CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 27 December 2016
Accepted 17 January 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; molecular salt; oxonium ion; hexacyanidoferrate(II); ethylpyridinium ion; hydrogen bonds.

CCDC reference: 1527928

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structure of bis(1-ethylpyridinium) dioxonium hexacyanidoferrate(II)

Rikako Tanaka and Nobuyuki Matsushita*

Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshimaku, 171-8501 Tokyo, Japan. *Correspondence e-mail: cnmatsu@rikkyo.ac.jp

The title compound, $\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ or $(\mathrm{Etpy})_{2}\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (Etpy ${ }^{+}$is 1-ethylpyridinium), crystallizes in the space group Pnnm. The $\mathrm{Fe}^{\mathrm{II}}$ atom of the $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ anion lies on a site with site symmetry ..2/m, and has an octahedral coordination sphere defined by six cyanido ligands. Both the Etpy ${ }^{+}$ and the oxonium cations are located on a mirror plane. In the crystal, electrondonor anions of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and electron-acceptor cations of Etpy ${ }^{+}$are each stacked parallel to the b axis, resulting in a columnar structure with segregated moieties. The crystal packing is stabilized by a three-dimensional $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding network between the oxonium ions and the cyanide ligands of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$.

1. Chemical context

Prussian blue is a well-known compound which displays a deep-blue colour based on an intervalence charge-transfer interaction between $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{CN})_{6}\right]^{4-}$ electron-donor species and $\mathrm{Fe}^{\mathrm{II}}$ electron-acceptor species. Several charge-transfer salts composed of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and organic acceptor cations, e.g. 1, ${ }^{\prime}$ 'dimethyl-4, ${ }^{\prime}$ 'bipyridinium (methyl viologen) have been reported (Nakahara \& Wang, 1963; Kostina et al., 2001; Kotov et al., 2005; Abouelwafa et al., 2010). In the majority of cases, the reported charge-transfer salts of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ are accompanied by dicationic organic acceptor species. On the other hand, charge-transfer salts of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ accompanied by monocationic species are rather rare (Gorelsky et al., 2007).

The present X-ray crystallographic analysis of the title salt, $(\text { Etpy })_{2}\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]\left(\right.$ Etpy ${ }^{+}$is 1 -ethylpyridinium), (I), was performed in order to elucidate the crystal packing of a charge-transfer hexacyanidoferrate(II) anion with a monocationic organic acceptor and an oxonium ion.

2. Structural commentary

The structures of the molecular components of (I) are displayed in Fig. 1. The asymmetric unit of (I) contains half of an Etpy^{+}cation and an oxonium ion (both located on a mirror plane), and one quarter of an $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ anion, the $\mathrm{Fe}^{\mathrm{II}}$ atom

Figure 1
The structures of the molecular components of compound (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. [Symmetry codes: (i) $-x,-y,-z$; (ii) $x, y,-z$; (iii) $-x,-y, z$; (iv) $x, y,-z+1$.]
of which is located on a site with symmetry .. $2 / m$. The $\mathrm{Fe}^{\mathrm{II}}$ atom is coordinated by six cyanido ligands in a slightly distorted octahedral configuration $[\mathrm{Fe}-\mathrm{C}=1.9045$ (18), 1.9068 (13) $\AA ; \mathrm{C}=\mathrm{N}=1.157$ (2), 1.1598 (17) $\AA ; \mathrm{C}-\mathrm{Fe}-\mathrm{C}_{\text {trans }}$ $=180.0^{\circ} ; \mathrm{C}-\mathrm{Fe}-\mathrm{C}_{\text {cis }}=89.60(7)-90.40(7)^{\circ} ; \mathrm{Fe}-\mathrm{C}-\mathrm{N}=$ 178.67 (18), 179.77 (13) ${ }^{\circ}$]. The bond angle of the ethyl group of the Etpy^{+}ion $\left[\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 7=110.77(19){ }^{\circ}\right]$ is similar to those of Etpy $\left[\mathrm{AlCl}_{4}\right]$ [109.2 (11) ${ }^{\circ}$; Zaworotko et al., 1989] and poly[4-dimethylamino-1-ethylpyridin-1-ium [tri- μ-dicyana-mido-k ${ }^{6} N^{1}: N^{5}$-cadmium]] [111.5 (5) ${ }^{\circ}$; Wang et al., 2015].

Figure 2
The crystal packing of compound (I) in a view along the b axis. H atoms have been omitted for clarify; the probability function is as in Fig. 1.

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.90(3)$	$1.67(3)$	$2.569(2)$	$176(3)$
O1-H1B $\cdots \mathrm{N} 2$	$0.931(18)$	$1.632(19)$	$2.5589(15)$	$173.6(18)$

Symmetry code: (i) $x+\frac{1}{2},-y+\frac{1}{2},-z+\frac{1}{2}$.

3. Supramolecular features

The projection of the crystal structure of (I) along the b axis is shown in Fig. 2.

The $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ electron-donor anions and the Etpy ${ }^{+}$ electron-acceptor cations stack separately in columns parallel to the b axis whereby both types of columns are alternately arranged in the a - and c-axis directions.
In the crystal of (I), the oxonium ions and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ ions form a three-dimensional $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding network (Table 1). A pair of Etpy^{+}cations is enclosed in the hydrogen-bonding cage formed by six $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ ions and six oxonium ions (Fig. 3). Two pyridinium rings of the Etpy ${ }^{+}$ cations are arranged in parallel and the ethyl groups are alternating with each other. The centroid-to-centroid distance ($4.147 \AA$) and the face-to-face distance of the least-square planes $(3.731 \AA$) between two pyridinium rings indicate that $\pi-\pi$ interactions are not developed.

Figure 3
Hydrogen-bonding network composed of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ anions and oxonium cations. Magenta dashed lines represent hydrogen bonds.

4. Database survey

Several crystal structures of compounds containing the Etpy ${ }^{+}$ cation have been deposited in the Cambridge Structural Database (Groom et al. 2016), e.g. Etpy[$\left.\mathrm{AlCl}_{4}\right]$ (Zaworotko et al., 1989), Etpy $\left[\mathrm{Ni}(\mathrm{mnt})_{2}\right](\mathrm{mnt}=$ maleonitrile-1,2-dithiolate; Robertson et al., 1999), or (Etpy) ${ }_{2}\left[\mathrm{CoCl}_{4}\right]$ (Felloni et al., 2004). A hexacyanidoferrate(II) salt, $(\mathrm{Hpy})_{2}\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]\left(\mathrm{Hpy}^{+}\right.$ $=N$-hydropyridinium; Gorelsky et al., 2007), quite similar to (I), has been also reported.

5. Synthesis and crystallization

$\mathrm{H}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](106 \mathrm{mg})$ and L-ascorbic acid (60 mg) were dissolved in water $(17 \mathrm{ml})$. The mixture was added to an aqueous solution of 1-ethylpyridinium bromide (177 mg / 17 ml). After standing at 277 K for a day, yellow plateletshaped crystals suitable for X-ray analysis were obtained. Elemental analysis: found: C, $51.52 ; \mathrm{H}, 5.878 ; \mathrm{N}, 24.06 \%$; calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{FeN}_{8} \mathrm{O}_{2}$: C, 51.51 ; H, 5.63 ; N, 24.03%. Thermogravimetry was measured from 296 to 476 K at a rate of $5 \mathrm{~K} \mathrm{~min}^{-1}$ under N_{2} gas flow ($100 \mathrm{ml} \mathrm{min}{ }^{-1}$) on a Rigaku TG-DTA Thermo Plus EVO2 TG8121. Found: 7.85\% mass loss; calculated: 7.73%. The mass loss of (I) took place at around 373 to 393 K and corresponds to two water molecules per chemical formula. The result suggests that the water molecules are released from the oxonium ions. Most probably, protons, H^{+}, remain in the crystal as counter-cations. The IR spectrum of compound (I) is shown in Fig. 4. Selected IR bands (KBr pellet, cm^{-1}): 3135-2941 ($\left.s, \mathrm{C}-\mathrm{H}, ~ s t r\right), 2640(b r$, $\mathrm{O}-\mathrm{H}, s t r), 2075(s, \mathrm{C} \equiv \mathrm{N}, s t r)$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. In the final refinement of the title compound, three reflections, viz. (0 17 1), (2 160) and (5 15 2),

Figure 4
The IR spectrum of compound (I).

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}$
$\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
$\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ 466.34

Orthorhombic, Pnnm
173
11.8807 (4), 12.1279 (7), 8.3962 (2)
1209.79 (9)

2
Mo $K \alpha$
0.65
$0.28 \times 0.13 \times 0.08$

Rigaku R-AXIS RAPID imagingplate
Multi-scan (ABSCOR; Higashi, 1995)
0.907, 0.952

25575, 2216, 1840
0.034
0.746
0.036, 0.093, 1.11

2213
88
H atoms treated by a mixture of independent and constrained refinement
$0.50,-0.70$

Computer programs: RAPID-AUTO (Rigaku, 2006), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg, 2016) and publCIF (Westrip, 2010).
were omitted owing to poor agreements between observed and calculated intensities. H atoms of the Etpy ${ }^{+}$cation were, at first, located in a difference Fourier map, but finally placed in geometrically calculated positions and refined as riding, with $\mathrm{C}($ methylene $)-\mathrm{H}=0.92 \AA, \mathrm{C}($ methyl $)-\mathrm{H}=0.98 \AA$ and $\mathrm{C}($ aromatic $)-\mathrm{H}=0.95 \AA$, all with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}) . \mathrm{H}$ atoms of the oxonium ion were located in a difference Fourier map and their positions refined with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The maximum and minimum electron density peaks are located $1.00 \AA$ from atom C 1 and $0.71 \AA$ from atom Fe 1 , respectively.

Acknowledgements

The authors would acknowledge a Special Fund for Research (SFR) from Rikkyo University.

References

Abouelwafa, A. S., Mereacre, V., Balaban, T. S., Anson, C. E. \& Powell, A. K. (2010). CrystEngComm, 12, 94-99.
Brandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Felloni, M., Hubberstey, P., Wilson, C. \& Schröder, M. (2004). CrystEngComm, 6, 87-95.
Gorelsky, S. I., Ilyukhin, A. B., Kholin, P. V., Kotov, V. Y., Lokshin, B. V. \& Sapoletova, N. V. (2007). Inorg. Chim. Acta, 360, 2573-2582.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Kostina, S. A., Ilyukhin, A. B., Lokshin, B. V. \& Kotov, V. Y. (2001). Mendeleev Commun. 11, 12-13.
Kotov, V. Y., Ilyukhin, A. B., Lunina, V. K. \& Shpigun, L. K. (2005). Mendeleev Commun. 15, 95-96.
Nakahara, A. \& Wang, J. H. (1963). J. Phys. Chem. 67, 496-498.
Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Robertson, N., Bergemann, C., Becker, H., Agarwal, P., Julian, S. R., Friend, R. H., Hatton, N. J., Underhill, A. E. \& Kobayashi, A. (1999). J. Mater. Chem. 9, 1713-1717.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Wang, H.-T., Zhou, L. \& Wang, X.-L. (2015). Acta Cryst. C71, 717720.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zaworotko, M. J., Cameron, T. S., Linden, A. \& Sturge, K. C. (1989). Acta Cryst. C45, 996-1002.

supporting information

Acta Cryst. (2017). E73, 219-222 [https://doi.org/10.1107/S2056989017000810]

Crystal structure of bis(1-ethylpyridinium) dioxonium hexacyanidoferrate(II)

Rikako Tanaka and Nobuyuki Matsushita

Computing details

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPIDAUTO (Rigaku, 2006); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2016); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(1-ethylpyridinium) dioxonium hexacyanidoferrate(II)

Crystal data

$\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
$M_{r}=466.34$
Orthorhombic, Pnnm
$a=11.8807$ (4) \AA
$b=12.1279$ (7) \AA
$c=8.3962(2) \AA$
$V=1209.79(9) \AA^{3}$
$Z=2$
$F(000)=488$

Data collection

Rigaku R-AXIS RAPID imaging-plate diffractometer
Radiation source: X-ray sealed tube
Graphite monochromator
Detector resolution: 10.00 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.907, T_{\text {max }}=0.952$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.093$
$S=1.11$
2213 reflections
88 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$D_{\mathrm{x}}=1.280 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.7107 \AA$
Cell parameters from 8639 reflections
$\theta=3.4-32.0^{\circ}$
$\mu=0.65 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, pale-yellow
$0.28 \times 0.13 \times 0.08 \mathrm{~mm}$

25575 measured reflections
2216 independent reflections
1840 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=32.0^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-17 \rightarrow 17$
$k=-18 \rightarrow 18$
$l=-12 \rightarrow 10$

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0356 P)^{2}+0.6061 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.50$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.70$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * U_{\mathrm{eq}}$
Fe1	0.0000	0.0000	0.0000	$0.02095(10)$
C1	$-0.05743(16)$	$0.14661(15)$	0.0000	$0.0257(3)$
C2	$0.10536(11)$	$0.04026(10)$	$0.16115(15)$	$0.0255(2)$
N1	$-0.09019(17)$	$0.23642(15)$	0.0000	$0.0371(4)$
N2	$0.16963(11)$	$0.06441(11)$	$0.25910(15)$	$0.0352(3)$
N3	$0.00181(15)$	$0.25836(14)$	0.5000	$0.0333(3)$
C3	$0.1469(2)$	$0.4327(2)$	0.5000	$0.0485(6)$
H3	0.1978	0.4930	0.5000	0.073^{*}
C4	$0.10987(15)$	$0.38888(16)$	$0.3591(2)$	$0.0498(4)$
H4	0.1344	0.4192	0.2607	0.075^{*}
C5	$0.03717(15)$	$0.30083(14)$	$0.3608(2)$	$0.0431(4)$
H5	0.0118	0.2698	0.2633	0.065^{*}
C6	$-0.0794(2)$	$0.16567(19)$	0.5000	$0.0485(6)$
H6A	-0.0670	0.1193	0.5954	0.073^{*}
C7	$-0.1981(2)$	$0.2077(2)$	0.5000	$0.0570(7)$
H7A	-0.2503	0.1452	0.5000	0.086^{*}
H7B	-0.2108	0.2527	0.5953	0.086^{*}
O1	$0.30049(12)$	$0.08078(12)$	0.5000	$0.0279(3)$
H1A	$0.342(2)$	$0.143(2)$	0.5000	0.042^{*}
H1B	$0.2513(15)$	$0.0800(15)$	$0.414(2)$	0.042^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	$0.02418(17)$	$0.02126(16)$	$0.01740(15)$	$0.00227(12)$	0.000	0.000
C1	$0.0302(8)$	$0.0250(8)$	$0.0218(7)$	$0.0048(6)$	0.000	0.000
C2	$0.0299(6)$	$0.0246(5)$	$0.0220(5)$	$0.0015(4)$	$0.0015(5)$	$-0.0001(4)$
N1	$0.0454(10)$	$0.0307(8)$	$0.0353(9)$	$0.0104(7)$	0.000	0.000
N2	$0.0383(6)$	$0.0393(6)$	$0.0280(5)$	$-0.0029(5)$	$-0.0044(5)$	$-0.0030(5)$
N3	$0.0364(8)$	$0.0254(7)$	$0.0380(9)$	$0.0019(6)$	0.000	0.000
C3	$0.0341(11)$	$0.0473(13)$	$0.0641(16)$	$-0.0065(10)$	0.000	0.000
C4	$0.0518(9)$	$0.0524(9)$	$0.0451(9)$	$-0.0064(8)$	$0.0172(8)$	$0.0013(8)$
C5	$0.0522(9)$	$0.0434(8)$	$0.0336(7)$	$-0.0007(7)$	$0.0058(7)$	$-0.0083(7)$
C6	$0.0506(13)$	$0.0276(10)$	$0.0674(17)$	$-0.0047(9)$	0.000	0.000
C7	$0.0469(14)$	$0.0416(13)$	$0.083(2)$	$-0.0110(11)$	0.000	0.000
O1	$0.0292(6)$	$0.0287(6)$	$0.0257(6)$	$-0.0063(5)$	0.000	0.000

Geometric parameters ($A,{ }^{\circ}$)

Fel-C1 ${ }^{\text {i }}$	1.9045 (18)	C3-C4iv	1.369 (2)
Fel-C1	1.9045 (18)	C3-H3	0.9500
Fel-C2 ${ }^{\text {i }}$	1.9068 (13)	C4- 55	1.373 (2)
Fe - $\mathrm{C}^{\text {ii }}$	1.9068 (13)	C4-H4	0.9500
$\mathrm{Fe} 1-\mathrm{C} 2{ }^{\text {iii }}$	1.9068 (13)	C5-H5	0.9500
Fe1-C2	1.9069 (13)	C6-C7	1.499 (4)
C1-N1	1.157 (2)	C6-H6A	0.9900
C2-N2	1.1598 (17)	C7-H7A	0.9800
N3-C5iv	1.3447 (19)	C7-H7B	0.9800
N3-C5	1.3447 (19)	$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	0.90 (3)
N3-C6	1.482 (3)	O1-H1B	0.931 (18)
C3-C4	1.369 (2)	$\mathrm{O}-\mathrm{H}_{18}{ }^{\text {iv }}$	0.931 (18)
C1-Fe1-C1	180.0	C5-N3-C6	119.61 (10)
$\mathrm{C} 1{ }^{\text {i }}$ - $\mathrm{Fe} 1-\mathrm{C} 2^{\text {i }}$	89.78 (5)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 4{ }^{\text {iv }}$	119.5 (2)
C1-Fe1-C2 ${ }^{\text {i }}$	90.22 (5)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.2
$\mathrm{C} 1{ }^{\text {i }}$ - $\mathrm{Fe} 1-\mathrm{C}^{\text {iii }}$	90.22 (5)	$\mathrm{C} 4{ }^{\text {iv- }}$ - 3 - H 3	120.2
C1-Fe1-C2ii	89.78 (5)	C3-C4-C5	119.65 (17)
$\mathrm{C} 2{ }^{\text {i }}$-Fel-C2ii	89.60 (7)	C3-C4-H4	120.2
C1 ${ }^{\text {i }}$ - $\mathrm{Fe} 1-\mathrm{C} 2^{\text {iii }}$	89.78 (5)	C5-C4-H4	120.2
C1-Fe1-C2 $2^{\text {iii }}$	90.22 (5)	N3-C5-C4	120.20 (16)
$\mathrm{C} 2{ }^{\text {i }}$ - Fe - $\mathrm{C} 2^{\text {iii }}$	90.40 (7)	N3-C5-H5	119.9
$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{Fe} 1-\mathrm{C} 2^{\text {iii }}$	180.00 (11)	C4-C5-H5	119.9
C1-Fel-C2	90.22 (5)	N3-C6-C7	110.77 (19)
C1-Fe1-C2	89.78 (5)	N3-C6-H6A	109.5
C2 - ${ }^{\text {Fe1- } 1-\mathrm{C} 2}$	180.0	C7-C6-H6A	109.5
C2 ${ }^{\text {ii- }}$ - $21-\mathrm{C} 2$	90.40 (7)	C6-C7-H7A	109.4
C2 ${ }^{\text {iii- }}$ - $\mathrm{Fe} 1-\mathrm{C} 2$	89.60 (7)	C6-C7- H 7 B	109.5
N1-C1-Fe1	178.67 (18)	H7A-C7-H7B	109.5
N2-C2-Fe1	179.77 (13)	H1A-O1-H1B	110.5 (14)
C5 $5^{\text {iv }}$ - $\mathrm{N} 3-\mathrm{C} 5$	120.8 (2)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~B}^{\text {iv }}$	110.5 (14)
C5iv-N3-C6	119.61 (10)	$\mathrm{H} 1 \mathrm{~B}-\mathrm{O} 1-\mathrm{H}^{\text {B }}{ }^{\text {iv }}$	102 (2)

Symmetry codes: (i) $-x,-y,-z$; (ii) $x, y,-z$; (iii) $-x,-y, z$; (iv) $x, y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 1^{v}$	$0.90(3)$	$1.67(3)$	$2.569(2)$	$176(3)$
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{~N} 2$	$0.931(18)$	$1.632(19)$	$2.5589(15)$	$173.6(18)$

Symmetry code: (v) $x+1 / 2,-y+1 / 2,-z+1 / 2$.

