

Received 20 January 2017 Accepted 25 January 2017

Edited by A. J. Lough, University of Toronto, Canada

**Keywords:** crystal structure; pyrazine; pyridine; tetracarboxamide; hydrogen bonding.

CCDC references: 1529572; 1529571

Supporting information: this article has supporting information at journals.iucr.org/e



OPEN d ACCESS



## Dilovan S. Cati<sup>a</sup> and Helen Stoeckli-Evans<sup>b</sup>\*

<sup>a</sup>Debiopharm International S.A., Chemin Messidor 5-7, CP 5911, CH-1002 Lausanne, Switzerland, and <sup>b</sup>Insitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland. \*Correspondence e-mail: helen.stoeckli-evans@unine.ch

The title compounds,  $C_{32}H_{28}N_{10}O_4$  unknown solvent, (I), and  $C_{32}H_{28}N_{10}O_4$ , (II), are pyrazine-2,3,5,6-tetracarboxamide derivatives. In (I), the substituents are (pyridin-2-ylmethyl)carboxamide, while in (II), the substituents are (pyridin-4-ylmethyl)carboxamide. Both compounds crystallize in the monoclinic space group  $P2_1/n$ , with Z' = 1 for (I), and Z' = 0.5 for (II). The whole molecule of (II) is generated by inversion symmetry, the pyrazine ring being situated about a center of inversion. In (I), the four pyridine rings are inclined to the pyrazine ring by 83.9 (2), 82.16 (18), 82.73 (19) and 17.65  $(19)^{\circ}$ . This last dihedral angle involves a pyridine ring that is linked to the adjacent carboxamide O atom by an intramolecular  $C-H \cdots O$  hydrogen bond. In compound (II), the unique pyridine rings are inclined to the pyrazine ring by 33.3 (3) and  $81.71 (10)^{\circ}$ . There are two symmetrical intramolecular  $C-H \cdots O$  hydrogen bonds present in (II). In the crystal of (I), molecules are linked by  $N-H \cdots O$  and  $N-H \cdots N$  hydrogen bonds, forming layers parallel to (101). The layers are linked by  $C-H \cdots O$  and  $C-H \cdots N$  hydrogen bonds, forming a three-dimensional framework. In the crystal of (II), molecules are linked by  $N-H \cdots N$  hydrogen bonds, forming chains propagating along the [010] direction. The chains are linked by a weaker  $N-H \cdots N$  hydrogen bond, forming layers parallel to the (101) plane, which are in turn linked by  $C-H\cdots O$  hydrogen bonds, forming a three-dimensional structure. In the crystal of compound (I), a region of disordered electron density was treated with the SQUEEZE routine in PLATON [Spek (2015). Acta Cryst. C71, 9-18]. Their contribution was not taken into account during refinement. In compound (II), one of the pyridine rings is positionally disordered, and the refined occupancy ratio for the disordered Car-Car-Npy atoms is 0.58 (3):0.42 (3).

## 1. Chemical context

Tetrakis-substituted pyrazine ligands for coordination chemistry, excluding tetramethylpyrazine or pyrazine-2,3,5,6-tetracarbonitrile, are almost exclusively limited to tetrakis(2'pyridyl)pyrazine (**tppz**) and tetrakis(carboxylic acid)pyrazine (**H4pztc**). **Tppz** was first synthesized by Goodwin & Lions (1959). The crystal structure of the first coordination compound of **tppz** to be reported was a binucluear copper(II) complex, bis{diaqua[ $\mu^2$ -2,3,5,6-tetrakis(2-pyridyl)pyrazine-N,N',N'',N''',N'''',N''''']copper(II)} tetraperchlorate dihydrate, with the ligand coordinating in a bis-tridentate manner (Graf *et al.*, 1993). **H4pztc** is a much older compound, whose synthesis was first reported by Wolf (1887, 1893). The first published complex of **H4pztc** is a one-dimensional iron(II) coordination polymer, *catena*-[ $\mu^2$ -(2,5-dicarboxypyrazine-3,6-dicarboxylato-*N*,*O*)-*trans*-diaquadiiron(II)] dihydrate (Marioni *et al.*, 1986), in which the ligand coordinates in a bisbidentate manner. There are of course a number of complexes in which **H4pztc** coordinates in a bis-tridentate manner (Cambridge Structural Database; Groom *et al.*, 2016). Recently, the first pyrazine-2,3,5,6-tetracarboxamide ligand was reported, namely, *N*,*N'*,*N''*,*N'''*-tetraethylpyrazine-2,3,5,6tetracarboxamide, together with its binculear palladium(II) acetate complex (Lohrman *et al.*, 2016), in which the ligand coordinates in a bis-tridentate manner.



The title compounds are part of a series of mono-, bis- and tetrakis-substituted carboxamide pyrazine ligands synthesized in order to study their coordination chemistry with first row transition metals and the magnetic exchange properties of the complexes (Cati, 2002; Cati et al., 2004). One such ligand is N,N'-bis(2-pyridylmethyl)pyrazine-2,3-dicarboxamide, for which two polymorphs have been reported: orthorhombic (Cati & Stoeckli-Evans, 2004) and triclinic (Cati et al., 2004). The reaction of this ligand with copper perchlorate and nickel chloride lead to the formation of  $[2 \times 2]$  grid-like structures (Cati et al., 2004), with multiple encapsulation of the anions. Klingele et al. (2007) have also reported the crystal structures of  $Cu(BF_4)_2$  and  $Ni(BF_4)_2$  complexes of the same ligand, which also form  $[2 \times 2]$  grid-like structures, but this time no encapsulation of the anions was observed. Herein, we report on the synthesis and crystal structures of the title pyrazine-2,3,5,6-tetracarboxamide derivatives,  $N^2, N^3, N^5, N^6$ -tetrakis-(pyridin-2-ylmethyl)pyrazine-2,3,5,6-tetracarboxamide (I) and  $N^2$ ,  $N^3$ ,  $N^5$ ,  $N^6$ -tetrakis(pyridin-4-ylmethyl)pyrazine-2,3,5,6tetracarboxamide (II), potential bis-tridentate coordinating ligands.



Figure 1

A view of the molecular structure of compound (I), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular C-H···O hydrogen bond is shown as a blue dashed line (see Table 1).

### 2. Structural commentary

Both title compounds, (I) and (II), crystallize in the monoclinic space group  $P2_1/n$ , with Z' = 1 for (I), and Z' = 0.5 for





A view of the molecular structure of compound (II), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to the labelled atoms by the symmetry operation (-x, -y + 1, -z + 2) and the intramolecular C-H···O hydrogen bonds are shown as blue dashed lines (see Table 2). The minor component of the disordered pyridine ring, involving atom N3, is shown with black dashed lines.

# research communications

Table 1Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (I).

| $D - H \cdots A$                                                          | D-H            | $H \cdot \cdot \cdot A$ | $D \cdots A$                         | $D - H \cdot \cdot \cdot A$ |
|---------------------------------------------------------------------------|----------------|-------------------------|--------------------------------------|-----------------------------|
| C29-H29···O3                                                              | 0.95           | 2.48                    | 3,389 (5)                            | 160                         |
| $N3-H3N\cdots O3^{i}$                                                     | 0.97(5)        | 1.91 (5)                | 2.829 (4)                            | 158 (4)                     |
| $N5-H5N\cdotsO1^{ii}$                                                     | 0.79 (4)       | 2.17 (4)                | 2.932 (4)                            | 162 (3)                     |
| $N7-H7N\cdotsO1^{ii}$                                                     | 0.86(4)        | 2.14 (4)                | 2.967 (4)                            | 161 (4)                     |
| N9-H9N···N6 <sup>iii</sup>                                                | 0.92(4)        | 1.96 (5)                | 2.864 (4)                            | 169 (5)                     |
| $C13-H13A\cdots N1^{ii}$                                                  | 0.99           | 2.62                    | 3.554 (5)                            | 158                         |
| $C20-H20A\cdots O2^{ii}$                                                  | 0.99           | 2.54                    | 3.433 (4)                            | 149                         |
| $C22-H22\cdots O2^{ii}$                                                   | 0.95           | 2.57                    | 3.418 (5)                            | 149                         |
| Symmetry codes:<br>$-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}.$ | (i) $-x, -y +$ | -1, -z; (ii)            | $-x + \frac{1}{2}, y + \frac{1}{2},$ | $-z + \frac{1}{2};$ (iii)   |

Table 2Hydrogen-bond geometry (Å, °) for (II).

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-----------------------------|----------|-------------------------|--------------|------------------|
| $C9A - H9A \cdots O2^{i}$   | 0.95     | 2.46                    | 3.316 (15)   | 150              |
| $[C9B - H9B \cdots O2]^{i}$ | 0.95     | 2.43                    | 3.375 (18)   | 178              |
| $N2-H2N\cdots N5^{ii}$      | 0.93 (3) | 1.93 (3)                | 2.845 (3)    | 167 (2)          |
| $N4-H4N\cdots N3A^{iii}$    | 0.90 (3) | 2.65 (3)                | 3.184 (13)   | 119 (2)          |
| C6−H6···O1 <sup>iii</sup>   | 0.95     | 2.58                    | 3.414 (3)    | 146              |
| $C11 - H11B \cdots O1^{iv}$ | 0.99     | 2.56                    | 3.301 (2)    | 132              |
| $C14-H14\cdots O2^{v}$      | 0.95     | 2.58                    | 3.442 (3)    | 151              |
|                             |          |                         |              |                  |

Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) -x, -y + 2, -z + 2; (iii)  $-x, +\frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$ ; (iv)  $-x - \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$ ; (v) -x - 1, -y + 2, -z + 2.

(II). The whole molecule of (II) is generated by inversion symmetry; the pyrazine ring being situated about a center of inversion.

The molecular structure of compound (I), in which the substituents are (pyridin-2-ylmethyl)carboxamide, is illustrated in Fig. 1. Pyridine rings N4/C7–C11, N6/C14–C18 and N8/C21–C25 are inclined to the pyrazine ring by 83.9 (2), 82.16 (18) and 82.73 (19)°, respectively. Pyridine ring N10/C28–C32 is inclined to the pyrazine ring by only 17.65 (19)°, and it is involved in an intramolecular C29–H20···O3 hydrogen bond (Fig. 1, Table 1). Adjacent pyridine rings are inclined to one another by 13.7 (2)° for rings N4/C7–C11 and N6/C14–C18, and by 84.5 (2)° for rings N8/C21–C25 and N10/C28–C32.

The molecular structure of compound (II), in which the substituents are (pyridin-4-ylmethyl)carboxamide, is shown in Fig. 2. Here, the unique pyridine rings N3A/C5-C7/C8A/C9A [*A* indicates the major component of the disordered atoms] and N5/C12-C16 are inclined to the pyrazine ring by 33.3 (3)



Figure 3

A view along the b axis, of the crystal packing of compound (I). The hydrogen bonds are shown as dashed lines (see Table 1). In this figure, and the following figures, only the H atoms involved in hydrogen bonding have been included.

and 81.71 (10)°, respectively, and by 68.4 (3)° to one another. In (II) there are also intramolecular  $C-H\cdots O$  hydrogen bonds present, as shown in Fig. 2 (see also Table 2).

There are no intramolecular N-H···O hydrogen bonds present in either structure and the shortest O···O distances, involving adjacent carboxamide groups, are O1···O2 = 3.039 (3) Å in (I), and O1···O2(-x, -y + 1, -z + 2) = 3.088 (2) Å in (II). In (I), the amide groups in positions 2- and 6- (N3-C5=O1 and N9-C26=O4) are inclined to the pyrazine ring by 67.1 (4) and 83.7 (4)°, respectively, while those in positions 3- and 5- (N5-C12=O2 and N7-C19=O3) are inclined to the pyrazine ring by 14.2 (4) and 21.6 (4)°, respectively.

In (II), the amide group N2–C3=O1, in position 2- (and 5by symmetry), is inclined to the pyrazine ring by 81.0 (3)°, while the amide group N4–C10=O2, in position 3- (and 6- by symmetry), lies in the plane of the pyrazine ring [dihedral angle = 1.91 (2)°]. Hence, from the various dihedral angles commented on above it can be seen that the conformations of the two molecules are significantly different (*cf.* Fig. 1 and Fig. 2).

### 3. Supramolecular features

In the crystal of (I), molecules are linked by  $N-H\cdots O$  and  $N-H\cdots N$  hydrogen bonds, forming layers parallel to (101); see Fig. 3 and Table 1. The layers are linked by  $C-H\cdots O$  and  $C-H\cdots N$  hydrogen bonds, forming a three-dimensional framework (Table 1, Fig. 4).



Figure 4

A view along the b axis, of the crystal packing of compound (I). The hydrogen bonds are shown as dashed lines (see Table 1).



Figure 5 A partial view along the c axis, of the crystal packing of compound (II). The hydrogen bonds are shown as dashed lines (see Table 2).

In the crystal of (II), molecules are linked by  $N-H\cdots N$  hydrogen bonds (Table 2), forming chains propagating along [010], as shown in Fig. 5. The chains are linked by weaker  $N-H\cdots N$  hydrogen bonds, forming layers (Table 2, Fig. 6), parallel to (101). The layers are in turn linked by  $C-H\cdots O$  hydrogen bonds, forming a three-dimensional framework (Table 2, Fig. 7).

#### 4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, first update November 2016; Groom *et al.*, 2016) for tetrakis-substituted pyrazines, excluding tetramethylpyrazine or pyrazine-2,3,5,6-tetracarbonitrile, gave over 550 hits. 255 of these structures concern the ligand **tppz**, while 88 concern the ligand **H4pztc**. As noted above, only one example of a pyrazine-2,3,5,6-tetracarboxamide compound has been reported, *viz.* N,N',N''.tetraethylpyrazine-2,3,5,6-tetracarboxamide (CSD refcode: OSUTIH; Lohrman *et al.*, 2016). It crystallizes in the triclinic space group  $P\overline{1}$ , with eleven independent molecules in the asymmetric unit. It is interesting to note that the general orientation of the amide groups resembles that observed in compound (I). Those in positions



Figure 6

A view normal to plane (101), of the crystal packing of compound (II). The hydrogen bonds are shown as dashed lines (see Table 2).





A view along the a axis of the crystal packing of compound (II). The hydrogen bonds are shown as dashed lines (see Table 2).

2- and 6- are inclined to the pyrazine ring by more than ca 60 °, while those at positions 3- and 5- lie close to the plane of the pyrazine ring.

#### 5. Synthesis and crystallization

Tetramethyl pyrazine-2,3,5,6-tetracarboxylate (L) was synthesized by the method of Mager & Berends (1960).

Compound (I): A mixture of L (0.16 g, 0.5 mmol) and an excess of 2-(aminomethyl)pyridine (0.27 g, 2.5 mmol) in 20 ml of methanol were refluxed for 6 h in a two-necked flask (50 ml). The ligand H4L8 precipitated as a white solid during the reaction. The suspension was cooled to room temperature and then filtered and washed with 10 ml of cold methanol [yield 90%, m.p. 497 K(decomposition)]. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ): 9.52 (t, 1H,  $J_{hg} = 6.1$ , Hh); 8.53 (ddd, 1H,  $J_{bc} = 4.8$ ,  $J_{bd} = 1.8, J_{be} = 0.9, Hb$ ); 7.76 (*td*, 1H,  $J_{dc} = 7.7, J_{db} = 1.8, Hd$ ); 7.51 (d, 1H,  $J_{ed}$  = 7.8, He); 7.29 (ddd, 1H,  $J_{cd}$  = 7.7,  $J_{cb}$  = 4.8,  $J_{ce}$ = 1.0, Hc); 4.64 (d, 2H,  $J_{\rm gh}$  = 6.1, Hg). <sup>13</sup>C NMR (400 MHz, DMSO-d<sub>6</sub>): 164.5, 158.9, 149.7, 146.3, 137.6, 123.2, 122.2, 45.3. IR (KBr pellet, cm<sup>-1</sup>): 3279 (*s*), 3054 (*m*), 1672 (*vs*), 1592 (*vs*), 1571 (vs), 1548 (vs), 1477 (s), 1437 (vs), 1354 (m), 1290 (m), 1247 (s), 1179 (m), 1157 (s), 1099 (w), 1049 (w), 996 (m), 799 (w), 754 (s), 684 (m), 632 (m), 608 (m), 544 (w), 521 (w). Analysis for  $[C_{32}H_{28}N_{10}O_4] \cdot H_2O$  ( $M_r = 634.65 \text{ g mol}^{-1}$ ): calculated (%) C: 60.56 H: 4.76 N: 22.07, found (%) C: 60.46 H: 4.58 N: 21.79.

**Compound (II):** This compound was synthesized following the same procedure as used to prepare compound (I). A mixture of L (0.5 g, 1.36 mmol) and an excess of 4-(aminomethyl)pyridine (1.17 g, 10.8 mmol) were refluxed in 20 ml of methanol for 44 h in a two-necked flask (50 ml). The solution was red when hot and then turned to a brown–yellow colour on cooling to rt. The brown–yellow solid crystallized out, was filtered off and washed with cold acetonitrile (m.p. 508 K,

# research communications

| Table  | 3      |         |
|--------|--------|---------|
| Experi | mental | details |

|                                                                              | (I)                                         | (II)                                        |
|------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|
| Crystal data                                                                 |                                             |                                             |
| Chemical formula                                                             | $C_{32}H_{28}N_{10}O_4$                     | $C_{32}H_{28}N_{10}O_4$                     |
| М.                                                                           | 616.64                                      | 616.64                                      |
| Crystal system, space group                                                  | Monoclinic, $P2_1/n$                        | Monoclinic, $P2_1/n$                        |
| Temperature (K)                                                              | 153                                         | 153                                         |
| a, b, c (Å)                                                                  | 16.0754 (19), 11.8602 (10), 18.495 (2)      | 9.8592 (6), 10.6511 (6), 14.8089 (9)        |
| $\beta$ (°)                                                                  | 115.503 (13)                                | 102.306 (7)                                 |
| $V(\dot{A}^3)$                                                               | 3182.6 (7)                                  | 1519.37 (16)                                |
| Z                                                                            | 4                                           | 2                                           |
| Radiation type                                                               | Μο Κα                                       | Μο Κα                                       |
| $\mu (\mathrm{mm}^{-1})$                                                     | 0.09                                        | 0.09                                        |
| Crystal size (mm)                                                            | $0.40 \times 0.20 \times 0.20$              | $0.45 \times 0.35 \times 0.20$              |
| Data collection                                                              |                                             |                                             |
| Diffractometer                                                               | Stoe IPDS 1                                 | Stoe IPDS 1                                 |
| Absorption correction                                                        | Multi-scan (MULABS in PLATON; Spek, 2009)   | Multi-scan (MULABS in PLATON; Spek, 2009)   |
| $T_{\min}, T_{\max}$                                                         | 0.865, 1.000                                | 0.666, 1.000                                |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections     | 26683, 6150, 2219                           | 11450, 2924, 1815                           |
| R <sub>int</sub>                                                             | 0.211                                       | 0.090                                       |
| $(\sin \theta / \lambda)_{\max} ( \mathring{A}^{-1} )$                       | 0.616                                       | 0.614                                       |
| Refinement                                                                   |                                             |                                             |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.054, 0.129, 0.72                          | 0.051, 0.134, 0.89                          |
| No. of reflections                                                           | 6150                                        | 2924                                        |
| No. of parameters                                                            | 432                                         | 244                                         |
| H-atom treatment                                                             | H atoms treated by a mixture of independent | H atoms treated by a mixture of independent |
|                                                                              | and constrained refinement                  | and constrained refinement                  |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.28, -0.30                                 | 0.26, -0.24                                 |

Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2016 (Sheldrick, 2015), PLATON (Spek, 2009) and publcIF (Westrip, 2010).

yield 90%). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>): 9.50 (*t*, 1H,  $J_{hg}$  = 6.2, Hh); 8.50 (*dd*, 2H,  $J_{ba}$  = 4.5,  $J_{be}$  = 1.6, Hb = Hd); 7.41 (*dd*, 2H,  $J_{ab}$  = 4.5,  $J_{ad}$  =  $J_{eb}$  = 1.6, Ha = He); 4.59 (*d*, 2H,  $J_{gh}$  = 6.2, Hg). <sup>13</sup>C NMR (400 MHz, DMSO-*d*<sub>6</sub>): 164.7, 150.4, 148.7, 146.4, 123.1, 42.3. IR (KBr pellet, cm<sup>-1</sup>): 3238 (*s*), 3033 (*m*), 1677 (*vs*), 1604 (*vs*), 1521 (*vs*), 1418 (*vs*), 1364 (*s*), 1317 (*s*), 1239 (*s*), 1174 (*s*), 1151 (*s*), 1069 (*s*), 994 (*s*), 781 (*s*), 616 (*s*), 501 (*w*), 475 (*s*). Analysis for [C<sub>32</sub>H<sub>28</sub>N<sub>10</sub>O<sub>4</sub>]·0.5CH<sub>3</sub>OH ( $M_r$  = 648.68 g mol<sup>-1</sup>): calculated (%) C: 61.10 H: 4.97 N: 21.59, found (%) C: 61.42 H: 4.62 N: 22.27.

Colourless block-like crystals of both compounds were obtained by slow evaporation of methanol solutions of the respective compounds. The elemental analysis for compound (I) required the addition of a water molecule, which possibly explains the region of disordered electron density in the crystal, and half a molecule of methanol for (II), which was not detected in the final difference Fourier map of the crystal used for the X-ray diffraction analysis.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. For both molecules the NH H atoms were located in difference-Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and refined as riding: C-H = 0.95-0.99 Å with  $U_{iso}(H) = 1.2U_{eq}(C)$ . In the crystal of compound (I), a region of disordered electron density was treated with the SQUEEZE routine in *PLATON* (Spek, 2015). Their contribution (93 electrons for a solvent-accessible volume of 268 Å<sup>3</sup>) was not taken into account during refinement. The crystal of (I) did not diffract significantly beyond 20 ° in  $\theta$  and hence the  $R_{\rm int}$  value is high (> 0.2), and only 35% of the data can be considered to be observed [ $I > 2\sigma(I)$ ]. In compound (II), pyridine ring (N3/C5–C9) is positionally disordered (see Fig. 2), and the refined occupancy ratio for the disordered atoms, N3*A*:N3*B*, C8*A*:C8*B*, C9*A*:C9*B* is 0.58 (3):0.42 (3).

#### **Funding information**

Funding for this research was provided by: Swiss National Science Foundation; University of Neuchâtel.

#### References

Cati, D. (2002). PhD thesis, University of Neuchâtel, Switzerland.

- Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021–1030.
- Cati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, o210-o212.
- Goodwin, H. A. & Lions, F. (1959). J. Am. Chem. Soc. 81, 6415-6422.
- Graf, M., Greaves, B. & Stoeckli-Evans, H. (1993). *Inorg. Chim. Acta*, **204**, 239–246.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Klingele, J., Boas, J. F., Pilbrow, J. R., Moubaraki, B., Murray, K. S., Berry, K. J., Hunter, K. A., Jameson, G. B., Boyd, P. D. W. & Brooker, S. (2007). *Dalton Trans.* pp. 633–645.

- Lohrman, J., Telikepalli, H., Johnson, T. S., Jackson, T. A., Day, V. W. & Bowman-James, K. (2016). *Inorg. Chem.* 55, 5098–5100.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mager, H. I. X. & Berends, W. (1960). Recl Trav. Chim. Pays Bas, 79, 282-284.
- Marioni, P.-A., Stoeckli-Evans, H., Marty, W., Güdel, H.-U. & Williams, A. F. (1986). *Helv. Chim. Acta*, **69**, 1004–1011.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Stoe & Cie (2000). *IPDSI Bedienungshandbuch*. Stoe & Cie GmbH, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wolf, L. (1887). Ber. Deutsch Chem. Ges. 20, 425-433.
- Wolf, L. (1893). Ber. Deutsch Chem. Ges. 26, 721-725.

Acta Cryst. (2017). E73, 300-305 [https://doi.org/10.1107/S205698901700127X]

Crystal structures of  $N^2$ ,  $N^3$ ,  $N^5$ ,  $N^6$ -tetrakis(pyridin-2-ylmethyl)pyrazine-2,3,5,6tetracarboxamide and  $N^2$ ,  $N^3$ ,  $N^5$ ,  $N^6$ -tetrakis(pyridin-4-ylmethyl)pyrazine-2,3,5,6tetracarboxamide

# Dilovan S. Cati and Helen Stoeckli-Evans

# **Computing details**

For both compounds, data collection: *EXPOSE* in *IPDS*-I (Stoe & Cie, 2000); cell refinement: *CELL* in *IPDS*-I (Stoe & Cie, 2000); data reduction: *INTEGRATE* in *IPDS*-I (Stoe & Cie, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2016* (Sheldrick, 2015), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

 $(I) \ N^2, N^3, N^5, N^6 - Tetrakis (pyridin - 2 - ylmethyl) pyrazine - 2, 3, 5, 6 - tetracarboxamide \\$ 

## Crystal data

 $C_{32}H_{28}N_{10}O_4$   $M_r = 616.64$ Monoclinic,  $P2_1/n$  a = 16.0754 (19) Å b = 11.8602 (10) Å c = 18.495 (2) Å  $\beta = 115.503$  (13)° V = 3182.6 (7) Å<sup>3</sup> Z = 4

## Data collection

Stoe IPDS 1 diffractometer Radiation source: fine-focus sealed tube Plane graphite monochromator  $\varphi$  rotation scans Absorption correction: multi-scan (MULABS in PLATON; Spek, 2009)  $T_{\min} = 0.865, T_{\max} = 1.000$ 

# Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.054$  $wR(F^2) = 0.129$ S = 0.726150 reflections F(000) = 1288  $D_x = 1.287 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6905 reflections  $\theta = 2.1-26.0^{\circ}$   $\mu = 0.09 \text{ mm}^{-1}$  T = 153 KBlock, colourless  $0.40 \times 0.20 \times 0.20 \text{ mm}$ 

26683 measured reflections 6150 independent reflections 2219 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.211$  $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.1^{\circ}$  $h = -19 \rightarrow 19$  $k = -14 \rightarrow 14$  $l = -22 \rightarrow 22$ 

432 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0393P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  
$$\begin{split} &\Delta\rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3} \\ &\Delta\rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3} \\ & {\rm Extinction \ correction: \ SHELXL2016 \ (Sheldrick \ 2015), \ {\rm Fc}^* = {\rm kFc} [1 + 0.001 {\rm xFc}^2 \lambda^3 / {\rm sin} (2\theta)]^{-1/4} \\ & {\rm Extinction \ coefficient: \ 0.0015 \ (3)} \end{split}$$

# Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|     |              | 1 1         |               |                             |  |
|-----|--------------|-------------|---------------|-----------------------------|--|
|     | x            | У           | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
| 01  | 0.17252 (16) | 0.2650 (2)  | 0.25371 (13)  | 0.0262 (6)                  |  |
| O2  | 0.11731 (16) | 0.4901 (2)  | 0.29838 (13)  | 0.0270 (6)                  |  |
| O3  | 0.15003 (16) | 0.6495 (2)  | -0.05042 (13) | 0.0248 (6)                  |  |
| O4  | 0.03328 (16) | 0.4184 (2)  | -0.10516 (13) | 0.0296 (7)                  |  |
| N1  | 0.10335 (18) | 0.3788 (2)  | 0.07667 (15)  | 0.0209 (7)                  |  |
| N2  | 0.17209 (18) | 0.5881 (2)  | 0.14404 (15)  | 0.0196 (7)                  |  |
| N3  | 0.0179 (2)   | 0.2690 (3)  | 0.17069 (17)  | 0.0238 (7)                  |  |
| H3N | -0.029(3)    | 0.307 (4)   | 0.125 (3)     | 0.084 (17)*                 |  |
| N4  | -0.0867(2)   | 0.0255 (3)  | 0.10199 (18)  | 0.0424 (10)                 |  |
| N5  | 0.1965 (2)   | 0.6453 (3)  | 0.29048 (18)  | 0.0235 (8)                  |  |
| H5N | 0.222 (2)    | 0.680 (3)   | 0.269 (2)     | 0.019 (11)*                 |  |
| N6  | 0.1542 (2)   | 0.8767 (3)  | 0.39734 (17)  | 0.0260 (8)                  |  |
| N7  | 0.2429 (2)   | 0.7300 (3)  | 0.07033 (18)  | 0.0225 (7)                  |  |
| H7N | 0.265 (3)    | 0.723 (4)   | 0.121 (2)     | 0.053 (14)*                 |  |
| N8  | 0.3666 (2)   | 0.7102 (3)  | -0.02182 (18) | 0.0329 (8)                  |  |
| N9  | 0.1864 (2)   | 0.3770 (3)  | -0.04837 (17) | 0.0216 (7)                  |  |
| H9N | 0.236 (3)    | 0.367 (4)   | 0.000 (3)     | 0.082 (17)*                 |  |
| N10 | 0.2190 (2)   | 0.3237 (3)  | -0.23133 (17) | 0.0308 (8)                  |  |
| C1  | 0.1173 (2)   | 0.4044 (3)  | 0.15150 (18)  | 0.0184 (8)                  |  |
| C2  | 0.1486 (2)   | 0.5109 (3)  | 0.18446 (18)  | 0.0187 (8)                  |  |
| C3  | 0.1582 (2)   | 0.5635 (3)  | 0.06870 (19)  | 0.0197 (8)                  |  |
| C4  | 0.1232 (2)   | 0.4582 (3)  | 0.03481 (19)  | 0.0175 (8)                  |  |
| C5  | 0.1034 (2)   | 0.3081 (3)  | 0.19780 (19)  | 0.0207 (8)                  |  |
| C6  | -0.0042 (3)  | 0.1650 (3)  | 0.2026 (2)    | 0.0279 (9)                  |  |
| H6A | -0.065750    | 0.172843    | 0.202155      | 0.033*                      |  |
| H6B | 0.041504     | 0.154238    | 0.258835      | 0.033*                      |  |
| C7  | -0.0039 (3)  | 0.0627 (3)  | 0.1541 (2)    | 0.0294 (10)                 |  |
| C8  | 0.0768 (3)   | 0.0094 (4)  | 0.1648 (3)    | 0.0503 (12)                 |  |
| H8  | 0.134532     | 0.036800    | 0.203162      | 0.060*                      |  |
| C9  | 0.0729 (4)   | -0.0836 (4) | 0.1195 (3)    | 0.0677 (16)                 |  |
| H9  | 0.127695     | -0.121059   | 0.125562      | 0.081*                      |  |
| C10 | -0.0118 (5)  | -0.1218 (4) | 0.0652 (3)    | 0.0646 (16)                 |  |
| H10 | -0.016508    | -0.186399   | 0.033254      | 0.078*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C11  | -0.0891 (4) | -0.0651 (4) | 0.0579 (3)    | 0.0578 (15) |
|------|-------------|-------------|---------------|-------------|
| H11  | -0.147385   | -0.091176   | 0.019642      | 0.069*      |
| C12  | 0.1531 (2)  | 0.5463 (3)  | 0.26412 (19)  | 0.0221 (9)  |
| C13  | 0.2021 (2)  | 0.6979 (3)  | 0.36311 (19)  | 0.0245 (9)  |
| H13A | 0.263666    | 0.732720    | 0.391842      | 0.029*      |
| H13B | 0.195560    | 0.639111    | 0.398331      | 0.029*      |
| C14  | 0.1290 (2)  | 0.7871 (3)  | 0.34741 (19)  | 0.0229 (9)  |
| C15  | 0.0409 (3)  | 0.7782 (4)  | 0.2867 (2)    | 0.0392 (11) |
| H15  | 0.024542    | 0.715957    | 0.250896      | 0.047*      |
| C16  | -0.0228 (3) | 0.8602 (4)  | 0.2787 (2)    | 0.0408 (12) |
| H16  | -0.084386   | 0.853260    | 0.238703      | 0.049*      |
| C17  | 0.0024 (2)  | 0.9522 (3)  | 0.3285 (2)    | 0.0269 (9)  |
| H17  | -0.040291   | 1.010774    | 0.322741      | 0.032*      |
| C18  | 0.0917 (3)  | 0.9572 (3)  | 0.3872 (2)    | 0.0300 (10) |
| H18  | 0.109726    | 1.020517    | 0.421982      | 0.036*      |
| C19  | 0.1827 (2)  | 0.6525 (3)  | 0.0241 (2)    | 0.0223 (9)  |
| C20  | 0.2835 (2)  | 0.8163 (3)  | 0.0381 (2)    | 0.0240 (9)  |
| H20A | 0.294428    | 0.886330    | 0.070075      | 0.029*      |
| H20B | 0.240326    | 0.833907    | -0.017922     | 0.029*      |
| C21  | 0.3727 (2)  | 0.7740 (3)  | 0.04113 (19)  | 0.0215 (8)  |
| C22  | 0.4560 (3)  | 0.7938 (3)  | 0.1066 (2)    | 0.0312 (10) |
| H22  | 0.458295    | 0.838750    | 0.149923      | 0.037*      |
| C23  | 0.5354 (3)  | 0.7478 (4)  | 0.1084 (2)    | 0.0377 (11) |
| H23  | 0.593158    | 0.761289    | 0.152609      | 0.045*      |
| C24  | 0.5298 (3)  | 0.6823 (4)  | 0.0454 (2)    | 0.0389 (11) |
| H24  | 0.583563    | 0.649171    | 0.045208      | 0.047*      |
| C25  | 0.4446 (3)  | 0.6654 (4)  | -0.0177 (2)   | 0.0391 (11) |
| H25  | 0.441200    | 0.619099    | -0.060761     | 0.047*      |
| C26  | 0.1097 (2)  | 0.4191 (3)  | -0.04760 (19) | 0.0223 (8)  |
| C27  | 0.1859 (3)  | 0.3171 (3)  | -0.1166 (2)   | 0.0271 (9)  |
| H27A | 0.123425    | 0.285802    | -0.147570     | 0.033*      |
| H27B | 0.228937    | 0.252544    | -0.096491     | 0.033*      |
| C28  | 0.2120 (2)  | 0.3846 (3)  | -0.17289 (19) | 0.0227 (9)  |
| C29  | 0.2268 (3)  | 0.5004 (3)  | -0.1660 (2)   | 0.0320 (10) |
| H29  | 0.221046    | 0.541781    | -0.124359     | 0.038*      |
| C30  | 0.2501 (3)  | 0.5542 (4)  | -0.2215 (2)   | 0.0387 (11) |
| H30  | 0.261980    | 0.632934    | -0.217523     | 0.046*      |
| C31  | 0.2560 (3)  | 0.4926 (4)  | -0.2820 (2)   | 0.0361 (11) |
| H31  | 0.270793    | 0.527869    | -0.321149     | 0.043*      |
| C32  | 0.2399 (3)  | 0.3788 (4)  | -0.2844 (2)   | 0.0341 (10) |
| H32  | 0.243853    | 0.336422    | -0.326373     | 0.041*      |
|      |             |             |               |             |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$    |
|----|-------------|-------------|-------------|--------------|-------------|-------------|
| 01 | 0.0257 (14) | 0.0249 (16) | 0.0236 (13) | 0.0019 (12)  | 0.0064 (11) | 0.0010 (11) |
| 02 | 0.0316 (15) | 0.0256 (16) | 0.0252 (13) | -0.0051 (13) | 0.0135 (12) | 0.0022 (12) |
| 03 | 0.0269 (14) | 0.0254 (16) | 0.0177 (13) | -0.0006 (12) | 0.0053 (11) | 0.0021 (11) |

| O4  | 0.0226 (14) | 0.0369 (17) | 0.0216 (13) | 0.0002 (12)  | 0.0021 (11)  | -0.0022 (11) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| N1  | 0.0173 (15) | 0.0232 (19) | 0.0199 (15) | 0.0024 (14)  | 0.0059 (12)  | 0.0000 (13)  |
| N2  | 0.0152 (15) | 0.0207 (18) | 0.0209 (15) | 0.0015 (13)  | 0.0059 (12)  | -0.0024 (13) |
| N3  | 0.0235 (17) | 0.0194 (19) | 0.0245 (16) | -0.0016 (15) | 0.0067 (14)  | 0.0016 (14)  |
| N4  | 0.046 (2)   | 0.029 (2)   | 0.0347 (19) | -0.0138 (18) | 0.0013 (17)  | -0.0013 (16) |
| N5  | 0.0273 (18) | 0.022 (2)   | 0.0244 (17) | -0.0036 (16) | 0.0138 (15)  | -0.0035 (15) |
| N6  | 0.0277 (17) | 0.0223 (19) | 0.0279 (16) | 0.0003 (15)  | 0.0119 (14)  | -0.0080 (14) |
| N7  | 0.0257 (17) | 0.0192 (19) | 0.0218 (17) | -0.0020 (15) | 0.0095 (14)  | 0.0009 (14)  |
| N8  | 0.037 (2)   | 0.029 (2)   | 0.0394 (19) | -0.0022 (17) | 0.0225 (16)  | -0.0027 (15) |
| N9  | 0.0240 (17) | 0.0223 (19) | 0.0192 (16) | 0.0021 (15)  | 0.0101 (14)  | -0.0003 (13) |
| N10 | 0.0328 (19) | 0.034 (2)   | 0.0282 (17) | -0.0031 (16) | 0.0155 (15)  | -0.0050 (15) |
| C1  | 0.0132 (17) | 0.022 (2)   | 0.0170 (17) | 0.0016 (16)  | 0.0038 (14)  | 0.0009 (15)  |
| C2  | 0.0160 (18) | 0.018 (2)   | 0.0207 (18) | 0.0020 (16)  | 0.0064 (14)  | -0.0011 (16) |
| C3  | 0.0160 (18) | 0.020 (2)   | 0.0206 (18) | 0.0017 (16)  | 0.0050 (14)  | 0.0021 (15)  |
| C4  | 0.0155 (18) | 0.016 (2)   | 0.0209 (18) | 0.0001 (16)  | 0.0075 (14)  | 0.0000 (15)  |
| C5  | 0.024 (2)   | 0.015 (2)   | 0.0237 (19) | 0.0059 (17)  | 0.0107 (17)  | -0.0020 (15) |
| C6  | 0.035 (2)   | 0.023 (2)   | 0.0256 (19) | -0.0068 (19) | 0.0124 (18)  | -0.0025 (16) |
| C7  | 0.035 (2)   | 0.025 (2)   | 0.026 (2)   | -0.011 (2)   | 0.0107 (17)  | -0.0034 (17) |
| C8  | 0.046 (3)   | 0.037 (3)   | 0.078 (3)   | -0.008 (2)   | 0.037 (2)    | -0.018 (3)   |
| C9  | 0.089 (4)   | 0.032 (3)   | 0.110 (4)   | -0.007 (3)   | 0.070 (4)    | -0.019 (3)   |
| C10 | 0.121 (5)   | 0.025 (3)   | 0.062 (3)   | -0.030 (3)   | 0.052 (3)    | -0.020 (2)   |
| C11 | 0.083 (4)   | 0.036 (3)   | 0.041 (3)   | -0.020 (3)   | 0.015 (3)    | -0.011 (2)   |
| C12 | 0.0189 (18) | 0.025 (2)   | 0.0177 (18) | 0.0023 (17)  | 0.0034 (15)  | -0.0007 (16) |
| C13 | 0.025 (2)   | 0.028 (2)   | 0.0184 (18) | -0.0028 (17) | 0.0075 (15)  | -0.0034 (15) |
| C14 | 0.024 (2)   | 0.022 (2)   | 0.0224 (18) | -0.0007 (17) | 0.0094 (15)  | -0.0014 (16) |
| C15 | 0.034 (2)   | 0.032 (3)   | 0.037 (2)   | 0.005 (2)    | 0.0007 (19)  | -0.0133 (19) |
| C16 | 0.027 (2)   | 0.038 (3)   | 0.039 (2)   | 0.005 (2)    | -0.0025 (18) | -0.014 (2)   |
| C17 | 0.027 (2)   | 0.024 (2)   | 0.0287 (19) | -0.0009 (18) | 0.0104 (17)  | 0.0002 (17)  |
| C18 | 0.032 (2)   | 0.026 (2)   | 0.032 (2)   | 0.003 (2)    | 0.0143 (18)  | -0.0066 (17) |
| C19 | 0.0191 (19) | 0.022 (2)   | 0.024 (2)   | 0.0024 (17)  | 0.0075 (16)  | -0.0022 (16) |
| C20 | 0.029 (2)   | 0.020 (2)   | 0.0253 (19) | -0.0029 (17) | 0.0137 (17)  | -0.0028 (16) |
| C21 | 0.027 (2)   | 0.015 (2)   | 0.0255 (19) | -0.0026 (17) | 0.0144 (16)  | 0.0014 (16)  |
| C22 | 0.033 (2)   | 0.025 (2)   | 0.033 (2)   | -0.0001 (19) | 0.0120 (18)  | 0.0038 (17)  |
| C23 | 0.029 (2)   | 0.041 (3)   | 0.043 (2)   | -0.003 (2)   | 0.0160 (18)  | 0.005 (2)    |
| C24 | 0.036 (2)   | 0.034 (3)   | 0.056 (3)   | 0.006 (2)    | 0.029 (2)    | 0.011 (2)    |
| C25 | 0.040 (3)   | 0.037 (3)   | 0.048 (3)   | -0.002 (2)   | 0.025 (2)    | -0.007 (2)   |
| C26 | 0.022 (2)   | 0.024 (2)   | 0.0205 (18) | -0.0008 (18) | 0.0086 (16)  | -0.0017 (16) |
| C27 | 0.030 (2)   | 0.025 (2)   | 0.025 (2)   | 0.0003 (18)  | 0.0103 (17)  | -0.0021 (16) |
| C28 | 0.0208 (19) | 0.022 (2)   | 0.0223 (18) | 0.0013 (17)  | 0.0062 (15)  | 0.0027 (16)  |
| C29 | 0.037 (2)   | 0.027 (3)   | 0.033 (2)   | -0.006 (2)   | 0.0155 (18)  | -0.0059 (19) |
| C30 | 0.041 (3)   | 0.031 (3)   | 0.041 (2)   | -0.007 (2)   | 0.014 (2)    | 0.002 (2)    |
| C31 | 0.033 (2)   | 0.043 (3)   | 0.030 (2)   | -0.007 (2)   | 0.0113 (18)  | 0.003 (2)    |
| C32 | 0.037 (2)   | 0.043 (3)   | 0.028 (2)   | -0.007 (2)   | 0.0195 (18)  | -0.0001 (19) |

# Geometric parameters (Å, °)

| 01—C5  | 1.256 (4) | C8—H8  | 0.9500    |
|--------|-----------|--------|-----------|
| O2—C12 | 1.220 (4) | C9—C10 | 1.375 (7) |

| O3—C19                    | 1.246 (4)            | С9—Н9                                                                                   | 0.9500              |
|---------------------------|----------------------|-----------------------------------------------------------------------------------------|---------------------|
| O4—C26                    | 1.231 (4)            | C10—C11                                                                                 | 1.368 (7)           |
| N1                        | 1.338 (4)            | C10—H10                                                                                 | 0.9500              |
| N1—C4                     | 1.342 (4)            | C11—H11                                                                                 | 0.9500              |
| N2—C2                     | 1.336 (4)            | C13—C14                                                                                 | 1.513 (5)           |
| N2—C3                     | 1.345 (4)            | C13—H13A                                                                                | 0.9900              |
| N3—C5                     | 1.327 (4)            | C13—H13B                                                                                | 0.9900              |
| N3—C6                     | 1.475 (5)            | C14—C15                                                                                 | 1.382 (5)           |
| N3—H3N                    | 0.97 (5)             | C15—C16                                                                                 | 1.374 (5)           |
| N4—C7                     | 1.338 (5)            | C15—H15                                                                                 | 0.9500              |
| N4—C11                    | 1.339 (6)            | C16—C17                                                                                 | 1.372 (5)           |
| N5-C12                    | 1 346 (5)            | C16—H16                                                                                 | 0.9500              |
| N5-C13                    | 1.348(4)             | C17 - C18                                                                               | 1 378 (5)           |
| N5—H5N                    | 0.79(4)              | C17—H17                                                                                 | 0.9500              |
| N6_C18                    | 1 339 (5)            | C18H18                                                                                  | 0.9500              |
| N6-C14                    | 1.359(3)<br>1.350(4) | $C_{10}$ $C_{10}$ $C_{21}$                                                              | 1.498(5)            |
| N7 C19                    | 1.330(4)<br>1.342(4) | $C_{20} = C_{21}$                                                                       | 0.9900              |
| N7 C20                    | 1.342(4)<br>1.470(5) | C20—H20R                                                                                | 0.9900              |
|                           | 1.470(3)             | $\begin{array}{c} C_{20} \\ \hline \\ C_{21} \\ \hline \\ C_{22} \\ \hline \end{array}$ | 0.9900              |
| N = C25                   | 0.80(4)              | $C_{21}$ $-C_{22}$                                                                      | 1.383(3)            |
| N8-C21                    | 1.333(3)             | $C_{22}$ $C_{23}$                                                                       | 1.374(0)            |
| N8-C21                    | 1.330 (3)            | C22—H22                                                                                 | 0.9500              |
| N9-C26                    | 1.336 (4)            | $C_{23} - C_{24}$                                                                       | 1.372 (6)           |
| N9-C2/                    | 1.445 (4)            | C23—H23                                                                                 | 0.9500              |
| N9—H9N                    | 0.92 (4)             | C24—C25                                                                                 | 1.380 (5)           |
| N10—C32                   | 1.336 (5)            | C24—H24                                                                                 | 0.9500              |
| N10—C28                   | 1.345 (5)            | C25—H25                                                                                 | 0.9500              |
| C1—C2                     | 1.399 (5)            | C27—C28                                                                                 | 1.509 (5)           |
| C1—C5                     | 1.501 (5)            | С27—Н27А                                                                                | 0.9900              |
| C2—C12                    | 1.504 (5)            | С27—Н27В                                                                                | 0.9900              |
| C3—C4                     | 1.402 (5)            | C28—C29                                                                                 | 1.391 (5)           |
| C3—C19                    | 1.494 (5)            | C29—C30                                                                                 | 1.390 (5)           |
| C4—C26                    | 1.516 (5)            | С29—Н29                                                                                 | 0.9500              |
| C6—C7                     | 1.511 (5)            | C30—C31                                                                                 | 1.374 (6)           |
| С6—Н6А                    | 0.9900               | С30—Н30                                                                                 | 0.9500              |
| С6—Н6В                    | 0.9900               | C31—C32                                                                                 | 1.372 (6)           |
| С7—С8                     | 1.379 (6)            | C31—H31                                                                                 | 0.9500              |
| С8—С9                     | 1.369 (6)            | С32—Н32                                                                                 | 0.9500              |
| C1 - N1 - C4              | 117 5 (3)            | N6-C14-C15                                                                              | 121 1 (4)           |
| $C_2 = N_2 = C_3$         | 117.5(3)             | N6-C14-C13                                                                              | 1161(3)             |
| $C_2 = N_2 = C_3$         | 110.0(3)             | $C_{15} = C_{14} = C_{13}$                                                              | 122.8(3)            |
| $C_5 N_3 H_3N$            | 122.0(3)<br>117(3)   | C16 C15 C14                                                                             | 122.0(3)<br>1103(4) |
| C6 N3 H3N                 | 117(3)<br>120(3)     | C16 C15 H15                                                                             | 119.5 (4)           |
| C7  NA C11                | 120(3)<br>1175(4)    | C14 $C15$ $H15$                                                                         | 120.4               |
| $C_{12} = N_{5} = C_{12}$ | 117.3 (ד)            | $C_{17}$ $C_{15}$ $C_{15}$ $C_{17}$ $C_{16}$ $C_{15}$                                   | 120.4               |
| C12 = N5 = H5N            | 121.0(3)<br>124(3)   | C17 C16 H16                                                                             | 119.9 (4)           |
| C12  N5  H5N              | 12 + (3)             | $C_{1} = C_{10} = 1110$<br>$C_{15} = C_{16} = U_{16}$                                   | 120.0               |
| C19  N6  C14              | 114(3)<br>1186(2)    | $C_{13}$ $-C_{10}$ $-1110$ $C_{16}$ $C_{17}$ $C_{19}$                                   | 120.0               |
| U10-1N0-U14               | 110.0 (5)            | -10 - 17 - 10                                                                           | 110.0(4)            |

| C19—N7—C20  | 122.9 (3) | C16—C17—H17                | 121.0     |
|-------------|-----------|----------------------------|-----------|
| C19—N7—H7N  | 119 (3)   | С18—С17—Н17                | 121.0     |
| C20—N7—H7N  | 118 (3)   | N6-C18-C17                 | 123.0 (4) |
| C25—N8—C21  | 117.0 (3) | N6-C18-H18                 | 118.5     |
| C26—N9—C27  | 122.3 (3) | C17—C18—H18                | 118.5     |
| C26—N9—H9N  | 117 (3)   | O3—C19—N7                  | 124.7 (3) |
| C27—N9—H9N  | 118 (3)   | O3—C19—C3                  | 120.3 (3) |
| C32—N10—C28 | 117.5 (4) | N7—C19—C3                  | 114.9 (3) |
| N1—C1—C2    | 121.6 (3) | N7—C20—C21                 | 109.7 (3) |
| N1—C1—C5    | 114.7 (3) | N7—C20—H20A                | 109.7     |
| C2—C1—C5    | 123.5 (3) | С21—С20—Н20А               | 109.7     |
| N2—C2—C1    | 120.7 (3) | N7—C20—H20B                | 109.7     |
| N2—C2—C12   | 116.8 (3) | C21—C20—H20B               | 109.7     |
| C1—C2—C12   | 122.4 (3) | H20A—C20—H20B              | 108.2     |
| N2—C3—C4    | 120.8 (3) | N8—C21—C22                 | 122.0 (4) |
| N2—C3—C19   | 117.0 (3) | N8—C21—C20                 | 116.1 (3) |
| C4—C3—C19   | 122.2 (3) | C22—C21—C20                | 121.7 (3) |
| N1-C4-C3    | 121.1 (3) | $C_{23}$ $C_{22}$ $C_{21}$ | 119.5 (4) |
| N1-C4-C26   | 113.5 (3) | C23—C22—H22                | 120.3     |
| C3—C4—C26   | 125.3 (3) | C21—C22—H22                | 120.3     |
| 01—C5—N3    | 125.0 (3) | C24—C23—C22                | 119.0 (4) |
| 01          | 118.9 (3) | C24—C23—H23                | 120.5     |
| N3—C5—C1    | 115.8 (3) | C22—C23—H23                | 120.5     |
| N3—C6—C7    | 111.8 (3) | C23—C24—C25                | 118.5 (4) |
| N3—C6—H6A   | 109.3     | C23—C24—H24                | 120.7     |
| С7—С6—Н6А   | 109.3     | C25—C24—H24                | 120.7     |
| N3—C6—H6B   | 109.3     | N8—C25—C24                 | 123.9 (4) |
| С7—С6—Н6В   | 109.3     | N8—C25—H25                 | 118.0     |
| H6A—C6—H6B  | 107.9     | C24—C25—H25                | 118.0     |
| N4—C7—C8    | 122.4 (4) | O4—C26—N9                  | 124.8 (3) |
| N4—C7—C6    | 115.8 (4) | O4—C26—C4                  | 122.0 (3) |
| C8—C7—C6    | 121.8 (3) | N9—C26—C4                  | 113.0 (3) |
| C9—C8—C7    | 119.2 (4) | N9—C27—C28                 | 116.3 (3) |
| С9—С8—Н8    | 120.4     | N9—C27—H27A                | 108.2     |
| С7—С8—Н8    | 120.4     | С28—С27—Н27А               | 108.2     |
| C8—C9—C10   | 118.9 (5) | N9—C27—H27B                | 108.2     |
| С8—С9—Н9    | 120.5     | С28—С27—Н27В               | 108.2     |
| С10—С9—Н9   | 120.5     | H27A—C27—H27B              | 107.4     |
| C11—C10—C9  | 118.8 (5) | N10-C28-C29                | 122.3 (3) |
| C11—C10—H10 | 120.6     | N10-C28-C27                | 114.5 (3) |
| С9—С10—Н10  | 120.6     | C29—C28—C27                | 123.2 (3) |
| N4—C11—C10  | 123.2 (5) | C30—C29—C28                | 118.4 (4) |
| N4—C11—H11  | 118.4     | С30—С29—Н29                | 120.8     |
| C10-C11-H11 | 118.4     | С28—С29—Н29                | 120.8     |
| O2—C12—N5   | 125.1 (3) | C31—C30—C29                | 119.6 (4) |
| O2—C12—C2   | 121.5 (3) | C31—C30—H30                | 120.2     |
| N5—C12—C2   | 113.4 (3) | С29—С30—Н30                | 120.2     |
| N5-C13-C14  | 113.0 (3) | C32—C31—C30                | 118.0 (4) |

| N5—C13—H13A    | 109.0      | C32—C31—H31     | 121.0      |
|----------------|------------|-----------------|------------|
| C14—C13—H13A   | 109.0      | C30—C31—H31     | 121.0      |
| N5—C13—H13B    | 109.0      | N10-C32-C31     | 124.2 (4)  |
| C14—C13—H13B   | 109.0      | N10-C32-H32     | 117.9      |
| H13A—C13—H13B  | 107.8      | С31—С32—Н32     | 117.9      |
|                |            |                 |            |
| C4—N1—C1—C2    | 2.1 (5)    | N5-C13-C14-N6   | -145.5 (3) |
| C4—N1—C1—C5    | -173.8 (3) | N5-C13-C14-C15  | 35.5 (5)   |
| C3—N2—C2—C1    | 4.9 (5)    | N6-C14-C15-C16  | -2.0(6)    |
| C3—N2—C2—C12   | -172.1 (3) | C13—C14—C15—C16 | 176.9 (4)  |
| N1—C1—C2—N2    | -5.0 (5)   | C14—C15—C16—C17 | 2.8 (7)    |
| C5—C1—C2—N2    | 170.5 (3)  | C15—C16—C17—C18 | -1.9 (6)   |
| N1—C1—C2—C12   | 171.9 (3)  | C14—N6—C18—C17  | 0.7 (6)    |
| C5—C1—C2—C12   | -12.7 (5)  | C16-C17-C18-N6  | 0.1 (6)    |
| C2—N2—C3—C4    | -2.3(5)    | C20—N7—C19—O3   | -5.1 (5)   |
| C2—N2—C3—C19   | 178.5 (3)  | C20—N7—C19—C3   | 172.8 (3)  |
| C1—N1—C4—C3    | 0.5 (5)    | N2—C3—C19—O3    | -160.7(3)  |
| C1—N1—C4—C26   | 177.1 (3)  | C4—C3—C19—O3    | 20.1 (5)   |
| N2—C3—C4—N1    | -0.4 (5)   | N2—C3—C19—N7    | 21.3 (5)   |
| C19—C3—C4—N1   | 178.7 (3)  | C4—C3—C19—N7    | -157.9(3)  |
| N2—C3—C4—C26   | -176.5 (3) | C19—N7—C20—C21  | -92.0(4)   |
| C19—C3—C4—C26  | 2.6 (5)    | C25—N8—C21—C22  | 0.9 (6)    |
| C6—N3—C5—O1    | -2.6(5)    | C25—N8—C21—C20  | -175.6 (3) |
| C6—N3—C5—C1    | 171.2 (3)  | N7—C20—C21—N8   | 85.3 (4)   |
| N1—C1—C5—O1    | 108.5 (4)  | N7—C20—C21—C22  | -91.2(4)   |
| C2-C1-C5-01    | -67.2 (5)  | N8—C21—C22—C23  | 0.1 (6)    |
| N1—C1—C5—N3    | -65.6 (4)  | C20-C21-C22-C23 | 176.4 (4)  |
| C2-C1-C5-N3    | 118.6 (4)  | C21—C22—C23—C24 | -0.7 (6)   |
| C5—N3—C6—C7    | -93.0 (4)  | C22—C23—C24—C25 | 0.3 (6)    |
| C11—N4—C7—C8   | -1.9 (6)   | C21—N8—C25—C24  | -1.4 (6)   |
| C11—N4—C7—C6   | 180.0 (4)  | C23—C24—C25—N8  | 0.8 (7)    |
| N3—C6—C7—N4    | -101.2 (4) | C27—N9—C26—O4   | -5.2 (6)   |
| N3—C6—C7—C8    | 80.6 (5)   | C27—N9—C26—C4   | 168.9 (3)  |
| N4—C7—C8—C9    | 1.5 (7)    | N1-C4-C26-O4    | 81.6 (4)   |
| C6—C7—C8—C9    | 179.5 (4)  | C3—C4—C26—O4    | -102.1(4)  |
| C7—C8—C9—C10   | -0.7 (8)   | N1-C4-C26-N9    | -92.6 (4)  |
| C8—C9—C10—C11  | 0.4 (8)    | C3—C4—C26—N9    | 83.7 (4)   |
| C7—N4—C11—C10  | 1.6 (7)    | C26—N9—C27—C28  | 97.9 (4)   |
| C9—C10—C11—N4  | -0.9 (8)   | C32—N10—C28—C29 | -0.9(5)    |
| C13—N5—C12—O2  | -2.3 (5)   | C32—N10—C28—C27 | 178.6 (3)  |
| C13—N5—C12—C2  | 175.4 (3)  | N9-C27-C28-N10  | 174.1 (3)  |
| N2—C2—C12—O2   | 166.2 (3)  | N9—C27—C28—C29  | -6.4(5)    |
| C1—C2—C12—O2   | -10.7 (5)  | N10-C28-C29-C30 | -0.4(5)    |
| N2—C2—C12—N5   | -11.6 (4)  | C27—C28—C29—C30 | -179.8(3)  |
| C1—C2—C12—N5   | 171.5 (3)  | C28—C29—C30—C31 | 1.4 (6)    |
| C12—N5—C13—C14 | -97.1 (4)  | C29—C30—C31—C32 | -1.1 (6)   |
| C18—N6—C14—C15 | 0.3 (5)    | C28—N10—C32—C31 | 1.2 (6)    |
| C18—N6—C14—C13 | -178.7 (3) | C30-C31-C32-N10 | -0.2 (6)   |

| D—H···A                             | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H···A |
|-------------------------------------|-------------|----------|--------------|---------|
| С29—Н29…О3                          | 0.95        | 2.48     | 3.389 (5)    | 160     |
| N3—H3 <i>N</i> ···O3 <sup>i</sup>   | 0.97 (5)    | 1.91 (5) | 2.829 (4)    | 158 (4) |
| N5—H5 <i>N</i> …O1 <sup>ii</sup>    | 0.79 (4)    | 2.17 (4) | 2.932 (4)    | 162 (3) |
| N7—H7 <i>N</i> ···O1 <sup>ii</sup>  | 0.86 (4)    | 2.14 (4) | 2.967 (4)    | 161 (4) |
| N9—H9 <i>N</i> ···N6 <sup>iii</sup> | 0.92 (4)    | 1.96 (5) | 2.864 (4)    | 169 (5) |
| C13—H13A…N1 <sup>ii</sup>           | 0.99        | 2.62     | 3.554 (5)    | 158     |
| C20—H20A····O2 <sup>ii</sup>        | 0.99        | 2.54     | 3.433 (4)    | 149     |
| С22—Н22…О2 <sup>іі</sup>            | 0.95        | 2.57     | 3.418 (5)    | 149     |

*Hydrogen-bond geometry (Å, °)* 

Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x+1/2, y-1/2, -z+1/2.

(II) N<sup>2</sup>, N<sup>3</sup>, N<sup>5</sup>, N<sup>6</sup>-Tetrakis(pyridin-4-ylmethyl)pyrazine-2, 3, 5, 6-tetracarboxamide

### Crystal data

 $C_{32}H_{28}N_{10}O_4$   $M_r = 616.64$ Monoclinic,  $P2_1/n$  a = 9.8592 (6) Å b = 10.6511 (6) Å c = 14.8089 (9) Å  $\beta = 102.306$  (7)° V = 1519.37 (16) Å<sup>3</sup> Z = 2

## Data collection

Stoe IPDS 1 diffractometer Radiation source: fine-focus sealed tube Plane graphite monochromator  $\varphi$  rotation scans Absorption correction: multi-scan (MULABS in PLATON; Spek, 2009)  $T_{\min} = 0.666, T_{\max} = 1.000$ 

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.051$  $wR(F^2) = 0.134$ S = 0.892924 reflections 244 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 644  $D_x = 1.348 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 7048 reflections  $\theta = 2.3-25.9^{\circ}$   $\mu = 0.09 \text{ mm}^{-1}$  T = 153 KBlock, colourless  $0.45 \times 0.35 \times 0.20 \text{ mm}$ 

11450 measured reflections 2924 independent reflections 1815 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.090$  $\theta_{max} = 25.9^{\circ}, \ \theta_{min} = 2.3^{\circ}$  $h = -12 \rightarrow 12$  $k = -13 \rightarrow 13$  $l = -18 \rightarrow 18$ 

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0843P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.26$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.24$  e Å<sup>-3</sup>

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x             | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|---------------|--------------|--------------|-----------------------------|-----------|
| N1   | -0.03421 (18) | 0.58335 (15) | 0.92721 (11) | 0.0272 (4)                  |           |
| N2   | 0.22670 (19)  | 0.60099 (18) | 0.84892 (13) | 0.0302 (4)                  |           |
| H2N  | 0.244 (3)     | 0.658 (3)    | 0.898 (2)    | 0.055 (8)*                  |           |
| N4   | -0.2443 (2)   | 0.74564 (17) | 0.91134 (12) | 0.0299 (4)                  |           |
| H4N  | -0.182 (3)    | 0.738 (2)    | 0.8753 (18)  | 0.040 (7)*                  |           |
| N5   | -0.2772 (2)   | 1.19617 (19) | 1.02333 (13) | 0.0430 (5)                  |           |
| 01   | 0.09946 (16)  | 0.43306 (14) | 0.78401 (10) | 0.0357 (4)                  |           |
| O2   | -0.29807 (17) | 0.67310 (16) | 1.04302 (10) | 0.0435 (5)                  |           |
| C1   | 0.0706 (2)    | 0.50299 (19) | 0.93128 (13) | 0.0251 (5)                  |           |
| C2   | -0.1056 (2)   | 0.58116 (19) | 0.99495 (13) | 0.0257 (5)                  |           |
| C3   | 0.1375 (2)    | 0.5078 (2)   | 0.84783 (13) | 0.0264 (5)                  |           |
| C4   | 0.2840 (2)    | 0.6340 (2)   | 0.76899 (15) | 0.0350 (5)                  |           |
| H4A  | 0.298850      | 0.725974     | 0.769395     | 0.042*                      |           |
| H4B  | 0.214362      | 0.613342     | 0.712270     | 0.042*                      |           |
| C5   | 0.4176 (2)    | 0.5708 (2)   | 0.76382 (14) | 0.0369 (6)                  |           |
| C6   | 0.5084 (2)    | 0.6284 (3)   | 0.71674 (16) | 0.0428 (6)                  |           |
| H6   | 0.488582      | 0.710018     | 0.691424     | 0.051*                      |           |
| C7   | 0.6260 (3)    | 0.5674 (4)   | 0.7070(2)    | 0.0638 (9)                  |           |
| H7   | 0.695836      | 0.611527     | 0.684660     | 0.077*                      |           |
| N3A  | 0.6459 (12)   | 0.4293 (17)  | 0.7318 (7)   | 0.061 (3)                   | 0.58 (3)  |
| C8A  | 0.5525 (14)   | 0.3778 (16)  | 0.7738 (7)   | 0.057 (3)                   | 0.58 (3)  |
| H8A  | 0.565436      | 0.293085     | 0.793745     | 0.068*                      | 0.58 (3)  |
| C9A  | 0.4378 (16)   | 0.4420 (15)  | 0.7897 (9)   | 0.049 (2)                   | 0.58 (3)  |
| H9A  | 0.372404      | 0.400153     | 0.817822     | 0.059*                      | 0.58 (3)  |
| N3B  | 0.6817 (19)   | 0.4827 (19)  | 0.7509 (12)  | 0.055 (4)                   | 0.42 (3)  |
| C8B  | 0.603 (2)     | 0.429 (2)    | 0.8028 (15)  | 0.061 (5)                   | 0.42 (3)  |
| H8B  | 0.638613      | 0.355212     | 0.835676     | 0.073*                      | 0.42 (3)  |
| C9B  | 0.474 (2)     | 0.469 (2)    | 0.8135 (13)  | 0.045 (4)                   | 0.42 (3)  |
| H9B  | 0.426497      | 0.427346     | 0.854273     | 0.054*                      | 0.42 (3)  |
| C10  | -0.2250 (2)   | 0.67050 (19) | 0.98583 (14) | 0.0292 (5)                  |           |
| C11  | -0.3563 (2)   | 0.8358 (2)   | 0.89116 (14) | 0.0302 (5)                  |           |
| H11A | -0.439256     | 0.798804     | 0.908574     | 0.036*                      |           |
| H11B | -0.379534     | 0.850972     | 0.823670     | 0.036*                      |           |
| C12  | -0.3255 (2)   | 0.9596 (2)   | 0.93967 (13) | 0.0280 (5)                  |           |
| C13  | -0.4219 (2)   | 1.0556 (2)   | 0.91948 (15) | 0.0335 (5)                  |           |
| H13  | -0.506721     | 1.042206     | 0.876122     | 0.040*                      |           |
| C14  | -0.3951 (2)   | 1.1701 (2)   | 0.96208 (16) | 0.0377 (6)                  |           |
| H14  | -0.463442     | 1.234122     | 0.947499     | 0.045*                      |           |
| C15  | -0.1850 (3)   | 1.1033 (2)   | 1.04220 (17) | 0.0462 (6)                  |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| H15 | -0.100541   | 1.119381   | 1.085262     | 0.055*     |
|-----|-------------|------------|--------------|------------|
| C16 | -0.2041 (2) | 0.9855 (2) | 1.00334 (15) | 0.0374 (6) |
| H16 | -0.134841   | 0.922753   | 1.020004     | 0.045*     |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | U <sup>22</sup> | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-----------------|-------------|--------------|--------------|--------------|
| N1  | 0.0310 (9)  | 0.0273 (10)     | 0.0236 (8)  | 0.0014 (8)   | 0.0069 (7)   | -0.0008 (7)  |
| N2  | 0.0327 (10) | 0.0303 (11)     | 0.0297 (9)  | -0.0008 (8)  | 0.0114 (8)   | -0.0023 (8)  |
| N4  | 0.0361 (10) | 0.0311 (11)     | 0.0236 (9)  | 0.0061 (8)   | 0.0087 (8)   | 0.0028 (7)   |
| N5  | 0.0529 (13) | 0.0374 (12)     | 0.0396 (11) | 0.0010 (10)  | 0.0121 (10)  | -0.0045 (9)  |
| 01  | 0.0419 (9)  | 0.0411 (9)      | 0.0250 (8)  | -0.0056 (7)  | 0.0090 (6)   | -0.0069 (7)  |
| O2  | 0.0489 (10) | 0.0523 (11)     | 0.0356 (9)  | 0.0206 (8)   | 0.0228 (8)   | 0.0139 (7)   |
| C1  | 0.0293 (11) | 0.0238 (11)     | 0.0224 (10) | -0.0008 (9)  | 0.0060 (8)   | -0.0023 (8)  |
| C2  | 0.0294 (11) | 0.0252 (11)     | 0.0230 (10) | 0.0006 (9)   | 0.0063 (8)   | -0.0019 (8)  |
| C3  | 0.0269 (11) | 0.0284 (12)     | 0.0244 (10) | 0.0051 (9)   | 0.0063 (8)   | 0.0011 (8)   |
| C4  | 0.0346 (12) | 0.0404 (13)     | 0.0321 (11) | -0.0008 (11) | 0.0113 (9)   | 0.0066 (10)  |
| C5  | 0.0378 (13) | 0.0516 (16)     | 0.0224 (11) | 0.0022 (11)  | 0.0088 (9)   | -0.0042 (10) |
| C6  | 0.0399 (13) | 0.0584 (16)     | 0.0330 (12) | -0.0071 (12) | 0.0138 (10)  | -0.0140 (11) |
| C7  | 0.0480 (17) | 0.107 (3)       | 0.0429 (16) | 0.0061 (18)  | 0.0232 (13)  | -0.0043 (17) |
| N3A | 0.053 (4)   | 0.085 (7)       | 0.052 (4)   | 0.023 (4)    | 0.027 (3)    | 0.000 (4)    |
| C8A | 0.063 (5)   | 0.074 (6)       | 0.039 (4)   | 0.026 (5)    | 0.024 (4)    | 0.011 (4)    |
| C9A | 0.045 (6)   | 0.072 (6)       | 0.031 (5)   | 0.017 (4)    | 0.011 (4)    | 0.005 (4)    |
| N3B | 0.062 (7)   | 0.062 (8)       | 0.052 (6)   | 0.019 (6)    | 0.035 (5)    | 0.013 (5)    |
| C8B | 0.066 (8)   | 0.070 (9)       | 0.055 (8)   | 0.032 (7)    | 0.029 (7)    | 0.027 (7)    |
| C9B | 0.048 (8)   | 0.068 (9)       | 0.025 (6)   | 0.023 (6)    | 0.019 (5)    | 0.022 (6)    |
| C10 | 0.0352 (12) | 0.0274 (12)     | 0.0258 (10) | 0.0036 (9)   | 0.0082 (9)   | 0.0012 (8)   |
| C11 | 0.0312 (11) | 0.0311 (12)     | 0.0266 (10) | 0.0047 (9)   | 0.0023 (8)   | 0.0034 (9)   |
| C12 | 0.0313 (12) | 0.0313 (12)     | 0.0223 (10) | 0.0032 (9)   | 0.0074 (8)   | 0.0037 (8)   |
| C13 | 0.0308 (12) | 0.0345 (13)     | 0.0347 (12) | 0.0047 (10)  | 0.0059 (9)   | 0.0042 (10)  |
| C14 | 0.0401 (13) | 0.0349 (13)     | 0.0413 (12) | 0.0090 (11)  | 0.0158 (10)  | 0.0047 (10)  |
| C15 | 0.0470 (15) | 0.0456 (16)     | 0.0408 (14) | 0.0020 (12)  | -0.0021 (11) | -0.0085 (11) |
| C16 | 0.0375 (13) | 0.0367 (14)     | 0.0337 (12) | 0.0078 (11)  | -0.0018 (10) | -0.0019 (10) |

# Geometric parameters (Å, °)

| N1—C1  | 1.333 (3) | C7—N3B  | 1.177 (12) |
|--------|-----------|---------|------------|
| N1-C2  | 1.343 (3) | C7—N3A  | 1.518 (17) |
| N2—C3  | 1.324 (3) | С7—Н7   | 0.9500     |
| N2C4   | 1.459 (3) | N3A—C8A | 1.334 (12) |
| N2—H2N | 0.93 (3)  | C8A—C9A | 1.384 (16) |
| N4-C10 | 1.343 (3) | C8A—H8A | 0.9500     |
| N4—C11 | 1.446 (3) | С9А—Н9А | 0.9500     |
| N4—H4N | 0.90 (3)  | N3B—C8B | 1.336 (16) |
| N5-C15 | 1.333 (3) | C8B—C9B | 1.38 (2)   |
| N5-C14 | 1.342 (3) | C8B—H8B | 0.9500     |
| O1—C3  | 1.232 (2) | C9B—H9B | 0.9500     |
| O2—C10 | 1.224 (3) | C11—C12 | 1.502 (3)  |
|        |           |         |            |

| C1—C2 <sup>i</sup>                                     | 1.398 (3)                | C11—H11A                  | 0.9900            |
|--------------------------------------------------------|--------------------------|---------------------------|-------------------|
| C1—C3                                                  | 1.521 (3)                | C11—H11B                  | 0.9900            |
| C2—C10                                                 | 1.497 (3)                | C12—C16                   | 1.384 (3)         |
| C4—C5                                                  | 1.495 (3)                | C12—C13                   | 1.385 (3)         |
| C4—H4A                                                 | 0.9900                   | C13—C14                   | 1.373 (3)         |
| C4—H4B                                                 | 0.9900                   | С13—Н13                   | 0.9500            |
| C5—C9B                                                 | 1.360 (18)               | C14—H14                   | 0.9500            |
| C5—C6                                                  | 1 389 (3)                | C15-C16                   | 1 376 (3)         |
| $C_{5}$                                                | 1.505(3)                 | C15—H15                   | 0.9500            |
| C6-C7                                                  | 1.127(10)<br>1.363(4)    | C16H16                    | 0.9500            |
| C6 H6                                                  | 0.0500                   |                           | 0.7500            |
| 0-110                                                  | 0.9500                   |                           |                   |
| C1—N1—C2                                               | 118.66 (17)              | N3A—C8A—H8A               | 118.4             |
| C3—N2—C4                                               | 122.83 (19)              | С9А—С8А—Н8А               | 118.4             |
| C3—N2—H2N                                              | 120.4 (17)               | C8A—C9A—C5                | 120.1 (12)        |
| C4—N2—H2N                                              | 115.9 (17)               | С8А—С9А—Н9А               | 120.0             |
| C10—N4—C11                                             | 122.25 (19)              | С5—С9А—Н9А                | 120.0             |
| C10—N4—H4N                                             | 116.1 (16)               | C7—N3B—C8B                | 112.7(11)         |
| C11—N4—H4N                                             | 121.6 (16)               | N3B - C8B - C9B           | 126.5(12)         |
| C15 - N5 - C14                                         | 1163(2)                  | N3B-C8B-H8B               | 1167              |
| $N1-C1-C2^{i}$                                         | 120.44(19)               | C9B-C8B-H8B               | 116.7             |
| N1-C1-C3                                               | 114.06(17)               | $C_{5}$                   | 117.8(13)         |
| $C^{i} - C^{i} - C^{3}$                                | 125.39(18)               | $C_{5}$ $C_{9B}$ $H_{9B}$ | 121.1             |
| $\mathbf{N}_{1} = \mathbf{C}_{2} = \mathbf{C}_{1}^{1}$ | 125.57(10)<br>120.80(10) |                           | 121.1             |
| N1 = C2 = C1                                           | 120.09(19)<br>116.66(17) | $C_{0}$ $C_{10}$ $N_{4}$  | 121.1<br>122.6(2) |
| N1 - C2 - C10                                          | 110.00(17)<br>122.44(18) | 02 - C10 - N4             | 123.0(2)          |
| C1 - C2 - C10                                          | 122.44(18)               | 02 - C10 - C2             | 121.30 (18)       |
| OI = C3 = N2                                           | 125.93 (19)              | N4-C10-C2                 | 115.08 (19)       |
|                                                        | 119.20 (19)              |                           | 114.61 (17)       |
| N2-C3-C1                                               | 114.69 (18)              | N4—CII—HIIA               | 108.6             |
| N2-C4-C5                                               | 115.50 (18)              | CI2—CII—HIIA              | 108.6             |
| N2—C4—H4A                                              | 108.4                    | N4—C11—H11B               | 108.6             |
| С5—С4—Н4А                                              | 108.4                    | C12—C11—H11B              | 108.6             |
| N2—C4—H4B                                              | 108.4                    | H11A—C11—H11B             | 107.6             |
| C5—C4—H4B                                              | 108.4                    | C16—C12—C13               | 117.0 (2)         |
| H4A—C4—H4B                                             | 107.5                    | C16—C12—C11               | 123.95 (19)       |
| C9B—C5—C6                                              | 113.0 (8)                | C13—C12—C11               | 119.04 (18)       |
| C6—C5—C9A                                              | 119.4 (6)                | C14—C13—C12               | 120.0 (2)         |
| C9B—C5—C4                                              | 126.4 (8)                | C14—C13—H13               | 120.0             |
| C6—C5—C4                                               | 119.7 (2)                | C12—C13—H13               | 120.0             |
| C9A—C5—C4                                              | 119.6 (6)                | N5—C14—C13                | 123.2 (2)         |
| C7—C6—C5                                               | 119.7 (3)                | N5—C14—H14                | 118.4             |
| С7—С6—Н6                                               | 120.1                    | C13—C14—H14               | 118.4             |
| С5—С6—Н6                                               | 120.1                    | N5-C15-C16                | 124.2 (2)         |
| N3B—C7—C6                                              | 128.0 (6)                | N5—C15—H15                | 117.9             |
| C6—C7—N3A                                              | 120.4 (5)                | С16—С15—Н15               | 117.9             |
| С6—С7—Н7                                               | 119.8                    | C15—C16—C12               | 119.2 (2)         |
| N3A—C7—H7                                              | 119.8                    | C15—C16—H16               | 120.4             |
| C8A—N3A—C7                                             | 116.4 (7)                | C12—C16—H16               | 120.4             |

| N3A—C8A—C9A                   | 123.1 (10)   |                            |             |
|-------------------------------|--------------|----------------------------|-------------|
| C2—N1—C1—C2 <sup>i</sup>      | -0.4 (3)     | C4—C5—C9A—C8A              | 171.5 (5)   |
| $C_2 - N_1 - C_1 - C_3$       | 176.06 (18)  | C6—C7—N3B—C8B              | 13.7 (16)   |
| C1—N1—C2—C1 <sup>i</sup>      | 0.4 (3)      | C7—N3B—C8B—C9B             | -5.4 (18)   |
| C1—N1—C2—C10                  | -178.23 (17) | C6—C5—C9B—C8B              | -7.3 (13)   |
| C4—N2—C3—O1                   | 5.4 (3)      | C4—C5—C9B—C8B              | -176.3 (10) |
| C4—N2—C3—C1                   | -169.63 (18) | N3B—C8B—C9B—C5             | 3.0 (19)    |
| N1-C1-C3-01                   | -95.4 (2)    | C11—N4—C10—O2              | -1.2(3)     |
| C2 <sup>i</sup> —C1—C3—O1     | 80.8 (3)     | C11—N4—C10—C2              | 178.84 (18) |
| N1—C1—C3—N2                   | 80.0 (2)     | N1-C2-C10-O2               | 178.2 (2)   |
| $C2^{i}$ — $C1$ — $C3$ — $N2$ | -103.8 (2)   | C1 <sup>i</sup> —C2—C10—O2 | -0.4 (3)    |
| C3—N2—C4—C5                   | -91.4 (2)    | N1-C2-C10-N4               | -1.8 (3)    |
| N2-C4-C5-C9B                  | 14.7 (13)    | C1 <sup>i</sup> —C2—C10—N4 | 179.59 (19) |
| N2-C4-C5-C6                   | -153.7 (2)   | C10-N4-C11-C12             | 84.7 (3)    |
| N2-C4-C5-C9A                  | 39.5 (7)     | N4-C11-C12-C16             | -3.9 (3)    |
| C9B—C5—C6—C7                  | 14.2 (11)    | N4-C11-C12-C13             | 175.06 (19) |
| C9A—C5—C6—C7                  | -9.1 (7)     | C16-C12-C13-C14            | -0.1 (3)    |
| C4—C5—C6—C7                   | -175.9 (2)   | C11—C12—C13—C14            | -179.1 (2)  |
| C5—C6—C7—N3B                  | -19.6 (17)   | C15—N5—C14—C13             | -0.5 (4)    |
| C5—C6—C7—N3A                  | 11.0 (7)     | C12—C13—C14—N5             | 0.6 (4)     |
| C6—C7—N3A—C8A                 | -8.4 (9)     | C14—N5—C15—C16             | -0.1 (4)    |
| C7—N3A—C8A—C9A                | 4.0 (11)     | N5-C15-C16-C12             | 0.6 (4)     |
| N3A—C8A—C9A—C5                | -2.3 (11)    | C13—C12—C16—C15            | -0.5 (3)    |
| C6—C5—C9A—C8A                 | 4.6 (9)      | C11—C12—C16—C15            | 178.5 (2)   |
|                               |              |                            |             |

Symmetry code: (i) -x, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

| D—H···A                                       | D—H      | H···A    | D···· $A$  | D—H···A |
|-----------------------------------------------|----------|----------|------------|---------|
| С9А—Н9А…О2 <sup>і</sup>                       | 0.95     | 2.46     | 3.316 (15) | 150     |
| [C9 <i>B</i> —H9 <i>B</i> ···O2] <sup>i</sup> | 0.95     | 2.43     | 3.375 (18) | 178     |
| N2—H2 <i>N</i> ···N5 <sup>ii</sup>            | 0.93 (3) | 1.93 (3) | 2.845 (3)  | 167 (2) |
| N4—H4 $N$ ···N3 $A^{iii}$                     | 0.90 (3) | 2.65 (3) | 3.184 (13) | 119 (2) |
| C6—H6…O1 <sup>iii</sup>                       | 0.95     | 2.58     | 3.414 (3)  | 146     |
| C11—H11 <i>B</i> …O1 <sup>iv</sup>            | 0.99     | 2.56     | 3.301 (2)  | 132     |
| C14—H14····O2 <sup>v</sup>                    | 0.95     | 2.58     | 3.442 (3)  | 151     |

Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x, -y+2, -z+2; (iii) -x+1/2, y+1/2, -z+3/2; (iv) -x-1/2, y+1/2, -z+3/2; (v) -x-1, -y+2, -z+2.