

Received 22 March 2017 Accepted 24 April 2017

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; dibromomethoxyseseline (DBMS); seseline: bromination; bromo product; π - π stacking; C—H···O interactions.

CCDC reference: 1545541

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of dibromomethoxyseselin (DBMS), a photobiologically active pyranocoumarin

A. K. Bauri,^a Sabine Foro^b and A. F. M. M. Rahman^{c*}

^aBio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India, ^bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and ^cDepartment of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh. *Correspondence e-mail: mustafizacce@du.ac.bd

The title compound, $C_{15}H_{14}Br_2O_4$ [systematic name: *rac-(9S,10R)-3,9-dibromo-10-methoxy-8,8-dimethyl-9,10-dihydropyrano[2,3-h]chromen-2(8H)-one]*, is a pyranocoumarin derivative formed by the bromination of seselin, which is a naturally occurring angular pyranocoumarin isolated from the Indian herb *Trachyspermum stictocarpum*. In the molecule, the benzopyran ring system is essentially planar, with a maximum deviation of 0.044 (2) Å for the O atom. The dihydropyran ring is in a half-chair conformation and the four essentially planar atoms of this ring form a dihedral angle of 4.6 (2)° with the benzopyran ring system. In the crystal, molecules are linked by weak $C-H\cdots O$ hydrogen bonds, forming chains propagating along [010]. In addition, $\pi-\pi$ stacking interactions, with centroid–centroid distances of 3.902 (2) and 3.908 (2) Å, link the hydrogen-bonded chains into layers parallel to (001).

1. Chemical context

The title compound is a substituted product of seselin containing two bromine atoms and a methoxy group. This class of pyranocoumarins have an absorption band in the near-UV region due to the presence of extended conjugated double bonds and exhibit photomutagenic (Appendino et al., 2004) and photocarcinogenic properties to bind with the purin base of DNA in a living cell to yield photoadducts (Conforti et al., 2009). Based on the properties of these molecules, they are employed for the treatment of numerous inflammatory skin diseases such as atopic dermatitis and the pigment disorders vitiligo and psoriasis on exposure to ultra violet (UV) radiation in photodynamic therapy (PDT). It has also been found that as a result of their strong ability for absorption of UV radiation, they are utilized as photoprotective agents to prevent the absorption of harmful UV radiation by the skin in the form of a variety of sun-screening lotions widely used in dermatological applications in the cosmetic and pharmaceutical industries (Chen et al., 2007, 2009). In addition to these activities, antiproliferative activity and photo-toxicity of related coumarin molecules has been reported against numerous cancer cell lines such as HL60, A431 (Conconi et al., 1998). Inhibited proliferation in the human hepatocellular carcinoma cell line has also been reported (March et al., 1993). Recently, this type of molecule has been connected as a spacer with porphyrin moieties to obtain a scaffold-type macromolecule (molecular nanotweezers) and has been employed to study the interaction (host-guest interaction) with fullerenes

such as C_{60} and C_{70} (Banerjee *et al.*, 2014; Ghosh *et al.*, 2014) in supramolecular chemistry and material science. Molecular tweezers containing a coumarin moiety showed better quantum yield and fluorescence absorption as a result of the presence of the extended conjugated enone of pyranocoumarin. As part of our ongoing studies in this area, we herein describe the synthesis and structure of the title molecule.

2. Structural commentary

The title molecule (Fig. 1) is composed of three different types of rings *viz*. benzene, pyran and dihydropyran. The benzopyran ring system C1/C5–C12/O2 is essentially planar with a maximum deviation of 0.044 (2) Å for atom O2. The dihydropyran ring C1–C5/O1 is in a half-chair conformation and atoms C2 and C3 deviate by -0.385 (4) and 0.280 (4) Å from the plane through the other four essentially planar atoms (mean deviation 0.003 Å), which makes a dihedral angle of 4.6 (2)° with the benzopyran ring system. The relative stereochemistry at atoms C3 and C4 is *R/S* and *S/R*.

Figure 1

The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C11-H11···O4 ⁱ	0.93	2.57	3.188 (6)	124

Symmetry code: (i) x, y - 1, z.

3. Supramolecular features

In the crystal, molecules are linked by weak C–H···O hydrogen bonds (Table 1), forming chains propagating along [010] (Fig. 2). In addition, π - π stacking interactions with centroid-centroid distances $Cg1 \cdots Cg1(2 - x, -y, 1 - z)$ of 3.902 (2) Å and $Cg1 \cdots Cg2(1 - x, -y, 1 - z)$ of 3.908 (2) Å where Cg1 and Cg2 are the centroids of the C1/C5/C6/C10–C12 and O2/C6–C10 rings, respectively, link the hydrogenbonded chains, forming layers parallel (001) (Fig. 3).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, update November, 2016; Groom *et al.*, 2016) gave more than thirty five hits for both linear and angular pyranocoumarin (psoralen class) structures. They include closely related structures [CSD refcodes AMYROL (Kato, 1970), FUGVOS (Thailambal & Pattabhi, 1987), AMYROL01 (Bauri *et al.*, 2006, 2017)] and a number of structures with various substituents at C3 and C4, many of which are natural products.

Figure 2

Part of the crystal structure with weak $C-H \cdots O$ hydrogen bonds shown as dashed lines. Only the H atoms involved in hydrogen bonds are shown.

research communications

Table 2Experimental details.

Crystal data Chemical formula $C_{15}H_{14}Br_2O_4$ M_r 418.08 Triclinic, $P\overline{1}$ Crystal system, space group Temperature (K) 299 7.119 (1), 8.519 (1), 13.366 (2) a, b, c (Å) α, β, γ (°) V (Å³) 105.34 (2), 90.45 (1), 103.38 (2) 758.4 (2) Z 2 Radiation type Μο Κα μ (mm⁻¹) 5.36 Crystal size (mm) $0.20 \times 0.20 \times 0.16$ Data collection Diffractometer Oxford Diffraction Xcalibur single-crystal X-ray diffractometer with a Sapphire CCD detector Multi-scan (CrysAlis RED; Oxford Absorption correction Diffraction, 2009) 0.364. 0.423 T_{\min}, T_{\max} No. of measured, independent and 5172, 2764, 2144 observed $[I > 2\sigma(I)]$ reflections R_{int} 0.015 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.602 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.035, 0.116, 0.85 No. of reflections 2764 No. of parameters 193 H-atom treatment H-atom parameters constrained $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.46, -0.42

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

5. Synthesis and crystallization

The title compound is a colourless solid substance formed on bromination of the naturally occurring seseline isolated from the methanol extract of T. stictocarpum by means of column chromatography over SiO₂ gel with gradient elution by using a mixture of the binary solvents hexane and ethyl acetate. The bromination was conducted using NBS in methanol at room temperature with continuous stirring by means of mechanical stirrer over a period of 12 h. The reaction product was worked up by the usual method to yield crude product, which was then purified by solvent elution to yield the title compound. A colourless prism-shaped crystal was obtained after recrystallization $(\times 3)$ from ethyl acetate:hexane (1:4) at room temperature by slow evaporation of the solvents. NMR analysis: ¹H NMR data (CDCl₃, 200 MHz): $\delta_{\rm H}$ 8.02 (s, 1H, H-9), 7.32 (d, 1H, J = 8.80 Hz, H-12), 6.82 (d, 1H, J = 8.80 Hz, H-11), 5.36 (d, 1H, J = 6.8 Hz, H-4), 4.26 (d, 1H, J = 6.8 Hz, H-3), 3.56 (s, 3H, -OCH₃, H-13), 1.50 (s, 3H, CH₃, H-13), 1.54 (s, 3H, CH₃, H-14).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were included in calcu-

Figure 3 Part of the crystal structure showing layers of molecules parallel to (001).

lated positions and treated as riding atoms with C-H = 0.93–0.98 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

Acknowledgements

The authors thank Professor Dr Hartmut, FG Strukturforschung, Material-und Geowissenschaften, Technische Universität Darmstadt, for his kind cooperation with the data collection and providing diffractometer time.

References

- Appendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso,
 E., Taglialatela-Scafati, O., Blanco-Molina, M., Macho, A., Fiebich,
 B. L., Bremner, P., Heinrich, M., Ballero, M. & Muñoz, E. (2004). J. Nat. Prod. 67, 532–536.
- Banerjee, S., Ghosh, B. K., Bauri, A. K. & Bhattacharya, S. (2014). J Spectrosc Dyn, 4, 29–34.
- Bauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, 01340–01341.
- Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017). Acta Cryst. E73, 453–455.
- Chen, Y., Fan, G., Zhang, Q., Wu, H. & Wu, Y. (2007). J. Pharm. Biomed. Anal. 43, 926–936.
- Chen, D., Wang, J., Jiang, Y., Zhou, T., Fan, G. & Wu, Y. (2009). J. Pharm. Biomed. Anal. 50, 695–702.
- Conconi, M. T., Montesi, F. & Parnigotto, P. P. (1998). Basic Clin. Pharmacol. Toxicol. 82, 193–198.
- Conforti, F., Marrelli, M., Menichini, F., Bonesi, M., Statti, G., Provenzano, E. & Menichini, F. (2009). *Current Drug Ther.* **4**, 38– 58.
- Ghosh, B. K., Bauri, A. K., Bhattacharya, S. & Banerjee, S. (2014). *Spectrochim. Acta Part A*, **125**, 90–98.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kato, K. (1970). Acta Cryst. B26, 2022-2029.
- March, K. L., Patton, B. L., Wilensky, R. L. & Hathaway, D. R. (1993). *Circulation*, 87, 184–191.
- Oxford Diffraction (2009). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369-2372.

supporting information

Acta Cryst. (2017). E73, 774-776 [https://doi.org/10.1107/S2056989017006132]

Crystal structure of dibromomethoxyseselin (DBMS), a photobiologically active pyranocoumarin

A. K. Bauri, Sabine Foro and A. F. M. M. Rahman

Computing details

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

rac-(9S,10R)-3,9-Dibromo-10-methoxy-8,8-dimethyl-9,10-dihydropyrano[2,3-h]chromen-2(8H)-one

Crystal data

C₁₅H₁₄Br₂O₄ $M_r = 418.08$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.119 (1) Å b = 8.519 (1) Å c = 13.366 (2) Å a = 105.34 (2)° $\beta = 90.45$ (1)° $\gamma = 103.38$ (2)° V = 758.4 (2) Å³

Data collection

Oxford Diffraction Xcalibur single-crystal Xray diffractometer with a Sapphire CCD detector Radiation source: fine-focus sealed tube Graphite monochromator Rotation method data acquisition using ω and phi scans. Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.116$ S = 0.852764 reflections 193 parameters Z = 2 F(000) = 412 $D_x = 1.831 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2165 reflections $\theta = 2.6-27.9^{\circ}$ $\mu = 5.36 \text{ mm}^{-1}$ T = 299 KPrism, colourless $0.20 \times 0.20 \times 0.16 \text{ mm}$

 $T_{\min} = 0.364, T_{\max} = 0.423$ 5172 measured reflections 2764 independent reflections 2144 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$ $\theta_{max} = 25.4^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -8 \rightarrow 8$ $k = -8 \rightarrow 10$ $l = -16 \rightarrow 12$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.004$
$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	1.17651 (6)	0.02924 (6)	0.16407 (4)	0.04731 (18)	
Br2	0.74960 (8)	0.46658 (6)	0.74871 (4)	0.0602 (2)	
O1	0.8143 (4)	-0.2513 (3)	0.2144 (2)	0.0405 (7)	
O2	0.7746 (4)	0.2766 (3)	0.4357 (2)	0.0399 (7)	
O3	0.6525 (4)	0.1428 (3)	0.2086 (2)	0.0416 (7)	
O4	0.7816 (6)	0.5300 (4)	0.5337 (3)	0.0694 (11)	
C1	0.7877 (5)	-0.1487 (5)	0.3085 (3)	0.0322 (8)	
C2	0.7930 (6)	-0.1956 (5)	0.1231 (3)	0.0407 (9)	
C3	0.8945 (5)	-0.0109 (5)	0.1422 (3)	0.0345 (8)	
H3	0.8663	0.0240	0.0807	0.041*	
C4	0.8264 (5)	0.1028 (5)	0.2368 (3)	0.0319 (8)	
H4	0.9274	0.2070	0.2619	0.038*	
C5	0.7908 (5)	0.0188 (5)	0.3224 (3)	0.0305 (8)	
C6	0.7703 (5)	0.1103 (4)	0.4232 (3)	0.0299 (8)	
C7	0.7715 (6)	0.3884 (5)	0.5309 (3)	0.0437 (10)	
C8	0.7530 (6)	0.3147 (5)	0.6187 (3)	0.0357 (9)	
C9	0.7392 (5)	0.1528 (5)	0.6078 (3)	0.0352 (9)	
H9	0.7232	0.1108	0.6656	0.042*	
C10	0.7488 (5)	0.0428 (5)	0.5074 (3)	0.0305 (8)	
C11	0.7447 (5)	-0.1286 (5)	0.4888 (3)	0.0345 (9)	
H11	0.7290	-0.1781	0.5435	0.041*	
C12	0.7636 (6)	-0.2230 (5)	0.3909 (3)	0.0355 (9)	
H12	0.7605	-0.3362	0.3790	0.043*	
C13	0.5762 (7)	-0.2223 (6)	0.0942 (4)	0.0553 (12)	
H13A	0.5609	-0.1819	0.0348	0.066*	
H13B	0.5182	-0.1619	0.1518	0.066*	
H13C	0.5142	-0.3397	0.0780	0.066*	
C14	0.8775 (8)	-0.3121 (6)	0.0381 (4)	0.0590 (13)	
H14A	1.0133	-0.2949	0.0553	0.071*	
H14B	0.8597	-0.2880	-0.0270	0.071*	
H14C	0.8128	-0.4265	0.0325	0.071*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C15	0.6827 (8)	0.2953 (7)	0.1849 (5)	0.0697 (16)	
H15A	0.7553	0.3827	0.2421	0.084*	
H15B	0.5602	0.3182	0.1723	0.084*	
H15C	0.7537	0.2904	0.1238	0.084*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Br1	0.0397 (3)	0.0566 (3)	0.0543 (3)	0.0166 (2)	0.0127 (2)	0.0253 (2)
Br2	0.0801 (4)	0.0457 (3)	0.0433 (3)	0.0097 (2)	0.0166 (2)	-0.0031 (2)
01	0.0586 (18)	0.0296 (14)	0.0347 (15)	0.0149 (13)	0.0110 (13)	0.0074 (12)
O2	0.0640 (19)	0.0262 (14)	0.0344 (15)	0.0166 (13)	0.0096 (13)	0.0114 (11)
03	0.0400 (15)	0.0435 (17)	0.0481 (17)	0.0152 (13)	0.0043 (13)	0.0197 (14)
O4	0.127 (3)	0.0293 (18)	0.060(2)	0.0305 (19)	0.021 (2)	0.0158 (15)
C1	0.0314 (19)	0.031 (2)	0.036 (2)	0.0078 (16)	0.0052 (16)	0.0104 (17)
C2	0.051 (2)	0.039 (2)	0.031 (2)	0.0126 (19)	0.0068 (18)	0.0062 (17)
C3	0.036 (2)	0.040 (2)	0.032 (2)	0.0129 (17)	0.0100 (16)	0.0139 (17)
C4	0.035 (2)	0.031 (2)	0.033 (2)	0.0101 (16)	0.0032 (16)	0.0112 (16)
C5	0.0319 (19)	0.0293 (19)	0.033 (2)	0.0083 (16)	0.0065 (15)	0.0120 (16)
C6	0.0313 (19)	0.0245 (19)	0.035 (2)	0.0061 (15)	0.0039 (16)	0.0096 (15)
C7	0.051 (3)	0.038 (3)	0.043 (2)	0.016 (2)	0.008 (2)	0.0089 (19)
C8	0.038 (2)	0.034 (2)	0.034 (2)	0.0105 (17)	0.0062 (17)	0.0061 (16)
C9	0.035 (2)	0.040 (2)	0.032 (2)	0.0077 (17)	0.0048 (16)	0.0122 (17)
C10	0.0287 (18)	0.032 (2)	0.032 (2)	0.0075 (16)	0.0067 (15)	0.0103 (16)
C11	0.036 (2)	0.033 (2)	0.039 (2)	0.0070 (17)	0.0029 (17)	0.0181 (17)
C12	0.042 (2)	0.027 (2)	0.041 (2)	0.0099 (17)	0.0039 (18)	0.0131 (17)
C13	0.055 (3)	0.050 (3)	0.048 (3)	-0.005 (2)	-0.001 (2)	0.008 (2)
C14	0.088 (4)	0.041 (3)	0.044 (3)	0.019 (2)	0.020 (3)	0.002 (2)
C15	0.068 (4)	0.065 (4)	0.091 (4)	0.029 (3)	-0.003 (3)	0.035 (3)

Geometric parameters (Å, °)

Br1—C3	1.963 (4)	C6—C10	1.388 (5)
Br2—C8	1.876 (4)	C7—C8	1.463 (6)
01—C1	1.371 (4)	C8—C9	1.328 (5)
O1—C2	1.440 (5)	C9—C10	1.432 (5)
O2—C6	1.375 (4)	С9—Н9	0.9300
O2—C7	1.377 (5)	C10-C11	1.408 (5)
O3—C15	1.386 (5)	C11—C12	1.369 (5)
O3—C4	1.431 (4)	C11—H11	0.9300
O4—C7	1.183 (5)	C12—H12	0.9300
C1—C5	1.384 (5)	C13—H13A	0.9600
C1-C12	1.401 (5)	C13—H13B	0.9600
C2—C3	1.524 (6)	C13—H13C	0.9600
C2-C14	1.526 (5)	C14—H14A	0.9600
C2-C13	1.538 (6)	C14—H14B	0.9600
C3—C4	1.533 (5)	C14—H14C	0.9600
С3—Н3	0.9800	C15—H15A	0.9600

supporting information

C4—C5	1.496 (5)	C15—H15B	0.9600
C4—H4	0.9800	C15—H15C	0.9600
C5—C6	1.394 (5)		
C1—01—C2	117.6 (3)	C9—C8—C7	122.9 (4)
C6—O2—C7	123.4 (3)	C9—C8—Br2	122.2 (3)
C15—O3—C4	114.0 (3)	C7—C8—Br2	114.9 (3)
O1—C1—C5	122.4 (3)	C8—C9—C10	120.1 (4)
O1—C1—C12	115.6 (3)	С8—С9—Н9	119.9
C5-C1-C12	122.0 (3)	С10—С9—Н9	119.9
01 - C2 - C3	111.0(3)	C6-C10-C11	117.6 (3)
01 - C2 - C14	104.5 (3)	C6-C10-C9	118.1 (3)
C_{3} C_{2} C_{14}	113 4 (3)	C11-C10-C9	1243(3)
01 - C2 - C13	109.0 (3)	C12-C11-C10	120.4(3)
C_{3} C_{2} C_{13}	109.7(3)	C12—C11—H11	119.8
$C_{14} - C_{2} - C_{13}$	109.1(3)	C10-C11-H11	119.8
C_{2} C_{3} C_{4}	103.1(1) 113.0(3)	C11-C12-C1	119.9 (3)
$C_2 - C_3 - Br_1$	112.0(3)	C11—C12—H12	120.0
C4-C3-Br1	107.3(3)	C1-C12-H12	120.0
$C^2 - C^3 - H^3$	107.5 (5)	C_2 C_1^2 H_1^2	109.5
C4 - C3 - H3	108.1	C_2 C_{13} H_{13R}	109.5
Br1 - C3 - H3	108.1	$H_{13}A - C_{13} - H_{13}B$	109.5
03-C4-C5	100.1 109.4(3)	C^2 — C^{13} — $H^{13}C$	109.5
03 - C4 - C3	109.1(3) 110.3(3)	$H_{13}A - C_{13} - H_{13}C$	109.5
$C_{5} - C_{4} - C_{3}$	110.5(3)	H13B_C13_H13C	109.5
C_{3} C_{4} H_{4}	108.8	C2 - C14 - H144	109.5
$C_5 C_4 H_4$	108.8	$C_2 = C_1 + H_1 A_B$	109.5
$C_3 = C_4 = H_4$	108.8	$H_{14A} = C_{14} = H_{14B}$	109.5
C_{1} C_{5} C_{6}	116.3 (3)	$C_2 C_1 A H_1 A C_2$	109.5
C1 - C5 - C4	110.5(5) 122.9(3)	$H_{14A} = C_{14} + H_{14C}$	109.5
$C_{1} - C_{2} - C_{4}$	122.9(3) 120.7(3)	$H_{14} = C_{14} = H_{14} C_{14}$	109.5
$C_{0} = C_{0} = C_{1}$	120.7(3)	1114D - C14 - 1114C	109.5
02 - 0 - 010	120.0(3)	$O_2 C_{15} H_{15} R$	109.5
02 - 00 - 03	113.0(3) 122.8(3)	U3-C15-H15B	109.5
C10 - C0 - C3	123.0(3)	$\Omega^2 = \Omega^2 $	109.5
$04 - C7 - C^{2}$	110.2(4)		109.5
04 - 07 - 08	127.1(4)	HISA—CIS—HISC	109.5
02-07-08	114.7 (5)	HI3B-CI3-HI3C	109.5
C2 01 C1 C5	-16.9 (6)	C7 $O2$ $C6$ $C10$	15(6)
$C_2 = 01 = C_1 = C_3$	-10.0(0) 165.2(2)	C^{-}_{-} C^{-	4.3(0)
$C_2 = 01 = C_1 = C_{12}$	103.3(3)	$C_{1} = 02 = 00 = 03$	-1/4.0(3)
C1 = 01 = C2 = C3	44.2(3)	C1 = C5 = C6 = O2	1/9.7(3)
C1 = 01 = C2 = C14	100.8(3)	C4 - C5 - C6 - O2	5.4 (5) 0.4 (6)
$C_1 - C_1 - C_2 - C_1 $	-70.7(4)	$C_1 - C_5 - C_6 - C_{10}$	0.4(0)
01 - 02 - 03 - 04	-35.5(4)	C4 - C5 - C6 - C10	-1/6.0(3)
$C_{14} - C_{2} - C_{3} - C_{4}$	-1/2.0(4)	$C_{0} = 02 = 07 = 04$	1//.8 (4)
C13 - C2 - C3 - C4	05.1 (4)	$C_0 - C_2 - C_1 - C_8$	-3.0(6)
UI - U2 - U3 - Brl	66.0 (3)	04-07-08-09	1/8.8 (5)
C14—C2—C3—Brl	-51.3 (4)	02—C7—C8—C9	-0.3 (6)

C_{12} C_{2} C_{2} $D_{\pi^{1}}$	1725(2)	$O_4 = C_7 = C_8 = D_{\pi^2}$	1 1 (7)
C13-C2-C3-BI1	-1/5.5(3)	04—C7—C8—Bf2	-1.1(7)
C15—O3—C4—C5	142.1 (4)	O2—C7—C8—Br2	179.8 (3)
C15—O3—C4—C3	-96.1 (4)	C7—C8—C9—C10	2.2 (6)
C2—C3—C4—O3	-83.3 (4)	Br2-C8-C9-C10	-178.0 (3)
Br1—C3—C4—O3	152.6 (2)	O2-C6-C10-C11	179.7 (3)
C2—C3—C4—C5	37.8 (4)	C5-C6-C10-C11	-1.0 (6)
Br1-C3-C4-C5	-86.2 (3)	O2—C6—C10—C9	-2.5 (5)
O1—C1—C5—C6	-177.2 (3)	C5—C6—C10—C9	176.8 (3)
C12—C1—C5—C6	0.5 (6)	C8—C9—C10—C6	-0.8 (6)
O1—C1—C5—C4	-1.0 (6)	C8—C9—C10—C11	176.9 (4)
C12—C1—C5—C4	176.8 (3)	C6-C10-C11-C12	0.7 (5)
O3—C4—C5—C1	111.1 (4)	C9—C10—C11—C12	-177.0 (4)
C3—C4—C5—C1	-10.6 (5)	C10-C11-C12-C1	0.1 (6)
O3—C4—C5—C6	-72.7 (4)	O1-C1-C12-C11	177.1 (3)
C3—C4—C5—C6	165.6 (3)	C5-C1-C12-C11	-0.8 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11····O4 ⁱ	0.93	2.57	3.188 (6)	124

Symmetry code: (i) x, y-1, z.