Synthesis and crystal structure of $bis(\mu-2-methyl-benzenethiolato-\kappa^2 S:S)bis[methyl(2-methyl-benzenethiolato-\kappa S)indium(III)]$

Glen G. Briand,^a* Andreas Decken,^b Courtney M. Dickie^a and Gregory MacNeil^a

^aDepartment of Chemistry and Biochemistry, Mount Allison University, 63C York Street, Sackville, NB, E4L 1G8, Canada, and ^bDepartment of Chemistry, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada. *Correspondence e-mail: gbriand@mta.ca

The dinuclear title compound, $[In_2(CH_3)_2(C_7H_7S)_4]$ or $[Me(2-MeC_6H_4S)In-\mu$ -(2-MeC₆H₄S)₂InMe(2-MeC₆H₄S)], was prepared from the 1:2 reaction of Me₃In and 2-MeC₆H₄SH in toluene. Its crystal structure exhibits a four-membered In₂S₂ ring core *via* bridging (2-MeC₆H₄S) groups. The dimeric units are further associated into a one-dimensional polymeric structure extending parallel to the *a* axis *via* intermolecular In···S contacts. The In atoms are then in distorted trigonal–bipyramidal CS₄ bonding environments.

1. Chemical context

Methylindium dithiolates $[MeIn(S_2R)]$ have been shown to be useful compounds for the ring-opening polymerization (ROP) of cyclic esters to produce biodegradable polymers (Allan et al., 2013; Briand et al., 2016). These compounds are prepared from the stoichiometric reaction of InMe₃ with polydentate amino/oxo-dithiols. However, the 1:2 reaction of triorganylindium (R_3In) with simple monothiols (R'SH) often results in isolation of the diorganylindium thiolate $R_2 In(SR')$ (Hoffmann, 1988; Nomura et al., 1989). The favourable formation of the organylindium dithiolate $RIn(SR')_2$ was reported to be determined by the steric bulk of the thiolate ligand and the R-In group, and the acidity of the thiol reactant. The 1:2 reaction of nBu₃In or iBu₃In and PhSH afforded the dithiolate $RIn(SPh)_2$ (R = nBu, *iBu*) as solids, although the compounds were poorly soluble in organic solvents, precluding crystallization. All compounds in these studies were primarily characterized by NMR. The only structurally characterized example of such a compound is [(Me₃Si)₃C](PhS)In-µ- $(PhS)_2In[C(Me_3Si)_3](SPh)$, which is prepared from the redox reaction of the indium(I) compound [(Me₃Si)₃CIn]₄ and the disulfide (SPh)₂ (Peppe et al., 2009). The 1:2 reaction of Me₃In and 2-MeC₆H₄SH in toluene affords [Me(2-MeC₆H₄S)In-µ- $(2-MeC_6H_4S)_2InMe(2-MeC_6H_4S)]$, (I), in high yield. The modest steric bulk afforded by the 2-MeC₆H₄ group moderates intermolecular bonding and increases solubility in organic solvents without preventing formation of the $RIn(SR')_2$ species. The observation of only one signal for the MeIn and 2-MeC₆H₄S groups in the ¹H NMR study suggests that the compound dissociates into MeIn(2-MeC₆H₄S)₂ monomers in tetrahydrofuran solution.

Received 17 February 2017 Accepted 3 March 2017

Edited by A. J. Lough, University of Toronto, Canada

CRYSTALLOGRAPHIC

COMMUNICATIONS

Keywords: crystal structure; indium; thiolate; dinuclear; coordination polymer.

CCDC reference: 1535922

Supporting information: this article has supporting information at journals.iucr.org/e

ISSN 2056-9890

2. Structural commentary

The asymmetric unit comprises the dinuclear compound, $[Me(2-MeC_6H_4S)In-\mu-(2-MeC_6H_4S)_2InMe(2-MeC_6H_4S)]$, (I) (Fig. 1). The two unique indium atoms are each bonded to a methyl carbon atom, and one terminal and one bridging (2- MeC_6H_4S) group, generating a nearly square-planar fourmembered In_2S_2 ring core [S2-In1-S3 = 88.28 (6), In1-S2-In2 = 91.86 (6), S2-In2-S3 = 87.02 (6), In1-S3-In2 = 92.58 (7)°]. The In atoms are in distorted trigonal-pyramidal CS_3 bonding environments [C1-In1-S1 = 127.3 (2), C1-In1-S2 = 113.1 (3), S1-In1-S2 = 114.66 (7), C1-In1-S3 = 105.7 (2), S1-In1-S3 = 96.94 (6), S2-In1-S3 = 88.28 (6), C2-In2-S3 = 118.2 (3), C2-In2-S4 = 124.1 (3), S3-In2- S4 = 115.00 (7), C2-In2-S2 = 102.4 (2), S2-In2-S3 = 87.02 (6), S2-In2-S4 = 95.87 (6)°]. Bond lengths and angles are similar at each indium atom.

Figure 1

The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

3. Supramolecular features

The dimeric structures are further associated into onedimensional polymers extending parallel to the *a* axis *via* intermolecular In···S contacts [In1···S4(x - 1, y, z) = 3.091 (2), In2···S1(x + 1, y, z) = 2.920 (2) Å] (sum of metallic/ van der Waals radii = 3.52 Å; Bondi, 1964) (Fig. 2). Such contacts are common for indium and other heavy main group metal chalcogenolates due to their large metal radii and potential for high coordination numbers (Briand *et al.*, 2010, 2011, 2012; Appleton *et al.*, 2011). This leads to the formation of insoluble materials for *i*BuIn(SPh)₂ (Nomura *et al.*, 1989). The steric bulk provided by the Me group of the (2-MeC₆H₄S) ligand is sufficient to moderate intermolecular contacts and afford solubility in organic solvents (*e.g.* toluene and tetrahydrofuran).

4. Database survey

The dinuclear structure of (I) is similar to that [Me(MeO₂CCH₂CH₂S)In-µ-(MeO₂CCH₂CH₂S)₂InMeof (MeO₂CCH₂CH₂S)] (Allan et al., 2013). However, the ester carbonyl oxygen atoms of the terminal MeO₂CCH₂CH₂S groups occupy the coordination site *trans* to the axial bridging thiolate sulfur atom. This precludes intermolecular In...S bonding and yields discrete dimeric units. The structure of (I) is also similar to that of the structure of dimeric $[(Me_3Si)_3C](PhS)In-\mu-(PhS)_2In[C(Me_3Si)_3](SPh)$ (Peppe et al., 2009). However, the steric bulk of the (Me₃Si)₃C precludes further intermolecular In · · · S bonding and the indium atoms are restricted to a four-coordinate distorted tetrahedral bonding environment. Other reported methylindium dithiolates employ polydentate dithiolate ligands, some of which possess dimeric and trimeric structures (Briand et al., 2016).

5. Synthesis and crystallization

2-Methylbenzenethiol (0.300 g, 2.42 mmol) in toluene (2 ml) was added dropwise to a stirred solution of $InMe_3$ (0.193 g, 1.21 mmol) in toluene (5 ml). The solution was stirred for 18 h and concentrated *in vacuo* to 4 ml. After sitting at 296 K for 1 d, the solution was filtered to yield colourless, needle-like

Part of the crystal structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -1 + x, y, z; (ii) 1 + x, y, z.]

Table 1Experimental details.

Crystal data	
Chemical formula	$[In_2(CH_3)_2(C_7H_7S)_4]$
M _r	752.45
Crystal system, space group	Monoclinic, <i>P</i> 2 ₁
Temperature (K)	173
a, b, c (Å)	7.4441 (15), 14.625 (3), 14.074 (3)
β (°)	99.693 (3)
$V(Å^3)$	1510.4 (5)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.82
Crystal size (mm)	$0.45 \times 0.08 \times 0.03$
Data collection	
Diffractometer	Bruker SMART1000/P4
Absorption correction	Multi-scan (SADABS; Sheldrick, 2008a)
T_{\min}, T_{\max}	0.495, 0.956
No. of measured, independent and	10442, 5591, 4742
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.041
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.074, 1.04
No. of reflections	5591
No. of parameters	332
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.49, -1.01
Absolute structure	Flack (1983), 2079 Friedel pairs
Absolute structure parameter	0.41 (3)

Computer programs: *SMART* (Bruker, 1999), *SAINT* (Bruker, 2006), *SHELXS97* and *SHELXTL* (Sheldrick, 2008b), *SHELXL2013* (Sheldrick, 2015) and *DIAMOND* (Brandenburg, 2012).

crystals of (I). Yield: 0.317 g (0.421 mmol, 70%). Analysis calculated for $C_{30}H_{34}S_4In_2$: C, 47.88; H, 4.55; N, 0.00. Found: C, 46.88; H, 4.55; N, <0.3. M.p 421–422 K.

FT-IR (cm⁻¹): 672 s, 705 s, 741 s, 800 w, 846 w, 861 w, 939 w, 978 w, 1041 m, 1055 m, 1280 w, 1378 w, 1451 m, 1464 m, 1585 w, 2913 w, 3056 w. FT-Raman (cm⁻¹): 121 vs, 158 s, 244 w, 322 m, 443 w, 508 s, 552 w, 675 w, 800 m, 1043 s, 1128 w, 1148 w, 1204 m, 1465 w, 1565 w, 1586 m, 2916 w, 3047 m. ¹H NMR (200 MHz, thf- d_8 , p.p.m.): $\delta = 0.23$ [s, 3H, MeIn], 2.60 [s, 6H, (S-2-MeC₆H₄)], 7.06–7.11 [m, 4H, (S-2-MeC₆H₄)] 7.23–7.28 [m, 2H, (S-2-MeC₆H₄)], 7.62–7.66 [m, 2H, (S-2-MeC₆H₄)].

¹³C{¹H} NMR (101 MHz, thf- d_8 , p.p.m.): $\delta = -5.1$ (*Me*In), 21.7 (S-2-*Me*C₆H₄), 124.1, 125.2, 129.4, 134.6, 138.4, 139.7 (S-2-MeC₆H₄)].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were included in calculated positions and refined using a riding model.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada; Canada Foundation for Innovation; New Brunswick Innovation Foundation; Mount Allison University.

References

- Allan, L. E. N., Briand, G. G., Decken, A., Marks, J. D., Shaver, M. P. & Wareham, R. G. (2013). J. Organomet. Chem. 736, 55–62.
- Appleton, S. E., Briand, G. G., Decken, A. & Smith, A. S. (2011). *Acta Cryst.* E67, m714.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Brandenburg, K. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Briand, G. G., Cairns, S. A., Decken, A., Dickie, C. M., Kostelnik, T. I. & Shaver, M. P. (2016). *J. Organomet. Chem.* **806**, 22–32.
- Briand, G. G., Decken, A. & Hamilton, N. (2010). *Dalton Trans.* **39**, 3833–3841.
- Briand, G. G., Decken, A., Hunter, N. M., Lee, G. M., Melanson, J. A. & Owen, E. M. (2012). *Polyhedron*, **31**, 796–800.
- Briand, G. G., Decken, A., Hunter, N. M., Wright, J. A. & Zhou, Y. (2011). *Eur. J. Inorg. Chem.* pp. 5430–5436.
- Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2006). SAINT. Bruker AXS inc., Madison, Wisconsin, USA.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hoffmann, G. G. (1988). J. Organomet. Chem. 338, 305-317.
- Nomura, R., Inazawa, S., Kanaya, K. & Matsuda, H. (1989). Polyhedron, 8, 763-767.
- Peppe, C., Molinos de Andrade, F. & Uhl, W. (2009). J. Organomet. Chem. 694, 1918–1921.
- Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2017). E73, 481-483 [https://doi.org/10.1107/S2056989017003498]

Synthesis and crystal structure of bis(μ -2-methylbenzenethiolato- κ^2 S:S)bis-[methyl(2-methylbenzenethiolato-*kS*)indium(III)]

Glen G. Briand, Andreas Decken, Courtney M. Dickie and Gregory MacNeil

Computing details

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

 $Bis(\mu-2-methylbenzenethiolato-\kappa^2 S:S)bis[methyl(2-methylbenzenethiolato-\kappa S)indium(III)]$

Crystal data	
$[In_2(CH_3)_2(C_7H_7S)_4]$	F(000) = 752
$M_r = 752.45$	$D_{\rm x} = 1.655 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1$	Mo K α radiation, $\lambda = 0.71073$ Å
a = 7.4441 (15) Å	Cell parameters from 5877 reflections
b = 14.625 (3) Å	$\theta = 2.8 - 27.8^{\circ}$
c = 14.074 (3) Å	$\mu = 1.82 \text{ mm}^{-1}$
$\beta = 99.693 (3)^{\circ}$	T = 173 K
V = 1510.4 (5) Å ³	Rod, colourless
Z = 2	$0.45\times0.08\times0.03~mm$
Data collection	
Bruker SMART1000/P4	10442 measured reflections
diffractometer	5591 independent reflections
Radiation source: fine-focus sealed tube, K760	4742 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.041$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.5^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Sheldrick, 2008a)	$k = -18 \rightarrow 19$
$T_{\min} = 0.495, \ T_{\max} = 0.956$	$l = -18 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from

neighbouring sites

where $P = (F_0^2 + 2F_c^2)/3$

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.074$ *S* = 1.04 H-atom parameters constrained 5591 reflections $w = 1/[\sigma^2(F_o^2) + (0.0276P)^2]$ 332 parameters 1 restraint $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.49 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -1.01 \ {\rm e} \ {\rm \AA}^{-3}$

sup-1

Absolute structure: Flack (1983), 2079 Friedel pairs

Absolute structure parameter: 0.41 (3)

Special details

Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
In1	0.60776 (7)	0.80291 (3)	0.26699 (4)	0.02518 (14)	
In2	1.05764 (7)	0.69727 (3)	0.23677 (4)	0.02406 (14)	
S1	0.4196 (2)	0.70588 (16)	0.35474 (14)	0.0268 (4)	
S2	0.7227 (3)	0.72420 (11)	0.12869 (14)	0.0218 (4)	
S3	0.9290 (3)	0.76607 (13)	0.37732 (15)	0.0232 (4)	
S4	1.2193 (2)	0.80568 (17)	0.14747 (13)	0.0268 (4)	
C1	0.5973 (11)	0.9472 (6)	0.2527 (7)	0.036 (2)	
H1A	0.6958	0.9746	0.2988	0.054*	
H1B	0.4796	0.9694	0.2656	0.054*	
H1C	0.6115	0.9641	0.1870	0.054*	
C2	1.0874 (11)	0.5515 (5)	0.2317 (7)	0.034 (2)	
H2A	1.2104	0.5364	0.2206	0.051*	
H2B	0.9975	0.5265	0.1792	0.051*	
H2C	1.0678	0.5249	0.2931	0.051*	
C3	0.4643 (10)	0.7328 (5)	0.4795 (6)	0.0235 (17)	
C4	0.4170 (10)	0.6667 (5)	0.5433 (6)	0.0269 (18)	
C5	0.4608 (11)	0.6852 (6)	0.6420 (6)	0.0346 (19)	
Н5	0.4308	0.6413	0.6865	0.042*	
C6	0.5449 (11)	0.7639 (6)	0.6763 (6)	0.035 (2)	
H6	0.5751	0.7736	0.7439	0.042*	
C7	0.5863 (11)	0.8296 (5)	0.6137 (6)	0.034 (2)	
H7	0.6436	0.8850	0.6376	0.040*	
C8	0.5435 (10)	0.8145 (6)	0.5147 (5)	0.0297 (18)	
H8	0.5687	0.8604	0.4711	0.036*	
C9	0.3221 (13)	0.5794 (6)	0.5076 (6)	0.041 (2)	
H9A	0.2848	0.5467	0.5618	0.061*	
H9B	0.4054	0.5410	0.4780	0.061*	
H9C	0.2143	0.5937	0.4597	0.061*	
C10	0.6499 (9)	0.6072 (5)	0.1171 (5)	0.0196 (16)	
C11	0.6429 (10)	0.5650 (5)	0.0265 (6)	0.0254 (17)	
C12	0.6019 (10)	0.4720 (5)	0.0215 (6)	0.0307 (19)	
H12	0.5984	0.4414	-0.0383	0.037*	
C13	0.5667 (11)	0.4229 (5)	0.0989 (6)	0.035 (2)	
H13	0.5361	0.3599	0.0918	0.042*	

C14	0.5755 (11)	0.4651 (5)	0.1872 (6)	0.0305 (19)
H14	0.5540	0.4311	0.2417	0.037*
C15	0.6163 (11)	0.5583 (5)	0.1957 (6)	0.0285 (18)
H15	0.6208	0.5881	0.2560	0.034*
C16	0.6849 (12)	0.6168 (6)	-0.0591 (6)	0.037 (2)
H16A	0.8122	0.6372	-0.0464	0.056*
H16B	0.6045	0.6701	-0.0708	0.056*
H16C	0.6656	0.5770	-0.1159	0.056*
C17	1.0334 (10)	0.8758 (5)	0.4071 (6)	0.0281 (18)
C18	1.0799 (11)	0.8983 (6)	0.5038 (7)	0.038 (2)
C19	1.1513 (12)	0.9872 (7)	0.5242 (8)	0.050 (3)
H19	1.1826	1.0054	0.5897	0.060*
C20	1.1768 (12)	1.0467 (7)	0.4554 (9)	0.058 (3)
H20	1.2259	1.1055	0.4727	0.070*
C21	1.1315 (12)	1.0226 (6)	0.3587 (8)	0.049 (3)
H21	1.1498	1.0646	0.3097	0.059*
C22	1.0589 (11)	0.9361 (5)	0.3345 (7)	0.037 (2)
H22	1.0272	0.9187	0.2688	0.044*
C23	1.0596 (12)	0.8356 (7)	0.5848 (6)	0.045 (2)
H23A	1.1387	0.7822	0.5831	0.068*
H23B	0.9325	0.8154	0.5782	0.068*
H23C	1.0941	0.8677	0.6462	0.068*
C24	1.1434 (10)	0.7751 (5)	0.0239 (6)	0.0267 (18)
C25	1.0177 (10)	0.8323 (5)	-0.0341 (5)	0.0276 (18)
C26	0.9738 (11)	0.8081 (7)	-0.1314 (6)	0.042 (2)
H26	0.8901	0.8452	-0.1730	0.050*
C27	1.0464 (13)	0.7330 (6)	-0.1693 (6)	0.045 (2)
H27	1.0144	0.7192	-0.2360	0.054*
C28	1.1654 (12)	0.6781 (6)	-0.1103 (7)	0.044 (2)
H28	1.2144	0.6253	-0.1359	0.053*
C29	1.2146 (10)	0.6990 (6)	-0.0141 (6)	0.0334 (17)
H29	1.2980	0.6608	0.0263	0.040*
C30	0.9353 (11)	0.9151 (6)	0.0057 (7)	0.040 (2)
H30A	1.0317	0.9593	0.0289	0.060*
H30B	0.8745	0.8965	0.0593	0.060*
H30C	0.8462	0.9432	-0.0451	0.060*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
In1	0.0262 (3)	0.0223 (2)	0.0294 (3)	-0.0009 (2)	0.0116 (2)	-0.0015 (3)
In2	0.0220 (3)	0.0244 (3)	0.0273 (3)	-0.0018 (2)	0.0085 (2)	-0.0032 (2)
S1	0.0209 (9)	0.0376 (11)	0.0221 (10)	-0.0070 (10)	0.0047 (8)	-0.0036 (10)
S2	0.0205 (10)	0.0232 (9)	0.0225 (10)	-0.0030(7)	0.0057 (8)	-0.0025 (8)
S3	0.0218 (10)	0.0283 (9)	0.0203 (10)	-0.0009 (8)	0.0062 (9)	-0.0015 (8)
S4	0.0204 (9)	0.0356 (10)	0.0244 (10)	-0.0058 (11)	0.0039 (8)	0.0023 (11)
C1	0.033 (5)	0.031 (5)	0.042 (5)	-0.004 (4)	0.003 (4)	-0.006 (4)
C2	0.027 (5)	0.021 (4)	0.053 (6)	0.006 (3)	0.005 (4)	-0.004 (4)

supporting information

C3	0.016 (4)	0.026 (3)	0.029 (4)	0.007 (3)	0.006 (3)	0.000 (3)
C4	0.021 (4)	0.033 (4)	0.027 (4)	0.005 (3)	0.004 (3)	0.002 (3)
C5	0.044 (5)	0.033 (4)	0.027 (4)	0.005 (4)	0.008 (4)	0.005 (4)
C6	0.035 (5)	0.044 (4)	0.025 (5)	0.001 (4)	0.005 (4)	-0.002 (4)
C7	0.033 (5)	0.032 (4)	0.037 (5)	-0.008 (4)	0.008 (4)	-0.014 (4)
C8	0.027 (4)	0.032 (4)	0.032 (4)	0.001 (4)	0.010 (3)	-0.002 (4)
C9	0.059 (6)	0.039 (5)	0.022 (5)	-0.011 (4)	0.004 (4)	0.002 (4)
C10	0.010 (4)	0.024 (4)	0.025 (4)	0.002 (3)	0.005 (3)	-0.002 (3)
C11	0.017 (4)	0.031 (4)	0.030 (4)	0.006 (3)	0.009 (3)	-0.003 (3)
C12	0.027 (4)	0.029 (4)	0.036 (5)	0.003 (4)	0.002 (4)	-0.012 (4)
C13	0.032 (5)	0.021 (4)	0.052 (6)	-0.009 (4)	0.008 (4)	0.000 (4)
C14	0.029 (5)	0.026 (4)	0.040 (5)	0.000 (3)	0.016 (4)	0.001 (4)
C15	0.031 (5)	0.030 (4)	0.025 (4)	-0.004 (4)	0.009 (4)	0.001 (3)
C16	0.040 (5)	0.041 (5)	0.032 (5)	-0.001 (4)	0.010 (4)	0.000 (4)
C17	0.018 (4)	0.029 (4)	0.038 (5)	-0.002 (3)	0.007 (4)	-0.008 (4)
C18	0.013 (4)	0.046 (5)	0.054 (6)	0.008 (4)	0.007 (4)	-0.022 (5)
C19	0.026 (5)	0.066 (7)	0.058 (7)	-0.005 (5)	0.005 (5)	-0.037 (6)
C20	0.026 (5)	0.054 (6)	0.096 (10)	-0.011 (5)	0.015 (6)	-0.036 (7)
C21	0.036 (5)	0.035 (5)	0.081 (8)	-0.008 (4)	0.021 (5)	-0.012 (5)
C22	0.034 (5)	0.029 (4)	0.052 (6)	-0.007 (4)	0.023 (4)	-0.009 (4)
C23	0.037 (5)	0.071 (6)	0.027 (5)	0.012 (5)	0.003 (4)	-0.007 (4)
C24	0.023 (4)	0.035 (4)	0.024 (4)	-0.007 (3)	0.011 (3)	0.003 (3)
C25	0.024 (4)	0.033 (4)	0.025 (4)	-0.010 (3)	0.002 (3)	0.005 (3)
C26	0.039 (5)	0.049 (5)	0.034 (5)	-0.013 (5)	-0.006 (4)	0.015 (5)
C27	0.053 (6)	0.061 (6)	0.020 (5)	-0.028 (5)	0.004 (4)	-0.002 (4)
C28	0.048 (6)	0.044 (6)	0.043 (6)	-0.011 (5)	0.017 (5)	-0.017 (4)
C29	0.022 (4)	0.042 (4)	0.038 (5)	-0.003 (4)	0.009 (3)	0.000 (5)
C30	0.027 (5)	0.035 (4)	0.055 (6)	0.004 (4)	-0.002 (4)	0.015 (4)

Geometric parameters (Å, °)

In1—C1	2.119 (9)	C12—C13	1.366 (12)
In1—S1	2.466 (2)	C12—H12	0.9500
In1—S2	2.531 (2)	C13—C14	1.379 (11)
In1—S3	2.678 (2)	С13—Н13	0.9500
In1—S4 ⁱ	3.0910 (19)	C14—C15	1.398 (10)
In2—C2	2.146 (8)	C14—H14	0.9500
In2—S4	2.460 (2)	C15—H15	0.9500
In2—S3	2.546 (2)	C16—H16A	0.9800
In2—S2	2.722 (2)	C16—H16B	0.9800
In2—S1 ⁱⁱ	2.9201 (19)	C16—H16C	0.9800
S1—C3	1.776 (8)	C17—C22	1.386 (12)
S1—In2 ⁱ	2.9201 (19)	C17—C18	1.386 (12)
S2—C10	1.794 (7)	C18—C19	1.415 (12)
S3—C17	1.802 (8)	C18—C23	1.491 (13)
S4—C24	1.792 (8)	C19—C20	1.339 (15)
C1—H1A	0.9800	С19—Н19	0.9500
C1—H1B	0.9800	C20—C21	1.391 (14)

supporting information

C1—H1C	0.9800	С20—Н20	0.9500
C2—H2A	0.9800	C21—C22	1.395 (11)
C2—H2B	0.9800	C21—H21	0.9500
C2—H2C	0.9800	С22—Н22	0.9500
C3—C8	1.386 (10)	С23—Н23А	0.9800
C3—C4	1.404 (10)	C23—H23B	0.9800
C4—C5	1.398 (11)	С23—Н23С	0.9800
C4—C9	1.504 (11)	C24—C29	1.379 (11)
C5—C6	1.361 (11)	C24—C25	1.409 (10)
C5—H5	0.9500	C25—C26	1.399 (11)
C6-C7	1373(11)	$C_{25} - C_{30}$	1 508 (11)
С6—Н6	0.9500	C_{26} C_{27}	1.300(11) 1.371(13)
C7-C8	1.393(11)	C26—H26	0.9500
C7H7	0.9500	$C_{20} = 1120$	1 368 (13)
	0.9500	C27 H27	0.0500
	0.9500	C_2^{-112}	1.376(11)
	0.9800	$C_{20} = C_{29}$	0.0500
C9—H9B	0.9800	C20_H20	0.9300
C10 C15	0.9800	C29—H29	0.9500
	1.3/4 (10)	C30—H30A	0.9800
	1.409 (10)	C30—H30B	0.9800
C11—C12	1.393 (10)	C30—H30C	0.9800
C11—C16	1.500 (11)		
C1 $Im1$ $S1$	127.2 (2)	C12 C11 C10	1166(7)
C1 = III = S1	127.5(2)	C12 $C11$ $C10$	110.0(7)
C1 - In1 - S2	113.1(3)	C12— $C11$ — $C16$	121.7(8)
S1 = In1 = S2	114.00 (7)		121.0 (7)
C1— $In1$ — $S3$	105.7 (2)		122.9 (8)
SI—InI—S3	96.94 (6)	C13-C12-H12	118.6
S2—In1—S3	88.28 (6)	СП—СІ2—НІ2	118.6
C1—In1—S4 ¹	85.4 (2)	C12—C13—C14	119.8 (7)
S1—In1—S4 ¹	73.86 (6)	С12—С13—Н13	120.1
$S2$ —In1— $S4^{i}$	89.64 (6)	C14—C13—H13	120.1
$S3$ —In1— $S4^{i}$	168.67 (6)	C13—C14—C15	119.3 (8)
C2—In2—S4	124.1 (3)	C13—C14—H14	120.4
C2—In2—S3	118.2 (3)	C15—C14—H14	120.4
S4—In2—S3	115.00 (7)	C10—C15—C14	120.4 (8)
C2—In2—S2	102.4 (2)	C10—C15—H15	119.8
S4—In2—S2	95.87 (6)	C14—C15—H15	119.8
S3—In2—S2	87.02 (6)	C11—C16—H16A	109.5
C2—In2—S1 ⁱⁱ	88.3 (2)	C11-C16-H16B	109.5
S4—In2—S1 ⁱⁱ	77.21 (6)	H16A—C16—H16B	109.5
S3—In2—S1 ⁱⁱ	88.45 (6)	C11—C16—H16C	109.5
S2—In2—S1 ⁱⁱ	169.21 (6)	H16A—C16—H16C	109.5
C3—S1—In1	109.9 (3)	H16B—C16—H16C	109.5
$C3$ — $S1$ — $In2^{i}$	125.0 (3)	C22—C17—C18	122.0 (8)
In 1—S1—In 2^i	106.71 (7)	C22—C17—S3	120.2 (6)
C10—S2—In1	111.6 (2)	C18—C17—S3	117.8 (6)
C10—S2—In2	98.4 (2)	C17—C18—C19	116.1 (9)
	× /		× /

In1—S2—In2	91.86 (6)	C17—C18—C23	124.3 (8)
C17—S3—In2	109.2 (3)	C19—C18—C23	119.6 (8)
C17—S3—In1	105.3 (3)	C20-C19-C18	123.0 (9)
In2—S3—In1	92.58 (7)	С20—С19—Н19	118.5
C24—S4—In2	103.5 (2)	C18—C19—H19	118.5
In1—C1—H1A	109.5	C19—C20—C21	120.1 (9)
In1—C1—H1B	109.5	С19—С20—Н20	120.0
H1A—C1—H1B	109.5	С21—С20—Н20	120.0
In1—C1—H1C	109.5	C20—C21—C22	119.2 (10)
H1A—C1—H1C	109.5	C20—C21—H21	120.4
H1B—C1—H1C	109.5	C22—C21—H21	120.4
In2—C2—H2A	109.5	C17—C22—C21	119.5 (9)
In2—C2—H2B	109.5	C17—C22—H22	120.2
H2A—C2—H2B	109.5	C21—C22—H22	120.2
In2—C2—H2C	109.5	C18—C23—H23A	109.5
H2A—C2—H2C	109.5	C18—C23—H23B	109.5
H2B—C2—H2C	109.5	H23A—C23—H23B	109.5
C8—C3—C4	120.1 (7)	C18—C23—H23C	109.5
C8—C3—S1	122.8 (6)	H23A—C23—H23C	109.5
C4—C3—S1	117.0 (6)	H23B—C23—H23C	109.5
C5—C4—C3	117.4 (7)	C29—C24—C25	121.0 (7)
C5—C4—C9	120.9 (7)	C29—C24—S4	119.9 (6)
C3—C4—C9	121.6 (7)	C25—C24—S4	119.0 (6)
C6—C5—C4	122.2 (8)	C26—C25—C24	116.1 (8)
С6—С5—Н5	118.9	C26—C25—C30	121.7 (8)
С4—С5—Н5	118.9	C24—C25—C30	122.2 (7)
C5—C6—C7	120.2 (8)	C27—C26—C25	122.8 (8)
С5—С6—Н6	119.9	С27—С26—Н26	118.6
С7—С6—Н6	119.9	С25—С26—Н26	118.6
C6—C7—C8	119.5 (7)	C28—C27—C26	119.4 (8)
С6—С7—Н7	120.3	C28—C27—H27	120.3
С8—С7—Н7	120.3	С26—С27—Н27	120.3
C3—C8—C7	120.4 (7)	C27—C28—C29	120.3 (9)
С3—С8—Н8	119.8	C27—C28—H28	119.8
С7—С8—Н8	119.8	C29—C28—H28	119.8
С4—С9—Н9А	109.5	C28—C29—C24	120.3 (8)
С4—С9—Н9В	109.5	С28—С29—Н29	119.8
H9A—C9—H9B	109.5	С24—С29—Н29	119.8
С4—С9—Н9С	109.5	С25—С30—Н30А	109.5
Н9А—С9—Н9С	109.5	С25—С30—Н30В	109.5
Н9В—С9—Н9С	109.5	H30A—C30—H30B	109.5
C15—C10—C11	121.1 (7)	С25—С30—Н30С	109.5
C15—C10—S2	121.1 (6)	H30A—C30—H30C	109.5
C11—C10—S2	117.7 (6)	H30B—C30—H30C	109.5

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*.