2 \end{array}$	-178.5(2) 83.5(4) 150.9(4) 103.8(4) -110.4(10) -0.7(4) -69.5(4) -140.5(3) 54.5(11) 128.8(8) -0.1(4) -93.8(4) -146.8(6) 178.8(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$176.7 (3) \\ -0.2 (4) \\ 0.6 (4) \\ 84.8 (4) \\ 31.8 (7) \\ -1.3 (4) \\ 177.3 (2) \\ -103.5 (4) \\ 110.4 (4) \\ -168.6 (2) \\ 10.8 (4) \\ 179.3 (2) \\ -178.8 (2) \\ -116.3 (4) $
C2-C3-C4-O2	178.8 (2)	C13—O4—C12A—C11	-116.3 (4)
C2-C3-C4-C5	0.3 (4)	C13—O4—C12B—C11	117.2 (10)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the benzene ring (C1–C6).

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
C7—H7 <i>B</i> ····O4 ⁱ	0.99	2.53	3.452 (4)	155
С11—Н11С…ОЗіі	0.99	2.43	3.413 (4)	170
C13—H13 <i>B</i> ····O1 ⁱⁱ	0.99	2.57	3.358 (4)	136
C12A—H12A…O3 ⁱⁱ	1.00	2.45	3.177 (5)	129
C7—H7 A ···· Cg^{iii}	0.99	2.57	3.465 (4)	150

Symmetry codes: (i) *x*-1/2, *y*-1/2, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*, -*y*+1, *z*+1/2.