Received 2 March 2017
Accepted 9 March 2017

Edited by P. C. Healy, Griffith University, Australia

Keywords: crystal structure; tellurium; Hirshfeld surface analysis; heavy-atom chirality.

CCDC reference: 1537011
Supporting information: this article has supporting information at journals.iucr.org/e

open $\begin{aligned} & \text { access }\end{aligned}$

1-Butyl-1-chloro-3-methyl-3H-2,1 λ^{4}-benzoxatellurole: crystal structure and Hirshfeld analysis

Julio Zukerman-Schpector, ${ }^{\text {a* }}$ Rodrigo L. O. R. Cunha, ${ }^{\text {b }}$ Álvaro T. Omori, ${ }^{\text {b }}$ Lucas Sousa Madureira ${ }^{\text {a }}$ and Edward R. T. Tiekink ${ }^{\text {c }}$

${ }^{\text {a }}$ Departmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, ${ }^{\text {b }}$ Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. Dos Estados 5001, Bairro Bangu, CEP 09210-580 Santo André, SP, Brazil, and ${ }^{\mathrm{c}}$ Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. *Correspondence e-mail: julio@power.ufscar.br

Two independent molecules comprise the asymmetric unit in the title benzoxatellurole compound, $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClOTe}$. The molecules, with the same chirality at the methine C atom, are connected into a loosely associated dimer by $\mathrm{Te} \cdots \mathrm{O}$ interactions, leading to a $\{\cdots \mathrm{Te}-\mathrm{O}\}_{2}$ core. The resultant $\mathrm{C}_{2} \mathrm{ClO}_{2}$ donor set approximates a square pyramid with the lone pair of electrons projected to occupy a position trans to the n-butyl substituent. Interestingly, the $\mathrm{Te}^{\mathrm{IV}}$ atoms exhibit opposite chirality. The major difference between the independent molecules relates to the conformation of the five-membered chelate rings, which is an envelope with the O atom being the flap, in one molecule and is twisted about the $\mathrm{O}-\mathrm{C}$ (methine) bond in the other. No directional intermolecular interactions are noted in the molecular packing beyond the aforementioned $\mathrm{Te} \cdots \mathrm{O}$ secondary bonding. The analysis of the Hirshfeld surface reveals the dominance of $\mathrm{H} \cdots \mathrm{H}$ contacts, i.e. contributing about 70% to the overall surface, and clearly differentiates the immediate crystalline environments of the two independent molecules in terms of both $\mathrm{H} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$ contacts.

1. Chemical context

Tellurium is not the first element that comes to mind when considering the modern pharmacopoeia (Tiekink, 2012). However, investigations into pharmaceutical applications of compounds of this generally regarded as relatively non-toxic element (Nogueira et al., 2004) date back to the times of Sir Alexander Fleming who tested the efficacy of potassium tellurite, $\mathrm{K}_{2}\left[\mathrm{TeO}_{3}\right]$, against microbes, such as penicillin-insensitive bacteria (Fleming, 1932). It is in fact another salt, ammonium trichloro(dioxyethylene-O,O') tellurate, $\left[\mathrm{NH}_{4}\right]\left[\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right.$ TeCl_{3}] (Albeck et al., 1998), also known as AS-101, that has attracted the most attention as a potential tellurium-based pharmaceutical, being in clinical trials for the treatment of psoriasis (Halpert \& Sredni, 2014). Other potential applications of AS-101 include its use as an anti-inflammatory agent (Brodsky, et al., 2010), as a topical treatment for human papilloma virus (Friedman et al., 2009) and its ability to inhibit angiogenesis (Sredni, 2012). The anti-cancer potential of tellurium compounds has also attracted attention (Seng \& Tiekink, 2012; Silberman et al., 2016). The cation in AS-101 has long been known to be a specific inhibitor of both papain and cathepsin B, i.e. cysteine proteases, by forming a covalent $\mathrm{Te}-\mathrm{S}$ (cysteine) bond (Albeck et al., 1998). Organotellurium compounds also inhibit cathepsin B (Cunha et al., 2005) and docking studies confirm this hypothesis (Caracelli et al., 2012,
2016). It was in this context that the title compound, (I), was prepared. Herein, the crystal and molecular structures of (I) are described as well as an analysis of its Hirshfeld surface. Finally, a preliminary inhibition assay on (I) against cathepsin B has been performed.

2. Structural commentary

The asymmetric unit of (I) comprises two independent molecules, which are connected into a loosely associated dimer via secondary $\mathrm{Te} \cdots \mathrm{O}$ interactions, as shown in Fig. 1. The immediate geometry for the $\mathrm{Te}^{\mathrm{IV}}$ atom in the Te -containing molecule is defined by chlorido, oxygen and carbon (within the oxatellurole ring) and n-butyl alpha-carbon atoms. While the bridging- O 2 atom forms a significantly longer $\mathrm{Te} \cdots \mathrm{O} 2$ bond than the $\mathrm{Te}-\mathrm{O} 1$ bond, Table 1, it must be included in the coordination geometry, which is then best described as being distorted square pyramidal. This arrangement accommodates a stereochemically active lone-pair of electrons in the position trans to the n-butyl group. The coordination geometry for the Te2-containing molecule is essentially the same.

Figure 1
The molecular structures of the two independent molecules comprising the asymmetric unit of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The molecules associate via secondary $\mathrm{Te} \cdots \mathrm{O}$ bonding shown as dashed bonds.

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Te} 1-\mathrm{Cl} 1$	$2.6137(17)$	$\mathrm{Te} 2-\mathrm{Cl} 2$	$2.5944(17)$
$\mathrm{Te} 1-\mathrm{O} 1$	$2.021(4)$	$\mathrm{Te} 2-\mathrm{O} 2$	$2.010(5)$
$\mathrm{Te} 1-\mathrm{C} 8$	$2.107(6)$	$\mathrm{Te} 2-\mathrm{C} 20$	$2.108(6)$
$\mathrm{Te} 1-\mathrm{C} 9$	$2.138(5)$	$\mathrm{Te} 2-\mathrm{C} 21$	$2.136(6)$
$\mathrm{Te} 1-\mathrm{O} 2$	$2.945(4)$	$\mathrm{Te} 2-\mathrm{O} 1$	$2.977(4)$
$\mathrm{C} 1-\mathrm{Te} 1-\mathrm{O} 1$	$171.04(13)$	$\mathrm{Cl} 2-\mathrm{Te} 2-\mathrm{O} 2$	$170.22(14)$
$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{C} 8$	$80.4(2)$	$\mathrm{O} 2-\mathrm{Te} 2-\mathrm{C} 20$	$80.5(2)$
$\mathrm{C} 8-\mathrm{Te} 1-\mathrm{O} 2$	$145.0(2)$	$\mathrm{C} 20-\mathrm{Te} 2-\mathrm{O} 1$	$145.38(19)$

The bond lengths about the $\mathrm{Te}^{\mathrm{IV}}$ atoms in the independent molecules are similar, Table 1. However, the $\mathrm{Te} 1-\mathrm{Cl} 1$ bond length is longer by approximately $0.02 \AA$ than the chemically equivalent $\mathrm{Te}-\mathrm{Cl} 2$ bond. The three remaining 'short' bond lengths are equal within experimental error. The disparity in the $\mathrm{Te}-\mathrm{Cl}$ bond lengths is probably compensated by the $\mathrm{Te} \cdots \mathrm{O}$ secondary bond, which is shorter, by approximately $0.03 \AA$, in the Te1-molecule. The key pairs of bond angles for the molecules are essentially the same with the major difference, i.e. 0.8°, seen in the $\mathrm{Cl}-\mathrm{Te}-\mathrm{O}_{\text {long }}$ angle. A distinguishing feature of the independent molecules is noted in the conformation of the five-membered, chelate rings. Thus, in the Te1-molecule, the chelate ring has the form of an envelope with the flap atom being the O1 atom [the O1 atom lies 0.254 (8) \AA out of the plane through the remaining atoms; r.m.s. deviation $=0.0107 \AA$]. For the Te2-molecule, the chelate ring is twisted about the $\mathrm{O} 2-\mathrm{C} 13$ bond, as seen in the $\mathrm{Te} 2-$ $\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 15$ torsion angle of $12.1(7)^{\circ}$.

Figure 2
An overlay diagram of the Te1- and Te2-containing molecules, shown as red and blue images, respectively. The molecules have been overlapped so that the phenyl rings are coincident.

Table 2
Percentage contributions of the different intermolecular contacts to the Hirshfeld surface in (I), Te1-molecule in (I) and Te2-molecule in (I).

Contact	overall (I)	Te1-molecule in (I)	$\mathrm{Te}-2$ molecule in (I)
$\mathrm{H} \cdots \mathrm{H}$	70.3	65.1	66.2
$\mathrm{H} \cdots \mathrm{C} \cdots 1 / \mathrm{Cl} \cdots \mathrm{H}$	16.6	15.7	15.4
$\mathrm{H} \cdots \pi / \pi \cdots \mathrm{H}$	5.5	4.1	4.2
$\mathrm{Te} \cdots \pi / \pi \cdots \mathrm{Te}$	4.0	3.7	3.6
$\mathrm{H} \cdots \mathrm{Te} / \mathrm{Te} \cdots \mathrm{H}$	0.4	3.3	2.6
$\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$	0.0	2.9	2.9
$\mathrm{O} \cdots \mathrm{Te} / \mathrm{Te} \cdots \mathrm{O}$	0.0	1.7	1.6
$\pi-\pi / \pi-\pi$	1.7	1.5	1.5
Others	1.5	2.0	2.0

The central $\{\cdots \cdot \mathrm{Te}-\mathrm{O}\}_{2}$ core of the dimeric aggregate, Fig. 1, is almost planar (r.m.s. deviation $=0.0106 \AA$) and has the form of a parallelogram with distinctive edge lengths of approximately 2.0 and $3.0 \AA$, reflecting the disparity of the $\mathrm{Te} \cdots \mathrm{O}$ interactions. To a first approximation, the fused phenyl ring in each molecule, (C3-C8) and (C13-C20), is co-planar with the core, forming dihedral angles of $14.2(2)$ and $13.6(3)^{\circ}$, respectively; the dihedral angle between the phenyl rings is $8.3(3)^{\circ}$. As the n-butyl groups lie to either side of the dimeric aggregate, there is a suggestion that the independent molecules are related across a pseudo centre of inversion. However, the configuration of the chiral-C2 and C13 atoms in the Te1- and Te-molecules, respectively, is R. This is highlighted in the overlay diagram shown in Fig. 2. Also highlighted is that the tellurium atoms have opposite chirality. When projected down the $\mathrm{Te}-\mathrm{C}$ (n-butyl) bond, the chirality about the Te 1 atom is S and that about $\mathrm{Te} 2, R$.

3. Supramolecular features

Beyond the secondary $\mathrm{Te} \cdots \mathrm{O}$ secondary contacts, leading to dimeric aggregates, Fig. 1, no directional interactions, according to the criteria in PLATON (Spek, 2009), are apparent in the crystal of (I). A view of the unit-cell contents is shown in Fig. 3.

Figure 3
A view in projection down the a axis of the molecular packing in (I).

4. Hirshfeld surface analysis

An analysis of the Hirshfeld surface for (I) was conducted using protocols established earlier (Jotani et al., 2016). The overall two-dimensional fingerprint plot for the asymmetric unit is shown in Fig. $4 a$ and those for the individual $\mathrm{Te} 1-$ and Te2-containing molecules are shown in Fig. $4 b$ and c. The shape-index surface properties are also illustrated in Fig. 4. These confirm the absence of significant directional interactions in the crystal.

Referring to Fig. 5 and Table 2, the Hirshfeld surface is dominated by $\mathrm{H} \cdots \mathrm{H}$ interactions, contributing around 70% to the overall surface of the asymmetric unit and about 65% for each independent molecule. While not within the sum of the respective van de Waals radii, the $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contacts make the next greatest contribution to the overall surface, i.e. ca 15%. Others interactions each contribute less than 5% to the
(a)

(b)

(c)

Figure 4
Two-dimensional fingerprint plots and shape index surface properties of the Hirshfeld surface analysis for $(a)(\mathrm{I}),(b)$ the Te1-molecule in (I) and (c) the Te 2 -molecule in (I).

Figure 5
Charts of the relative percentage contributions of the intermolecular contacts to the Hirshfeld surface area for $(a)(\mathrm{I}),(b)$ the Te1-molecule in (I) and (c) the Te2-molecule in (I).

Hirshfeld surface. It should be noted that the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts, $\mathrm{Te} \cdots \mathrm{O}$ secondary interactions and most of the $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Te}$ contacts are formed between the two independent molecules, thus they are overlapped and do not contribute to surface area of the asymmetric unit.

The main differences between the surface areas of the independent molecules are in the interactions of the type $\mathrm{H} \cdots \mathrm{H}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$. Referring to Fig. 6, the red circles on the fingerprint plots delineated into $\mathrm{H} \cdots \mathrm{H}$, Fig. $6 a$ and $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$ contacts, Fig. $6 b$, highlight the distinctive features of the interactions for the two molecules. For example, short $\mathrm{H} \cdots \mathrm{H}$ interactions for the Te 2 -molecule,

Figure 6
Two-dimensional fingerprint plots delineated into (a) $\mathrm{H} \cdots \mathrm{H}$ contacts and (b) $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$ contacts for the $\mathrm{Te} 1-$ and Te 2 -molecules. The red circles highlight regions distinguishing the two independent molecules.

Fig. $6 a$, occur at shorter distances that those of the Te1-molecules. With regard to the $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$ contacts, there is a wider spread at lower $d_{\mathrm{e}}+d_{\mathrm{i}}$ for the Te1- $c f$. the Te2-molecule.

5. Database survey

A search of the Cambridge Crystallographic Database (Groom et al., 2016) reveals there are only 28 analogous structures featuring the TeOC_{3} donor set as in (I) without the bond type being specified. The number of 'hits' reduces to five with the inclusion of the aromatic ring in the side chain. Of the latter, the most closely related compound is 1-bromo-1-butyl-3H-2,1-benzoxatellurol (Maksimenko et al., 1994), which is in fact very similar to (I), being derived from this by substituting the tellurium-bound chlorido atom with bromido and the removal of the methyl group. Here, the five-membered chelate ring is strictly planar.

6. Inhibition of cathepsin B

Compound (I) was screened for its ability to inhibit cathepsin B employing standard literature procedures (Cunha et al., 2005). The determined value of the inhibition constant was 372 $\pm 40 \mathrm{M}^{-1} \mathrm{~s}^{-1}$, indicating some inhibitory potential, but not as potent as for other organotellurium(IV) compounds studied earlier (Cunha et al., 2005).

7. Synthesis and crystallization

The compound was prepared following a literature procedure (Engman, 1984). The precursor chalcogenide, [2-(R)$\mathrm{MeCH}(\mathrm{OH})] \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Te}(n \mathrm{Bu})(1.52 \mathrm{~g}, 5 \mathrm{mmol})$, prepared as in the literature (Piovan et al., 2011), was dissolved in dry dichloromethane (20 ml) and cooled to 253 K . To the stirred, cooled solution, sulfuryl chloride ($0.4 \mathrm{ml}, 5 \mathrm{mmol}$) dissolved in dichloromethane (5 ml) was added dropwise. The stirring was maintained for 20 minutes at 273 K and the solvent was then removed under reduced pressure. The oily product thus obtained was purified by crystallization from a mixture of dry benzene and pentane, yielding colourless crystals in 89% yield, m.p. 641.3-641.4 K. Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{OClTe}: \mathrm{C}$, 42.35, H, 5.03; Found C, 42.28, H, 4.98\%. $[\alpha]_{\mathrm{D}}{ }^{26}=+45.5^{\circ}$ $\left(\mathrm{CHCl}_{3}, c=1.97\right) .{ }^{1} \mathrm{H}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.20\left(d,{ }^{3} J\right.$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.6-7.5(m, 2 \mathrm{H}), 7.31\left(d,{ }^{3} J 7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.59\left(q,{ }^{3} J\right.$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31\left(t,{ }^{3} J 8.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.90$ (quin, $\left.{ }^{3} \mathrm{~J} 7.2 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $1.59\left(d,{ }^{3} J 6.45 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.46$ (sext, $\left.{ }^{3} J 7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 0.93\left(t,{ }^{3} J\right.$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 148.1,131.6,131.2$, 128.7, 127.8, 125.4, 75.5 (Br), 45.4, 28.4, 24.6, 23.7, 13.0. ${ }^{125} \mathrm{Te}$ ($\left.157.85 \mathrm{MHz}, \mathrm{CDCl}_{3}-d_{6}, \mathrm{ppm}\right) \delta 847.2$ (minor), 801.1 (major). ${ }^{125} \mathrm{Te}$ (157.85 MHz, DMSO- d_{6}, ppm) $\delta 1201.5$ (minor), 1189.1 (major).

8. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. The carbon-bound H -atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$ and were
included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ set to $1.2-1.5 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

The Brazilian agency National Council for Scientific and Technological Development, CNPq, for a scholarship to JZ-S (305626/2013-2).

Funding information

Funding for this research was provided by: National Council for Scientific and Technological Development (award No. 305626/2013-2).

References

Albeck, A., Weitman, H., Sredni, B. \& Albeck, M. (1998). Inorg. Chem. 37, 1704-1712.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brodsky, M., Halpert, G., Albeck, M. \& Sredni, B. J. (2010). J. Inflamm. 7, doi 10.1186/1476-9255-7-3.
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. \& Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.

Caracelli, I., Vega-Teijido, M., Zukerman-Schpector, J., Cezari, M. H. S., Lopes, J. G. S., Juliano, L., Santos, P. S., Comasseto, J. V., Cunha, R. L. O. R. \& Tiekink, E. R. T. (2012). J. Mol. Struct. 1013, 11-18.

Caracelli, I., Zukerman-Schpector, J., Madureira, L. S., Maganhi, S. H., Stefani, H. A., Guadagnin, R. C. \& Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 321-328.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Cunha, R. L. O. R., Urano, M. E., Chagas, J. R., Almeida, P. C., Bincoletto, C., Tersariol, I. L. S. \& Comasseto, J. V. (2005). Bioorg. Med. Chem. Lett. 15, 755-760.
Engman, L. (1984). Organometallics, 3, 1308-1309.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Fleming, A. (1932). J. Pathol. 35, 831-842.
Friedman, M., Bayer, I., Letko, I., Duvdevani, R., Zavaro-Levy, O., Ron, B., Albeck, M. \& Sredni, B. (2009). Br. J. Dermatol. 160, 403408.

Gans, J. \& Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Halpert, G. \& Sredni, B. (2014). Autoimmun. Rev. 13, 1230-1235.
Jotani, M. M., Zukerman-Schpector, J., Madureira, L. S., Poplaukhin, P., Arman, H. D., Miller, T. \& Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 415-425.
Maksimenko, A. A., Sadekov, I. D., Kompan, O. E., Minkin, V. I. \& Struchkov, Yu. T. (1994). Chem. Heterocycl. Compd. 30, 367-369.
Nogueira, C. W., Zeni, G. W. \& Rocha, J. B. (2004). Chem. Rev. 104, 6255-6286.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Table 3
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClOTe}$
$M_{\text {r }}$	340.30
Crystal system, space group	Monoclinic, $P 2_{1}$
Temperature (K)	293
$a, b, c(\AA)$	8.3663 (2), 13.0442 (4), 12.5363 (2)
β (${ }^{\circ}$)	103.460 (2)
$V\left(\mathrm{~A}^{3}\right)$	1330.53 (6)
Z	4
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	2.41
Crystal size (mm)	$0.34 \times 0.33 \times 0.23$
Data collection	
Diffractometer	Nonius KappaCCD
Absorption correction	Gaussian (Coppens et al., 1965)
$T_{\text {min }}, T_{\text {max }}$	0.481, 0.550
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	9220, 5115, 4998
$R_{\text {int }}$	0.061
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.650
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.027, 0.076, 1.02
No. of reflections	5115
No. of parameters	275
No. of restraints	1
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.43, -0.82
Absolute structure	Flack x determined using 1908 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013)
Absolute structure parameter	-0.05 (3)

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski \& Minor, 1997), SIR2014 (Burla et al., 2015), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans \& Shalloway, 2001), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Piovan, L. M. F. M., Alves, M. F. M., Juliano, L., Brömme, D., Cunha, R. L. O. R. \& Andrade, L. H. (2011). Bioorg. Med. Chem. 19, 20092014.

Seng, H. L. \& Tiekink, E. R. T. (2012). Appl. Organomet. Chem. 26, 655-662.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Silberman, A., Kalechman, Y., Hirsch, S., Erlich, Z., Sredni, B. \& Albeck, A. (2016). ChemBioChem, 17, 918-927.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Sredni, B. (2012). Semin. Cancer Biol. 22, 60-69.
Tiekink, E. R. T. (2012). Dalton Trans. 41, 6390-6395.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

1-Butyl-1-chloro-3-methyl-3H-2,1 λ^{4}-benzoxatellurole: crystal structure and Hirshfeld analysis

Julio Zukerman-Schpector, Rodrigo Cunha, Álvaro T. Omori, Lucas Sousa Madureira and Edward R. T. Tiekink

Computing details

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans \& Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

1-Butyl-1-chloro-3-methyl-3H-2,1 λ^{4}-benzoxatellurole
Crystal data
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClOTe}$
$M_{r}=340.30$
Monoclinic, $P 2_{1}$
$a=8.3663$ (2) \AA
$b=13.0442$ (4) \AA
$c=12.5363(2) \AA$
$\beta=103.460(2)^{\circ}$
$V=1330.53(6) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer
CCD rotation images, thick slices scans
Absorption correction: gaussian
(Coppens et al., 1965)
$T_{\text {min }}=0.481, T_{\text {max }}=0.550$
9220 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.076$
$S=1.02$
5115 reflections
275 parameters
1 restraint
$F(000)=664$
$D_{\mathrm{x}}=1.699 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5903 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=2.41 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Slab, colourless
$0.34 \times 0.33 \times 0.23 \mathrm{~mm}$

5115 independent reflections
4998 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\min }=2.5^{\circ}$
$h=-10 \rightarrow 8$
$k=-15 \rightarrow 16$
$l=-16 \rightarrow 13$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0389 P)^{2}+0.6419 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.43 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.82$ e \AA^{-3}

> Absolute structure: Flack x determined using 1908 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)
> Absolute structure parameter: $-0.05(3)$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Te1	0.47914 (4)	0.44547 (2)	0.33996 (3)	0.04143 (11)
Cl 1	0.6469 (2)	0.30011 (15)	0.45946 (16)	0.0664 (4)
O1	0.3777 (5)	0.5726 (4)	0.2598 (3)	0.0512 (10)
C1	0.4636 (7)	0.6665 (4)	0.2894 (6)	0.0475 (12)
H1	0.4101	0.7045	0.3388	0.057*
C2	0.4470 (10)	0.7276 (6)	0.1836 (7)	0.075 (2)
H2A	0.5040	0.6927	0.1361	0.112*
H2B	0.4936	0.7946	0.2005	0.112*
H2C	0.3328	0.7340	0.1476	0.112*
C3	0.6380 (6)	0.6452 (5)	0.3476 (5)	0.0458 (11)
C4	0.7594 (8)	0.7216 (6)	0.3717 (7)	0.0652 (17)
H4	0.7345	0.7880	0.3462	0.078*
C5	0.9147 (8)	0.6994 (8)	0.4326 (7)	0.072 (2)
H5	0.9941	0.7505	0.4491	0.086*
C6	0.9523 (7)	0.5984 (9)	0.4698 (6)	0.075 (3)
H6	1.0570	0.5831	0.5113	0.090*
C7	0.8366 (6)	0.5227 (6)	0.4454 (5)	0.0533 (15)
H7	0.8622	0.4560	0.4695	0.064*
C8	0.6800 (6)	0.5467 (5)	0.3842 (4)	0.0416 (10)
C9	0.3754 (6)	0.4771 (5)	0.4770 (4)	0.0474 (13)
H9A	0.2963	0.5322	0.4567	0.057*
H9B	0.3154	0.4168	0.4909	0.057*
C10	0.4927 (6)	0.5063 (6)	0.5816 (5)	0.0510 (14)
H10A	0.5533	0.5668	0.5691	0.061*
H10B	0.5711	0.4511	0.6040	0.061*
C11	0.4067 (7)	0.5281 (5)	0.6735 (4)	0.0479 (14)
H11A	0.3329	0.5858	0.6524	0.057*
H11B	0.3405	0.4691	0.6824	0.057*
C12	0.5220 (8)	0.5516 (9)	0.7815 (5)	0.0674 (18)
H12A	0.6033	0.4984	0.7992	0.101*
H12B	0.4614	0.5553	0.8376	0.101*
H12C	0.5753	0.6161	0.7767	0.101*
Te2	0.01522 (4)	0.55421 (2)	0.17723 (3)	0.04226 (11)
Cl 2	-0.1556 (2)	0.69208 (15)	0.05090 (16)	0.0666 (4)
O2	0.1199 (5)	0.4303 (4)	0.2604 (4)	0.0583 (11)

C13	$0.0191(7)$	$0.3453(5)$	$0.2705(5)$	$0.0530(13)$
H13	0.0032	0.3452	0.3455	0.064^{*}
C14	$0.1031(10)$	$0.2471(6)$	$0.2538(9)$	$0.083(3)$
H14A	0.1177	0.2445	0.1801	0.125^{*}
H14B	0.0371	0.1901	0.2661	0.125^{*}
H14C	0.2085	0.2439	0.3045	0.125^{*}
C15	$-0.1500(7)$	$0.3589(5)$	$0.1920(5)$	$0.049)^{(13)}$
C16	$-0.2697(8)$	$0.2822(6)$	$0.1731(6)$	$0.0627(16)$
H16	-0.2486	0.2191	0.2080	0.075^{*}
C17	$-0.4201(8)$	$0.3008(7)$	$0.1021(6)$	$0.0646(19)$
H17	-0.4989	0.2492	0.0881	0.077^{*}
C18	$-0.4547(7)$	$0.3946(7)$	$0.0519(5)$	$0.0585(17)$
H18	-0.5568	0.4059	0.0048	0.070^{*}
C19	$-0.3397(7)$	$0.4717(5)$	$0.0709(5)$	$0.0508(14)$
H19	-0.3636	0.5356	0.0380	0.061^{*}
C20	$-0.1858(5)$	$0.4524(5)$	$0.1407(4)$	$0.0413(10)$
C21	$0.1184(6)$	$0.5194(6)$	$0.0408(5)$	$0.0546(16)$
H21A	0.1644	0.5819	0.0185	0.066^{*}
H21B	0.2084	0.4717	0.0652	0.066^{*}
C22	$0.0033(7)$	$0.4747(5)$	$-0.0574(5)$	$0.0485(14)$
H22A	-0.0914	0.5194	-0.0794	0.058^{*}
H22B	-0.0352	0.4088	-0.0380	0.058^{*}
C23	$0.0837(7)$	$0.4607(6)$	$-0.1542(5)$	$0.0506(13)$
H23A	0.1271	0.5262	-0.1710	0.061^{*}
H23B	0.1753	0.4137	-0.1330	0.061^{*}
C24	$-0.0311(9)$	$0.4209(8)$	$-0.2549(6)$	$0.079(3)$
H24A	-0.0737	0.3556	-0.2392	0.118^{*}
H24B	0.0266	0.4130	-0.3122	0.18^{*}
H24C	-0.1203	0.4682	-0.2780	0.118^{*}
H				

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Te1	$0.04719(18)$	$0.0443(2)$	$0.02938(15)$	$0.00273(13)$	$0.00198(11)$	$-0.00116(15)$
C11	$0.0837(11)$	$0.0546(9)$	$0.0580(10)$	$0.0195(8)$	$0.0106(8)$	$0.0102(7)$
O1	$0.0467(18)$	$0.050(3)$	$0.047(2)$	$0.0016(17)$	$-0.0085(15)$	$0.0090(18)$
C1	$0.052(3)$	$0.033(2)$	$0.055(3)$	$0.004(2)$	$0.007(2)$	$-0.003(3)$
C2	$0.079(4)$	$0.060(4)$	$0.076(5)$	$0.000(3)$	$0.000(4)$	$0.025(4)$
C3	$0.047(2)$	$0.049(3)$	$0.042(3)$	$-0.001(2)$	$0.012(2)$	$-0.003(2)$
C4	$0.065(4)$	$0.059(4)$	$0.070(5)$	$-0.014(3)$	$0.012(3)$	$-0.002(3)$
C5	$0.046(3)$	$0.099(6)$	$0.068(5)$	$-0.022(3)$	$0.009(3)$	$-0.004(4)$
C6	$0.034(3)$	$0.133(8)$	$0.054(4)$	$0.001(4)$	$0.005(2)$	$-0.014(5)$
C7	$0.039(2)$	$0.078(5)$	$0.042(3)$	$0.010(2)$	$0.008(2)$	$0.001(3)$
C8	$0.041(2)$	$0.055(3)$	$0.030(2)$	$0.003(2)$	$0.0091(17)$	$0.000(2)$
C9	$0.040(2)$	$0.067(4)$	$0.034(2)$	$-0.001(2)$	$0.0074(19)$	$-0.004(2)$
C10	$0.039(2)$	$0.077(4)$	$0.037(3)$	$0.000(2)$	$0.008(2)$	$-0.010(3)$
C11	$0.047(2)$	$0.061(4)$	$0.036(3)$	$0.002(2)$	$0.010(2)$	$-0.002(2)$
C12	$0.062(3)$	$0.096(5)$	$0.043(3)$	$0.002(4)$	$0.008(2)$	$-0.022(4)$

supporting information

Te2	0.04777 (18)	0.0432 (2)	0.03135 (16)	0.00212 (13)	0.00019 (12)	-0.00352 (14)
Cl 2	0.0768 (10)	0.0535 (9)	0.0646 (10)	0.0164 (8)	0.0063 (8)	0.0099 (8)
O2	0.052 (2)	0.056 (3)	0.055 (2)	-0.001 (2)	-0.0130 (17)	0.008 (2)
C13	0.060 (3)	0.056 (3)	0.037 (3)	0.001 (3)	-0.001 (2)	0.001 (3)
C14	0.073 (4)	0.058 (4)	0.110 (7)	0.012 (3)	0.003 (4)	-0.004 (4)
C15	0.052 (3)	0.054 (3)	0.041 (3)	-0.005 (2)	0.005 (2)	0.001 (2)
C16	0.063 (3)	0.065 (4)	0.059 (4)	-0.009 (3)	0.013 (3)	0.002 (3)
C17	0.055 (3)	0.081 (5)	0.059 (4)	-0.021 (3)	0.013 (3)	-0.017 (4)
C18	0.038 (3)	0.087 (5)	0.050 (3)	-0.003 (3)	0.009 (2)	-0.014 (3)
C19	0.047 (3)	0.067 (4)	0.037 (3)	0.010 (2)	0.006 (2)	0.000 (2)
C20	0.040 (2)	0.054 (3)	0.029 (2)	0.002 (2)	0.0053 (16)	-0.006 (2)
C21	0.042 (2)	0.083 (5)	0.037 (3)	-0.001 (3)	0.005 (2)	-0.010 (3)
C22	0.046 (2)	0.061 (4)	0.039 (3)	0.003 (2)	0.010 (2)	-0.008 (2)
C23	0.049 (2)	0.062 (4)	0.041 (3)	0.005 (2)	0.012 (2)	0.001 (3)
C24	0.068 (4)	0.121 (9)	0.045 (3)	0.015 (4)	0.008 (3)	-0.019 (4)

Geometric parameters ($A,{ }^{\circ}$)

Te1-Cl1	2.6137 (17)	C11-H11A	0.9700
Te1-O1	2.021 (4)	C11-H11B	0.9700
Te1-C8	2.107 (6)	C12-H12A	0.9600
Te1-C9	2.138 (5)	C12-H12B	0.9600
Te1-O2	2.945 (4)	C12-H12C	0.9600
Te2-Cl2	2.5944 (17)	O2-C13	1.416 (8)
$\mathrm{Te} 2-\mathrm{O} 2$	2.010 (5)	C13-C14	1.499 (10)
Te2-C20	2.108 (6)	C13-C15	1.534 (7)
Te2-C21	2.136 (6)	C13-H13	0.9800
Te2-O1	2.977 (4)	C14-H14A	0.9600
O1-C1	1.424 (7)	C14-H14B	0.9600
C1-C3	1.497 (7)	C14-H14C	0.9600
$\mathrm{C} 1-\mathrm{C} 2$	1.526 (10)	C15-C20	1.379 (9)
$\mathrm{C} 1-\mathrm{H} 1$	0.9800	C15-C16	1.396 (9)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9600	C16-C17	1.383 (9)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9600	C16-H16	0.9300
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9600	C17-C18	1.376 (12)
C3-C8	1.382 (9)	C17-H17	0.9300
C3-C4	1.405 (9)	C18-C19	1.374 (10)
C4-C5	1.376 (10)	C18-H18	0.9300
C4-H4	0.9300	C19-C20	1.401 (7)
C5-C6	1.408 (14)	C19-H19	0.9300
C5-H5	0.9300	C21-C22	1.494 (7)
C6-C7	1.367 (11)	C21-H21A	0.9700
C6-H6	0.9300	C21-H21B	0.9700
C7-C8	1.391 (7)	C22-C23	1.529 (7)
C7-H7	0.9300	C22-H22A	0.9700
C9-C10	1.493 (7)	C22-H22B	0.9700
C9-H9A	0.9700	$\mathrm{C} 23-\mathrm{C} 24$	1.490 (9)
C9—H9B	0.9700	C23-H23A	0.9700

C10-C11	1.521 (7)	C23-H23B	0.9700
C10-H10A	0.9700	C24-H24A	0.9600
C10-H10B	0.9700	C24-H24B	0.9600
C11-C12	1.500 (8)	C24-H24C	0.9600
$\mathrm{Cl1}-\mathrm{Te} 1-\mathrm{O} 1$	171.04 (13)	C10-C11-H11A	108.8
O1-Te1-C8	80.4 (2)	C12-C11-H11B	108.8
C8-Te1-O2	145.0 (2)	C10-C11-H11B	108.8
$\mathrm{Cl2}-\mathrm{Te} 2-\mathrm{O} 2$	170.22 (14)	H11A-C11-H11B	107.7
$\mathrm{O} 2-\mathrm{Te} 2-\mathrm{C} 20$	80.5 (2)	C11-C12-H12A	109.5
$\mathrm{C} 20-\mathrm{Te} 2-\mathrm{O} 1$	145.38 (19)	C11-C12-H12B	109.5
$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{O} 2$	66.99 (14)	$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{C} 9$	92.2 (2)	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
C8-Te1-C9	96.7 (2)	$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
C8-Te1-Cl1	90.85 (17)	$\mathrm{H} 12 \mathrm{~B}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
C9-Te1-Cl1	86.78 (17)	$\mathrm{C} 13-\mathrm{O} 2-\mathrm{Te} 2$	118.6 (3)
C9-Te1-O2	73.25 (17)	C13-O2-Te1	127.2 (3)
$\mathrm{Cl1}-\mathrm{Te} 1-\mathrm{O} 2$	121.01 (11)	Te2-O2-Te1	114.1 (2)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Te} 1$	116.6 (3)	O2-C13-C14	110.4 (5)
C1-O1-Te2	124.9 (3)	O2-C13-C15	109.4 (5)
Te1-O1-Te2	112.50 (18)	C14-C13-C15	113.6 (6)
$\mathrm{O} 2-\mathrm{Te} 2-\mathrm{C} 21$	92.1 (2)	O2-C13-H13	107.7
C20-Te2-C21	98.2 (2)	C14-C13-H13	107.7
$\mathrm{C} 20-\mathrm{Te} 2-\mathrm{Cl} 2$	90.34 (16)	C15-C13-H13	107.7
$\mathrm{C} 21-\mathrm{Te} 2-\mathrm{Cl} 2$	85.79 (19)	C13-C14-H14A	109.5
$\mathrm{O} 2-\mathrm{Te} 2-\mathrm{O} 1$	66.36 (14)	C13-C14-H14B	109.5
$\mathrm{C} 21-\mathrm{Te} 2-\mathrm{O} 1$	74.15 (17)	H14A-C14-H14B	109.5
$\mathrm{Cl} 2-\mathrm{Te} 2-\mathrm{O} 1$	121.88 (10)	C13-C14-H14C	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3$	110.1 (5)	H14A-C14-H14C	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	106.5 (6)	H14B-C14-H14C	109.5
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2$	113.7 (5)	C20-C15-C16	119.0 (5)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1$	108.8	C20-C15-C13	118.0 (5)
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{H} 1$	108.8	C16-C15-C13	123.0 (6)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	108.8	C17-C16-C15	119.5 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	C17-C16-H16	120.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	C15-C16-H16	120.3
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	C16-C17-C18	120.9 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	C16-C17-H17	119.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	C18-C17-H17	119.5
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	C19-C18-C17	120.5 (6)
C8-C3-C4	118.3 (5)	C19-C18-H18	119.8
C8-C3-C1	118.5 (5)	C17-C18-H18	119.8
C4-C3-C1	123.1 (6)	C18-C19-C20	118.7 (6)
C5-C4-C3	120.8 (8)	C18-C19-H19	120.6
C5-C4-H4	119.6	C20-C19-H19	120.6
C3-C4-H4	119.6	C15-C20-C19	121.3 (6)
C4-C5-C6	119.4 (7)	C15-C20-Te2	112.3 (3)
C4-C5-H5	120.3	C19-C20-Te2	126.4 (5)

C6-C5-H5	120.3
C7-C6-C5	120.6 (6)
C7-C6-H6	119.7
C5-C6-H6	119.7
C6-C7-C8	119.2 (7)
C6-C7-H7	120.4
C8-C7-H7	120.4
C3-C8-C7	121.7 (6)
C3-C8-Te1	111.7 (4)
C7-C8-Te1	126.5 (5)
C10-C9-Te1	116.6 (3)
C10-C9-H9A	108.1
Te1-C9-H9A	108.1
C10-C9-H9B	108.1
Te1-C9-H9B	108.1
H9A-C9-H9B	107.3
C9-C10-C11	112.5 (4)
C9-C10-H10A	109.1
C11-C10-H10A	109.1
C9-C10-H10B	109.1
C11-C10-H10B	109.1
H10A-C10-H10B	107.8
C12-C11-C10	113.8 (5)
C12-C11-H11A	108.8
Te1-O1-C1-C3	18.3 (7)
$\mathrm{Te} 2-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3$	168.9 (3)
$\mathrm{Te} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	142.1 (4)
Te2-O1-C1-C2	-67.4 (6)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 8$	-13.3 (8)
C2-C1-C3-C8	-132.8 (6)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 4$	169.8 (6)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 4$	50.4 (9)
C8-C3-C4-C5	-1.8 (10)
C1-C3-C4-C5	175.1 (7)
C3-C4-C5-C6	0.9 (12)
C4-C5-C6-C7	0.3 (12)
C5-C6-C7-C8	-0.6 (10)
C4-C3-C8-C7	1.5 (9)
C1-C3-C8-C7	-175.5 (5)
C4-C3-C8-Te1	179.6 (5)
C1-C3-C8-Te1	2.6 (6)
C6-C7-C8-C3	-0.3 (9)
C6-C7-C8-Te1	-178.1 (5)
Te1-C9-C10-C11	179.5 (5)
C9-C10-C11-C12	176.6 (8)

C22-C21-Te2	116.1 (4)
C22-C21-H21A	108.3
Te2-C21-H21A	108.3
C22-C21-H21B	108.3
Te2-C21-H21B	108.3
H21A-C21-H21B	107.4
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	112.5 (5)
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	109.1
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	109.1
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$	109.1
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$	109.1
$\mathrm{H} 22 \mathrm{~A}-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$	107.8
C24-C23-C22	113.5 (5)
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~A}$	108.9
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~A}$	108.9
C24-C23-H23B	108.9
C22-C23-H23B	108.9
H23A-C23-H23B	107.7
C23-C24-H24A	109.5
C23-C24-H24B	109.5
H24A-C24-H24B	109.5
C23-C24-H24C	109.5
H24A-C24-H24C	109.5
H24B-C24-H24C	109.5
Te2-O2-C13-C14	137.8 (6)
Te1-O2-C13-C14	-39.0 (7)
Te2-O2-C13-C15	12.1 (7)
Te1-O2-C13-C15	-164.8 (4)
$\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 15-\mathrm{C} 20$	-10.0 (8)
C14-C13-C15-C20	-133.9 (7)
O2-C13-C15-C16	171.9 (6)
C14-C13-C15-C16	48.1 (9)
C20-C15-C16-C17	1.2 (10)
C13-C15-C16-C17	179.2 (7)
C15-C16-C17-C18	-1.6 (11)
C16-C17-C18-C19	0.4 (11)
C17-C18-C19-C20	1.1 (9)
C16-C15-C20-C19	0.4 (9)
C13-C15-C20-C19	-177.7 (5)
C16-C15-C20-Te2	-178.1 (5)
C13-C15-C20-Te2	3.7 (7)
C18-C19-C20-C15	-1.6 (8)
C18-C19-C20-Te2	176.8 (4)
Te2-C21-C22-C23	175.1 (5)
C21-C22-C23-C24	-177.3 (7)

