CRYSTALLOGRAPHIC COMMUNICATIONS

Received 10 January 2017
Accepted 17 January 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; copper; salicylate; hydrogen bonding.

CCDC reference: 1528159

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Crystal structure of catena-poly[[copper(II)- μ_{2}-sali-cylato-[diaquacopper(II)]- μ_{2}-salicylato] dihydrate]

Jitschaq A. van der Horn and Martin Lutz*

Bijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence e-mail: m.lutz@uu.nl

The title compound, $\left\{\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, contains two copper(II) cations in special positions (one on a twofold rotation axis and one on an inversion centre) and the the salicylate ligand in its dianionic form. By four- and six-coordinate metal coordination, chains are formed parallel to [001], which are extended by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding into sheets extending parallel to (100). These sheets are weakly connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding via the non-coordinating lattice water molecules into a three-dimensional network.

1. Chemical context

Salicylic acid (2-hydroxybenzoic acid, $\mathrm{H}_{2} \mathrm{Sal}$) has two acidic hydrogen atoms and the corresponding $\mathrm{p} K_{\mathrm{a}}$ values are 2.853 (9) and 12.897 (7) (Farajtabar \& Gharib, 2010; García et al., 1982). Titration studies with Cu^{2+} indeed indicate the formation of complexes with the monoanionic ligand HSal^{-}as well as with the dianionic ligand Sal^{2-} (Dahlund \& Olin, 1988; Furia \& Porto, 2002). From the literature, crystal structures of copper salicylate are only known with the monoanionic HSal^{-} ligand. They occur as a tetrahydrate (Hanic \& Michalov, 1960; Rissanen et al., 1987) and as a dihydrate (Jagner et al., 1976), the latter being described as an order-disorder structure. In an attempt to crystallize copper(II) salicylate we obtained a mixture of crystals (see Synthesis and Crystallization), among which was the title compound (I) with composition $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ that involves the dianionic ligand Sal^{2-}.

Figure 1
The asymmetric unit in the crystal structure of (I) in a view along [010]. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres with an arbitrary radius. Additional bonds to O atoms outside the asymmetric unit indicate the completed coordination environments of the two copper(II) cations.

2. Structural commentary

The asymmetric unit of (I) is shown in Fig. 1. The two copper(II) cations are located on special positions with twofold rotation symmetry (Cu 1 , Wyckoff position c) and inversion symmetry (Cu 2 , Wyckoff position b). Cu 2 is fourcoordinated in a square-planar configuration with donor atoms O 2 of the carboxylate and O 3 of the deprotonated hydroxy group. The two pairs of $\mathrm{Cu}-\mathrm{O}$ distances are 1.905 (2) \AA and are the shortest in the present structure (Table 1). As a consequence of the inversion symmetry, the fourfold coordination environment is exactly planar with an angle sum of $360.0(2)^{\circ}$. Cu1 has an environment of six oxygen atoms (Fig. 2). The $\mathrm{Cu} 1-\mathrm{O} 1$ distance to a carboxylate oxygen atom, and the $\mathrm{Cu} 1-\mathrm{O} 4$ distance to the coordinating water molecule are in the expected range. The $\mathrm{Cu} 1-\mathrm{O} 2$ distance of 2.332 (2) \AA is rather long, which indicates only a weak interaction. The twofold rotation axis bisects the $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$ and the $\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$ angles [symmetry code: (i) $1-x, y$, $\left.\frac{1}{2}-z\right]$. This allows the five atoms $\mathrm{Cu} 1, \mathrm{O} 1, \mathrm{O} 4, \mathrm{O} 1^{\mathrm{i}}$ and $\mathrm{O} 4^{\mathrm{i}}$ to deviate significantly from planarity. The sum of the cis angles is $382.8(3)^{\circ}$ and the dihedral angle between the $\mathrm{O} 1-\mathrm{Cu} 1-$ $\mathrm{O} 1^{1} / \mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$ planes is $49.86(14)^{\circ}$. If one decides to consider Cu 1 as four-coordinated, the coordination environment is consequently best described as halfway between square-planar and tetrahedral with approximate $D_{2 d}$ symmetry [τ_{4} parameter $=0.52 ; \theta_{6}=94.60(11)^{\circ}$; Yang et al., 2007]. The $\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$ angle is nearly perpendicular to the twofold axis and thus at $176.45(12)^{\circ}$ nearly linear. A description as a six-coordinated metal cation can nevertheless only be called very distorted due to the non-planarity of the equatorial atoms.

The $\mathrm{Cu} 1-\mathrm{O} 2$ bond fails the Hirshfeld rigid-bond test (Hirshfeld, 1976) with Δ m.s.d.a. of 0.0200 (13) \AA^{2} as calculated with the PLATON software (Spek, 2009). A similar

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.984(2)$	$\mathrm{Cu} 2-\mathrm{O} 2$	$1.905(2)$
$\mathrm{Cu} 1-\mathrm{O} 4$	$2.001(3)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.292(4)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$2.332(2)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.274(4)$
$\mathrm{Cu} 2-\mathrm{O} 3$	$1.905(2)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.322(4)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$96.07(14)$	$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O} 2$	$92.62(10)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4$	$94.60(11)$	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Cu} 2$	$129.6(2)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 4$	$97.54(15)$	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Cu} 1$	$84.86(19)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$176.45(12)$	$\mathrm{Cu} 2-\mathrm{O} 2-\mathrm{Cu} 1$	$145.44(13)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$-3.4(5)$	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-2.5(6)$

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.
effect has been observed in bidentate $\mathrm{Zn}-\mathrm{O}$ (carboxylate) complexes and was attributed to the strain in the fourmembered chelate ring (Lutz \& Spek, 2009). In the present case, it can also be ascribed to the weakness of the interaction, which allows a rather uncorrelated movement of Cu 1 and O 2 . In fact, O 2 is bridging between Cu 1 and Cu 2 and the $\mathrm{O} 2-\mathrm{Cu} 2$ bond is much stronger than $\mathrm{O} 2-\mathrm{Cu} 1 . \Delta$ m.s.d.a. for $\mathrm{O} 2-\mathrm{Cu} 2$ is only 0.0007 (13) \AA^{2} and inconspicuous.

The salicylate dianion is located on a general position. It is essentially planar with a maximum deviation of 0.054 (3) \AA from the least-squares plane. This small deviation involves the carboxylate group with torsion angles of -3.4 (5) ${ }^{\circ}$ for $\mathrm{C} 7-$ $\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$ and $-2.5(6)^{\circ}$ for $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 2$. The $\mathrm{C}-$ OH bond length of $1.359(2) \AA$ in $\mathrm{Cu}(\mathrm{HSal})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Rissanen et al., 1987) is shortened to 1.322 (4) \AA after deprotonation in the present compound $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Table 1).

Figure 2
The environment of the Cu 1 atom with C_{2} symmetry. Because the $\mathrm{Cu} 1-$ O 2 distance is rather long, the metal atom can either be described as fourcoordinated (green) or as six-coordinated (red). In both cases, the coordination geometry is severely distorted. [Symmetry code: (i) $1-x, y$, $\frac{1}{2}-z$.]

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1^{\text {ii }}$	0.77	1.96	2.718 (3)	169
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{O} 3^{\text {iii }}$	0.73	1.96	2.685 (3)	177
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\text {iv }}$	0.80	2.02	2.803 (3)	167
O5-H5B . . ${ }^{\text {4 } 4}$	0.71	2.43	3.088 (4)	157

Symmetry codes: (ii) $x, y-1, z$; (iii) $x,-y, z-\frac{1}{2}$; (iv) $-x+\frac{3}{2}, y+\frac{1}{2}, z$.

One of the water molecules (O4) coordinates to the Cu 1 copper(II) ion, while the other water molecule (O5) is present as non-coordinating lattice water.

3. Supramolecular features

Compound (I) forms coordination chains extending parallel to [001] with a $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of 4.0478 (4) \AA. The coordinating water molecule O 4 acts as a donor of hydrogen bonds with the carboxylate oxygen O1 and the deprotonated hydroxy oxygen O 3 as acceptors (Table 2). This extends the onedimensional coordination polymer into a two-dimensional hydrogen-bonded network parallel to (100) (Fig. 3). Between the hydrogen-bonded layers there are solvent-accessible channels along [010] at the positions $x=0.25$ and $z=0.25$, which is the intersection of two glide planes. By symmetry,

Figure 3
The packing of (I) in the crystal, in a view along [010], showing the hydrogen-bonded layers (black) parallel to (100). The layers are linked via non-coordinating hydrate water molecules (red) into a threedimensional network. $\mathrm{C}-\mathrm{H}$ hydrogen atoms have been omitted for clarity.

Figure 4
Simplified net as prepared with the TOPOS software (Blatov et al., 2014). Copper cations are shown in green. Nodes derived from the salicylate dianion are displayed in purple and have a coordination number of four. Nodes derived from the water molecules are drawn in grey and have coordination numbers of three and four for the lattice and coordinating water molecules, respectively.
there are four channels per unit cell with a volume of $59 \AA^{3}$ each, as calculated with the PLATON software (Spek, 2009). Each channel is occupied by two non-coordinating water molecules O5 per unit cell. The O5 water molecules are linked to each other by cooperative hydrogen bonding, forming chains along [010]. A second hydrogen bond for O5 involves the coordinating water molecule O4. The lattice water molecules thus connect the described (100) layers into a threedimensional hydrogen-bonded network. It should be noted that the hydrogen bonds O5..O4 are rather long (Table 2) and therefore the link between the layers appears to be weak.

In a more systematic approach the packing can be subjected to a topological analysis using TOPOS (Blatov et al., 2014). In this process, molecular entities are abstracted as nodes. Cu 1 is a node with a coordination number of 4 (linked to two salicylate ligands and two water molecules). Cu 2 has a coordination number of 2 (two salicylate ions). The salicylate ion has four neighbours (two copper ions and two hydrogen bonds). Water molecule O 4 is connected to four nodes (one copper ion and three hydrogen bonds). The lattice water O5 has a coordination number of 3 (three hydrogen bonds). A plot of the simplified structure is given in Fig. 4.

4. Synthesis and crystallization

0.55 g (4 mmol) salicylic acid were suspended in 8 ml water. With a concentrated NaOH solution the pH value was adjusted to approximately 5 . A solution of 0.5 g (2 mmol) copper(II) sulfate pentahydrate in 10 ml water was added. Crystals appeared after a few days of standing. From the unitcell determinations it became clear that the mixture of crystals

Table 3
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{\text {r }}$	471.34
Crystal system, space group	Orthorhombic, Pbcn
Temperature (K)	150
$a, b, c(\AA)$	$\begin{aligned} & 19.5028(17), 5.0553(4), \\ & 15.7573(13) \end{aligned}$
$V\left(\AA^{3}\right)$	1553.6 (2)
Z	4
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	2.80
Crystal size (mm)	$0.17 \times 0.09 \times 0.02$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Numerical (SADABS; Sheldrick, 2014)
$T_{\text {min }}, T_{\text {max }}$	0.669, 1.000
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	14169, 1799, 1186
$R_{\text {int }}$	0.082
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.650
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.038, 0.098, 1.04
No. of reflections	1799
No. of parameters	120
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.77,-0.58$

Computer programs: APEX2 (Bruker, 2007), PEAKREF (Schreurs, 2016), Eval15 (Schreurs et al., 2010), SHELXT (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b), PLATON (Spek, 2009), DRAWxtl (Finger et al., 2007) and publCIF (Westrip, 2010).
contained at least three species: colourless salicylic acid, green $\mathrm{Cu}(\mathrm{HSal})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, and brown crystals of (I). The crystals of (I) are thin plates with $<100>$ being the small dimension. A possible explanation for the form is a two-dimensional hydrogen-bonded network in the structure which extends parallel to (100), as discussed above.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

The diffraction data appeared to contain reflections of a small second crystal fragment related by a ca 2° rotation about $h k l=(4 \overline{1} 3)$ with respect to the main fragment. Two orientation
matrices were used for the integration with the Eval15 software (Schreurs et al., 2010). A large isotropic mosaicity of 1.4° was assumed for the prediction of the reflection profiles. Only the non-overlapping reflections were used for structure solution and refinement.

All hydrogen atoms were located in difference Fourier maps. $\mathrm{C}-\mathrm{H}$ hydrogen atoms were refined with a riding model. $\mathrm{O}-\mathrm{H}$ hydrogen atoms were kept fixed at their located positions.

Funding information

Funding for this research was provided by: Nederlandse Organisatie voor Wetenschappelijk Onderzoek.

References

Blatov, V. A., Shevchenko, A. P. \& Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.
Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Dahlund, M. \& Olin, Å. (1988). Acta Chem. Scand. Ser. A, 42, 273278.

Farajtabar, A. \& Gharib, F. (2010). Monatsh. Chem. 141, 381-386.
Finger, L. W., Kroeker, M. \& Toby, B. H. (2007). J. Appl. Cryst. 40, 188-192.
Furia, E. \& Porto, R. (2002). Ann. Chim. 92, 521-530.
García, M. C., Ramis, G. \& Mongay, C. (1982). Spectrochim. Acta A, 38, 1005-1009.
Hanic, F. \& Michalov, J. (1960). Acta Cryst. 13, 299-302.
Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.
Jagner, S., Hazell, R. G. \& Larsen, K. P. (1976). Acta Cryst. B32, 548554.

Lutz, M. \& Spek, A. L. (2009). Acta Cryst. C65, m69-m74.
Rissanen, K., Valkonen, J., Kokkonen, P. \& Leskelä, M. (1987). Acta Chem. Scand. 41a, 299-309.
Schreurs, A. M. M. (2016). PEAKREF. University of Utrecht, The Netherlands.
Schreurs, A. M. M., Xian, X. \& Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70-82.
Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yang, L., Powell, D. R. \& Houser, R. P. (2007). Dalton Trans. pp. 955964.

supporting information

Acta Cryst. (2017). E73, 235-238 [https://doi.org/10.1107/S2056989017000883]

Crystal structure of catena-poly[[copper(II)- μ_{2}-salicylato-[diaquacopper(II)]- $\mu_{2^{-}}$ salicylato] dihydrate]

Jitschaq A. van der Horn and Martin Lutz

Computing details

Data collection: APEX2 (Bruker, 2007); cell refinement: PEAKREF (Schreurs, 2016); data reduction: Eval15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009) and DRAWxtl (Finger et al., 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

$$
\text { catena-Poly }\left[\left[\operatorname{copper}(\mathrm{II})-\mu_{2} \text {-salicylato-[diaquacopper(II)]- } \mu_{2}\right.\right. \text {-salicylato] dihydrate] }
$$

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=471.34$
Orthorhombic, Pbcn
$a=19.5028$ (17) \AA
$b=5.0553$ (4) \AA
$c=15.7573(13) \AA$
$V=1553.6(2) \AA^{3}$
$Z=4$
$F(000)=952$

Data collection

Bruker Kappa APEXII CCD diffractometer
Radiation source: sealed tube φ and ω scans
Absorption correction: numerical
(SADABS; Sheldrick, 2014)
$T_{\text {min }}=0.669, T_{\text {max }}=1.000$
14169 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.098$
$S=1.04$
1799 reflections
120 parameters
0 restraints
Primary atom site location: heavy-atom method
$D_{\mathrm{x}}=2.015 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6768 reflections
$\theta=2.1-27.5^{\circ}$
$\mu=2.80 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Plate, brown
$0.17 \times 0.09 \times 0.02 \mathrm{~mm}$

1799 independent reflections
1186 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.082$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-25 \rightarrow 25$
$k=-6 \rightarrow 6$
$l=-16 \rightarrow 20$

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0424 P)^{2}+2.4851 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.77 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.58$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cu1	0.500000	$0.18416(12)$	0.250000	$0.01968(19)$
Cu2	0.500000	0.000000	0.500000	$0.00951(16)$
O1	$0.56220(14)$	$0.4466(5)$	$0.30330(15)$	$0.0123(6)$
O2	$0.52168(14)$	$0.1699(5)$	$0.39545(15)$	$0.0124(6)$
O3	$0.55744(13)$	$0.2318(5)$	$0.56341(15)$	$0.0116(6)$
C1	$0.56041(19)$	$0.3678(7)$	$0.3812(2)$	$0.0091(7)$
C2	$0.60045(18)$	$0.4988(7)$	$0.4466(2)$	$0.0087(7)$
C3	$0.59722(19)$	$0.4210(7)$	$0.5328(2)$	$0.0095(7)$
C4	$0.6396(2)$	$0.5632(7)$	$0.5908(2)$	$0.0139(8)$
H4	0.639097	0.515779	0.649085	0.017^{*}
C5	$0.6809(2)$	$0.7660(8)$	$0.5647(2)$	$0.0135(8)$
H5	0.708139	0.857335	0.605141	0.016^{*}
C6	$0.6837(2)$	$0.8409(7)$	$0.4794(2)$	$0.0128(8)$
H6	0.712306	0.982514	0.461553	0.015^{*}
C7	$0.64451(19)$	$0.7064(7)$	$0.4224(2)$	$0.0117(8)$
H7	0.646947	0.754349	0.364212	0.014^{*}
O4	$0.57447(14)$	$-0.0767(5)$	$0.22503(15)$	$0.0121(6)$
H4A	0.568654	-0.200793	0.252177	0.018^{*}
H4B	0.571466	-0.118039	0.180993	0.018^{*}
O5	$0.71893(16)$	$0.1128(6)$	$0.2774(2)$	$0.0314(8)$
H5A	0.730462	0.264763	0.277138	0.047^{*}
H5B	0.684633	0.112719	0.262689	0.047^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0208(4)$	$0.0075(3)$	$0.0308(4)$	0.000	$-0.0139(4)$	0.000
Cu2	$0.0158(3)$	$0.0101(3)$	$0.0026(3)$	$-0.0037(3)$	$-0.0009(3)$	$0.0004(2)$
O1	$0.0213(15)$	$0.0107(13)$	$0.0049(11)$	$-0.0023(11)$	$-0.0028(11)$	$0.0029(10)$
O2	$0.0217(14)$	$0.0107(12)$	$0.0048(12)$	$-0.0056(10)$	$0.0003(10)$	$0.0010(10)$
O3	$0.0193(15)$	$0.0119(12)$	$0.0037(11)$	$-0.0058(11)$	$-0.0006(11)$	$0.0020(10)$
C1	$0.0132(18)$	$0.0091(16)$	$0.0050(16)$	$0.0025(14)$	$0.0014(14)$	$0.0024(14)$
C2	$0.0111(18)$	$0.0093(16)$	$0.0056(16)$	$0.0024(15)$	$-0.0008(14)$	$-0.0009(14)$
C3	$0.0128(19)$	$0.0099(17)$	$0.0058(16)$	$0.0024(15)$	$-0.0010(15)$	$-0.0002(15)$
C4	$0.019(2)$	$0.0144(19)$	$0.0080(17)$	$-0.0021(16)$	$-0.0006(16)$	$-0.0011(15)$
C5	$0.0141(19)$	$0.0181(19)$	$0.0082(17)$	$-0.0032(16)$	$-0.0031(15)$	$-0.0021(15)$
C6	$0.0155(19)$	$0.0097(18)$	$0.0134(19)$	$-0.0023(15)$	$0.0017(15)$	$-0.0031(14)$
C7	$0.0152(19)$	$0.0121(18)$	$0.0078(17)$	$0.0021(15)$	$0.0000(15)$	$0.0029(15)$
O4	$0.0203(14)$	$0.0121(13)$	$0.0038(11)$	$0.0013(11)$	$-0.0017(10)$	$0.0021(10)$

O 5	$0.0300(18)$	$0.0267(16)$	$0.0374(18)$	$-0.0011(15)$	$-0.0086(15)$	$0.0095(15)$

Geometric parameters ($A,{ }^{\circ}$)

Cu1-O1	1.984 (2)	C2-C7	1.409 (5)
$\mathrm{Cu}-\mathrm{Ol}^{\text {i }}$	1.984 (2)	C2-C3	1.416 (5)
$\mathrm{Cu}-\mathrm{O}_{4}{ }^{\text {i }}$	2.001 (3)	C3-C4	1.426 (5)
Cu1-O4	2.001 (3)	C4-C5	1.367 (5)
Cu1-O2	2.332 (2)	C4-H4	0.9500
$\mathrm{Cu} 1-\mathrm{O} 2^{\text {i }}$	2.332 (2)	C5-C6	1.397 (5)
$\mathrm{Cu} 2-\mathrm{O}^{\text {ii }}$	1.905 (2)	C5-H5	0.9500
$\mathrm{Cu} 2-\mathrm{O} 3$	1.905 (2)	C6-C7	1.361 (5)
$\mathrm{Cu} 2-\mathrm{O} 2{ }^{\text {ii }}$	1.905 (2)	C6-H6	0.9500
$\mathrm{Cu} 2-\mathrm{O} 2$	1.905 (2)	C7-H7	0.9500
O1-C1	1.292 (4)	O4-H4A	0.7679
O2-C1	1.274 (4)	O4-H4B	0.7271
O3-C3	1.322 (4)	O5-H5A	0.8007
C1-C2	1.452 (5)	O5-H5B	0.7079
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Ol}^{\text {i }}$	96.07 (14)	O2-C1-O1	115.2 (3)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{\text {i }}$	143.25 (10)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	123.5 (3)
$\mathrm{Ol}^{\text {i }}-\mathrm{Cu} 1-\mathrm{O} 4{ }^{\text {i }}$	94.60 (11)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	121.3 (3)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4$	94.60 (11)	C7-C2-C3	119.5 (3)
$\mathrm{Ol}^{\text {i }}-\mathrm{Cu}-\mathrm{O} 4$	143.25 (10)	C7-C2-C1	118.4 (3)
O 4 - $\mathrm{Cu} 1-\mathrm{O} 4$	97.54 (15)	C3-C2-C1	122.0 (3)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	59.59 (9)	O3-C3-C2	125.2 (3)
$\mathrm{Ol}^{\text {i }}-\mathrm{Cu} 1-\mathrm{O} 2$	123.20 (9)	O3-C3-C4	118.1 (3)
$\mathrm{O} 4{ }^{\text {i- }} \mathrm{Cu} 1-\mathrm{O} 2$	85.29 (9)	C2-C3-C4	116.7 (3)
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 2$	92.36 (9)	C5-C4-C3	121.8 (3)
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O}^{\text {i }}$	123.20 (9)	C5-C4-H4	119.1
$\mathrm{Ol}^{\text {i }}-\mathrm{Cu} 1-\mathrm{O} 2^{\text {i }}$	59.59 (9)	C3-C4-H4	119.1
$\mathrm{O} 4-\mathrm{Cu}-\mathrm{O}^{\text {i }}$	92.37 (9)	C4-C5-C6	121.0 (4)
$\mathrm{O} 4-\mathrm{Cu}-\mathrm{O}^{\text {i }}$	85.29 (9)	C4-C5-H5	119.5
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 2^{\text {i }}$	176.45 (12)	C6-C5-H5	119.5
$\mathrm{O}^{\text {iii- }} \mathrm{Cu} 2-\mathrm{O} 3$	180.0	C7-C6-C5	118.5 (3)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{O} 2^{\text {ii }}$	92.62 (10)	C7-C6-H6	120.8
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O}^{\text {ii }}$	87.38 (10)	C5-C6-H6	120.8
$\mathrm{O} 3{ }^{\text {ii}}-\mathrm{Cu} 2-\mathrm{O} 2$	87.38 (10)	C6-C7-C2	122.5 (3)
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O} 2$	92.62 (10)	C6-C7-H7	118.8
$\mathrm{O} 2{ }^{\text {ii- }} \mathrm{Cu} 2-\mathrm{O} 2$	180.0	C2-C7-H7	118.8
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cu} 1$	100.4 (2)	$\mathrm{Cu}-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~A}$	108.8
C1-O2- Cu 2	129.6 (2)	$\mathrm{Cu} 1-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B}$	108.6
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Cu} 1$	84.86 (19)	H4A-O4-H4B	106.5
Cu2-O2-Cu1	145.44 (13)	H5A-O5-H5B	105.3
$\mathrm{C} 3-\mathrm{O} 3-\mathrm{Cu} 2$	126.8 (2)		
Cu2-O2-C1-O1	-176.6 (2)	$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	179.2 (3)
$\mathrm{Cu} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	1.0 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	-1.9 (6)

supporting information

$\mathrm{Cu} 2-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$3.7(5)$
$\mathrm{Cu} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$-178.8(3)$
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$-1.2(3)$
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$178.6(3)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$176.4(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$-3.4(5)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-2.5(6)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$177.7(3)$
$\mathrm{Cu} 2-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	$4.9(5)$
$\mathrm{Cu} 2-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$-176.3(2)$

$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.4(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.3(3)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-178.3(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.5(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.6(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.3(6)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$1.3(6)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-1.3(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$179.7(4)$

Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $-x+1,-y,-z+1$.

Hydrogen-bond geometry ($\hat{A},{ }^{o}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1^{\text {iii }}$	0.77	1.96	2.718 (3)	169
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{O} 3^{\text {iv }}$	0.73	1.96	2.685 (3)	177
O5-H5A $\cdots \mathrm{O}^{v}$	0.80	2.02	2.803 (3)	167
O5-H5B \cdots O	0.71	2.43	3.088 (4)	157

Symmetry codes: (iii) $x, y-1, z$; (iv) $x,-y, z-1 / 2$; (v) $-x+3 / 2, y+1 / 2, z$.

