CRYSTALLOGRAPHIC COMMUNICATIONS

Received 8 December 2016
Accepted 20 December 2016

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; heptazethrene; substituent effect.

CCDC reference: 1523781

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 7,15-bis(4-tert-butylphenyl)-1,9-dimethylheptazethrene

Sho Kamata, ${ }^{\text {a }}$ Sota Sato, ${ }^{\text {a,b }}$ Jishan $\mathrm{Wu}^{\mathrm{c} *}$ and Hiroyuki Isobe ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{d} *}$

${ }^{\text {a }}$ Advanced Institute for Materials Research, Tohoku University, Aoba-ku, Sendai 980-8577, Japan, ${ }^{\text {b }}$ JST, ERATO, Isobe
Degenerate π-Integration Project, Aoba-ku, Sendai $980-8577$, Japan, ${ }^{\text {c }}$ Department of Chemistry, National University of
Singapore, 3 Science Drive 3, Singapore 117543 , Singapore, and ${ }^{\text {d }}$ Department of Chemistry, The University of Tokyo,
Hongo, Bunkyo-ku, Tokyo $113-0033$, Japan. ${ }^{*}$ Correspondence e-mail: chmwuj@nus.edu.sg,
isobe@chem.s.u-tokyo.ac.jp
The title compound, $\mathrm{C}_{50} \mathrm{H}_{44}, \mathbf{1}$, was synthesized as a derivative of heptazethrene bearing two methyl and two tert-butylphenyl substituents, respectively, at the $1,9-$ and 7,15 -positions. The asymmetric unit consists of one half of the molecule, which lies about an inversion centre. Albeit remotely located, the substituents contort the heptazethrene plane. The tert-butylphenyl substituents stand approximately perpendicular to the core plane, with a dihedral angle of $79.09(5)^{\circ}$ between the phenalene ring system and the substituted benzene ring, and prevent direct intermolecular contacts of the heptazethrene cores.

1. Chemical context

Heptazethrene is a polycyclic aromatic hydrocarbon with a characteristic Z-shaped molecular structure. A series of heptazethrene derivatives have been synthesized by one of the authors, and a derivative, 2, with methyl and silylethynyl substituents at the 1,9 - and 7,15 -positions has been reported as the first closed-shell congener (Li et al., 2012). In the crystal structure of $\mathbf{2}$, we noticed that the silylethynyl substituents are distorted into a non-linear geometry. Considering that the distorted structure originated from steric interactions between the 1,9- and 7,15-positions, we investigated substituent effects on the molecular structure. Replacing the silylethynyl groups with tert-butylphenyl groups, we designed the title compound, 1, and synthesized it via a route recently established for other heptazethrene derivatives (Hu et al., 2016).

2. Structural commentary

The molecular structure of $\mathbf{1}$ (Fig. 1) consists of a heptazethrene unit at the core, two methyl substituents at the

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{C} 3 A / \mathrm{C} 3 A 1 / \mathrm{C} 8 B$ and $\mathrm{C} 3 A 1 / \mathrm{C} 3 A /$ C4-C6/C6 A rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C3P-H3P $\cdots C g 1^{\mathrm{i}}$	0.95	2.80	$3.6278(15)$	147
${\text { C3T-H3T2 } \cdots \mathrm{Cg} 2^{\mathrm{i}}}^{2}$	0.98	2.97	$3.7929(17)$	143

Symmetry code: (i) $x, y+1, z$.

1,9-positions and two tert-butylphenyl substituents at the 7,15positions. One-half of the molecule is generated by the symmetry operation $(1-x, 1-y, 1-z)$, and carbon atoms at the $1 / 9-, 7 / 15$ - or $8 / 16$-positions, for instance, are symmetrically equivalent (Fig. $2 a$). As is the case with 2, a typical bondlength alternation in the central hexagon is observed, indicating a quinoidal character for $\mathbf{1}$ (Li et al., 2012). Unlike 2, however, the heptazethrene core of $\mathbf{1}$ is not flat but contorted. The mean plane of the heptazethrene core is generated by adopting 28 carbon atoms of the core ($O L E X 2$; Dolomanov et al., 2009) and the deviation of the atoms from the mean plane is visualized in Fig. 2b. The maximum deviation of 0.2969 (10) \AA is recorded (by using OLEX2) for the carbon atoms at the 7 - and 15 -positions. The same analysis was applied to 2 (Fig. 2c), and the maximum distance from the mean plane is 0.103 (3) \AA for the carbon atoms at the 8 - and 16 -positions. The contorted structure of $\mathbf{1}$ is also evidenced by the torsion angle at the $1-16 \mathrm{~b}-16 \mathrm{a}-16$ (see Fig. 1) positions, is $-16.91(19)^{\circ}$. For 2, the torsion angle at the same position is $5.8(3)^{\circ}$, which indicates that steric interactions between the 1 methyl and 7-phenyl groups may result in the contorted structure.

3. Supramolecular features

As is the case of 2 (Li et al., 2012), the molecules of $\mathbf{1}$ form layers with the heptazethrene cores assembled in a parallel manner (Fig. 3). However, due to the bulky phenyl groups at the 7,15-positions, the heptazethrene cores do not directly contact each other. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are instead observed between the heptazethrene core and the phenyl substituent (Table 1).

1

2

Figure 1
Chemical structures of heptazethrene derivatives. Numbers of positions are displayed for $\mathbf{1}$.

Figure 2
The molecular structures of heptazethrene derivatives. Displacement ellipsoids are drawn at the 50% probability level. (a) $\mathbf{1}$ with the atomnumbering scheme [symmetry code: (i) $1-x, 1-y, 1-z$]. (b) $\mathbf{1}$ with a mean plane of 28 C atoms, viewed perpendicular to the plane shown in red. (c) $\mathbf{2}$ with a mean plane of 28 C atoms, viewed perpendicular to the plane shown in red.

Figure 3
Packing diagram of $\mathbf{1}$, viewed along the c axis.

4. Database survey

A search of the Cambridge Structural Database (version 5.37 Update 2; Groom et al., 2016) for heptazethrene derivatives returns one result, compound 2 (Li et al., 2012). Two newer derivatives, 1,9-bis(hexyloxy)-7,15-dimesityl-heptazethrene

$\mathrm{Ar}=-\xi-\overbrace{1-1}^{6}-t-\mathrm{Bu}$
Figure 4
Synthesis of the title compound, 1.
and 1,9-bis(hexyloxy)-7,15-bis(pentafluorophenyl)-heptazethrene, have recently been reported (Hu et al., 2016). Detailed comparisons with compound $\mathbf{2}$ are described above. The other two derivatives possessing 7,15-phenyl groups and 1,9 -alkoxy substituents are also contorted. Two crystallographically independent molecules are observed in 1,9-bis(hexyloxy)-7,15-dimesityl-heptazethrene, and the 1-16b-16a-16 torsion angles are 2.55 (19) and $13.94(19)^{\circ}$. One molecule is observed in 1,9-bis(hexyloxy)-7,15-bis(penta-fluorophenyl)-heptazethrene, and the corresponding torsion angle is $6.44(18)^{\circ}$.

5. Synthesis and crystallization

The title compound $\mathbf{1}$ was synthesized by a method reported in a literature (Hu et al., 2016) with different starting materials for the introduction of different substituents (Fig. 4). A mixture of 2,5-dibromo-terephthalaldehyde $\mathbf{3}(2.30 \mathrm{~g}$, 7.89 mmol), 2-methylnaphthylboronic acid $\mathbf{4}(4.41 \mathrm{~g}$, $23.7 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ ($407 \mathrm{mg}, 0.393 \mathrm{mmol}$), SPhos $(648 \mathrm{mg}, 1.58 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.46 \mathrm{~g}, 39.4 \mathrm{mmol})$ was stirred in a deaerated solvent composed of toluene (70.8 ml), ethanol (17.2 ml) and water (19.0 ml) at 363 K for 24 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{ml})$. Organic materials were extracted with CHCl_{3} ($30 \mathrm{ml} \times 4$), and the combined organic phase was washed with brine, dried over MgSO_{4} and concentrated in vacuo. Crude materials were purified by silica gel column chromatography (eluent: $30 \% \mathrm{CHCl}_{3} /$ hexane) to afford the coupling product 5 in 2.02 g ($4.87 \mathrm{mmol}, 62 \%$ yield) as a yellow powder. The compound 5 ($1.64 \mathrm{~g}, 3.97 \mathrm{mmol}$) was dissolved in THF (80.0 mL), and to the solution was added 4-tert-butylphenyl-

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{50} \mathrm{H}_{44}$
M_{r}	644.90
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	93
$a, b, c(\AA)$	$8.7644(2), 9.2002(3), 13.1212(3)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$105.874(2), 95.080(2), 115.249(3)$
$V\left(\AA^{3}\right)$	$894.47(5)$
Z	1
Radiation type	Cu K α
$\mu\left(\mathrm{mm}^{-1}\right)$	0.51
Crystal size (mm)	$0.15 \times 0.08 \times 0.03$
Data collection	Rigaku XtaLAB P200
Diffractometer	Multi-scan $($ CrysAlis PRO; Rigaku
Absorption correction	Oxford Diffraction, 2015)
	$0.878,0.985$
$T_{\text {min }}, T_{\text {max }}$	$22866,3256,2930$
No. of measured, independent and	
\quad observed $\left[F^{2}>2.0 \sigma\left(F^{2}\right)\right]$ reflec-	
tions	0.026
$R_{\text {int }}$	0.602
$(\text { sin } \theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.044,0.131,1.08$
No. of reflections	3256
No. of parameters	230
H-atom treatment	$\mathrm{H}-$ atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.37,-0.23$

Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015), SHELXT (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b), CrystalStructure (Rigaku, 2016), Mercury (Macrae et al., 2008), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).
magnesium bromide $(30.0 \mathrm{ml}, 0.66 M$ in diethyl ether, $19.8 \mathrm{mmol})$ at 273 K . The mixture was stirred for 2 h , and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{ml})$ was added. Organic materials were extracted with ethyl acetate ($50 \mathrm{ml} \times 3$), and the combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a yellow oil containing diol 6 . Without purification, the crude material was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$, and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(5.10 \mathrm{ml}$, 39.5 mmol) was added at ambient temperature. After 10 min , methanol (10 ml) was added, and volatile materials were removed in vacuo. The crude material was washed with methanol (50 ml), and a purple solid containing the cyclized compound 7 was obtained. Without purification, the crude material was dissolved in toluene (400 ml), and to the solution was added a solution of 2,3-dichloro-5,6-dicyano-para-benzoquinone (DDQ; $70.0 \mathrm{ml}, 79.5 \mathrm{~m} M$ in toluene, 5.57 mmol) at ambient temperature. After 1 h , the mixture was poured onto a pad of silica gel $(250 \mathrm{~g})$ and eluted with toluene to afford the title compound 1. A small amount of contaminants was noted and was removed by washing the compound with methanol $(50 \mathrm{ml})$ to afford the title compound $\mathbf{1}(1.33 \mathrm{~g}, 2.06 \mathrm{mmol}, 52 \%$ in three steps from 5) as a purple solid. Suitable single crystals
were grown from slow liquid-liquid diffusion of acetonitrile into a toluene solution of $\mathbf{1}$.

Physical data: m.p. ca 643 K (decomposed); IR (ATR, neat): 567, 587, 764, 803, 825, 837, 1017, 1108, 1269, 1362, 1447, 1461, 2864, 2901, $2951 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.32(s$, $18 \mathrm{H}), 2.36(s, 6 \mathrm{H}), 7.03(t, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(d, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.25(d, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(d t, J=8.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 4 \mathrm{H})$, $7.36(d, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(d t, J=8.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.38$ $(d, J=8.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.72(s, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 26.0\left(\mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{3}\right), 34.6,125.6(\mathrm{CH}), 126.1 *(\mathrm{CH})$, $127.1(\mathrm{CH}), 127.4(\mathrm{CH}), 129.2(\mathrm{CH}), 129.7,130.3,131.0^{*}(\mathrm{CH})$, 131.7, 132.6 (CH), 133.2, 133.6, 134.7, 136.0, 136.7, 150.3 (Resonances with * appeared with twofold intensities and should contain two overlapping resonances.); HR-MS (DART-TOF, positive) calculated for $\mathrm{C}_{50} \mathrm{H}_{44}[M+\mathrm{H}]^{+}$ 645.3521, found 645.3545.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and refined as riding, allowing for rotation of the methyl group, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms.

Acknowledgements

This work was partly supported by KAKENHI (24241036, 16K04864, 25102007). SK thanks JSPS for a predoctoral fellowship. The following funding is acknowledged: Japan Society for the Promotion of Science (award No. 24241036, 16K04864, 25102007).

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hu, P., Lee, S., Herng, T. S., Aratani, N., Gonçalves, T. P., Qi, Q., Shi, X., Yamada, H., Huang, K.-H., Ding, J., Kim, D. \& Wu, J. (2016). J. Am. Chem. Soc. 138, 1065-1077.
Li, Y., Heng, W.-K., Lee, B. S., Aratani, N., Zafra, J. L., Bao, N., Lee, R., Sung, Y. M., Sun, Z., Huang, K.-H., Webster, R. R., López Navarrete, J. T., Kim, D., Osuka, A., Casado, J., Ding, J. \& Wu, J. (2012). J. Am. Chem. Soc. 134, 14913-14922.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Crystal structure of 7,15-bis(4-tert-butylphenyl)-1,9-dimethylheptazethrene

Sho Kamata, Sota Sato, Jishan Wu and Hiroyuki Isobe

Computing details

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: CrystalStructure (Rigaku, 2016) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2016), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

7,15-Bis(4-tert-butylphenyl)-1,9-dimethylheptazethrene

Crystal data

$\mathrm{C}_{50} \mathrm{H}_{44}$
$M_{r}=644.90$
Triclinic, $P \overline{1}$
$a=8.7644(2) \AA$
$b=9.2002(3) \AA$
$c=13.1212(3) \AA$
$\alpha=105.874(2)^{\circ}$
$\beta=95.080(2)^{\circ}$
$\gamma=115.249(3)^{\circ}$
$V=894.47(5) \AA^{\circ}$

Data collection

Rigaku XtaLAB P200
diffractometer
Detector resolution: 5.811 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
$T_{\text {min }}=0.878, T_{\text {max }}=0.985$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.131$
$S=1.08$
3256 reflections
230 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
Z=1
$$

$F(000)=344.00$
$D_{\mathrm{x}}=1.197 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54187 \AA$
Cell parameters from 15939 reflections
$\theta=3.6-68.2^{\circ}$
$\mu=0.51 \mathrm{~mm}^{-1}$
$T=93 \mathrm{~K}$
Block, purple
$0.15 \times 0.08 \times 0.03 \mathrm{~mm}$

22866 measured reflections
3256 independent reflections
2930 reflections with $F^{2}>2.0 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=68.3^{\circ}, \theta_{\text {min }}=3.6^{\circ}$
$h=-10 \rightarrow 10$
$k=-9 \rightarrow 10$
$l=-15 \rightarrow 15$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0807 P)^{2}+0.1872 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^{2}. R-factor (gt) are based on F . The threshold expression of $\mathrm{F}^{2}>2.0 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating Rfactor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	0.77143 (15)	0.27792 (16)	0.37967 (10)	0.0282 (3)
C2	0.82438 (16)	0.19027 (16)	0.29671 (11)	0.0304 (3)
H2	0.901044	0.149216	0.316696	0.036*
C3	0.77086 (16)	0.16138 (16)	0.18882 (11)	0.0294 (3)
H3	0.802444	0.093561	0.135216	0.035*
C3A	0.66842 (15)	0.23267 (15)	0.15725 (10)	0.0270 (3)
C3A1	0.61706 (14)	0.32728 (14)	0.23942 (10)	0.0247 (3)
C4	0.61937 (16)	0.21352 (16)	0.04656 (10)	0.0299 (3)
H4	0.651358	0.147501	-0.007973	0.036*
C5	0.52627 (16)	0.28945 (16)	0.01768 (10)	0.0308 (3)
H5	0.492798	0.274895	-0.056770	0.037*
C6	0.48038 (16)	0.38832 (16)	0.09751 (10)	0.0284 (3)
H6	0.418515	0.442753	0.076400	0.034*
C6A	0.52289 (15)	0.40922 (15)	0.20719 (10)	0.0254 (3)
C7	0.47383 (15)	0.51085 (15)	0.28851 (10)	0.0253 (3)
C7A	0.49880 (15)	0.51364 (15)	0.39461 (10)	0.0255 (3)
C8	0.42937 (15)	0.59605 (15)	0.47208 (10)	0.0261 (3)
H8	0.386896	0.666232	0.452300	0.031*
C8A	0.57990 (15)	0.41936 (15)	0.42770 (10)	0.0249 (3)
C8B	0.65887 (15)	0.34037 (15)	0.35078 (10)	0.0255 (3)
C1M	0.84692 (17)	0.29973 (19)	0.49464 (11)	0.0359 (3)
H1M1	0.953456	0.288760	0.496403	0.054*
H1M2	0.762462	0.211359	0.517639	0.054*
H1M3	0.873653	0.413186	0.544212	0.054*
C1P	0.37768 (15)	0.59823 (15)	0.25632 (9)	0.0257 (3)
C2P	0.45677 (15)	0.77354 (16)	0.27639 (10)	0.0275 (3)
H2P	0.578450	0.840095	0.305958	0.033*
C3P	0.36053 (16)	0.85288 (16)	0.25386 (10)	0.0278 (3)
H3P	0.418003	0.972795	0.268045	0.033*
C4P	0.18176 (15)	0.76070 (15)	0.21096 (10)	0.0273 (3)
C5P	0.10460 (16)	0.58447 (16)	0.18943 (11)	0.0329 (3)
H5P	-0.016815	0.517320	0.158986	0.039*
C6P	0.19987 (16)	0.50500 (16)	0.21115 (11)	0.0317 (3)
H6P	0.142991	0.384575	0.194958	0.038*
C1T	0.06794 (16)	0.84316 (17)	0.19069 (11)	0.0333 (3)
C2T	-0.05461 (19)	0.8203 (2)	0.26853 (15)	0.0468 (4)

H2T1	-0.118334	0.698859	0.259859	0.070^{*}
H2T2	-0.137001	0.861074	0.251474	0.070^{*}
H2T3	0.013342	0.886463	0.343903	0.070^{*}
C3T	$0.17399(17)$	$1.03289(17)$	$0.20891(13)$	$0.0401(3)$
H3T1	0.096047	1.078314	0.191671	0.060^{*}
H3T2	0.255721	1.048167	0.161518	0.060^{*}
H3T3	0.238494	1.094359	0.285279	0.060^{*}
C4T	$-0.04149(19)$	$0.7524(2)$	$0.07259(13)$	$0.0465(4)$
H4T1	-0.118581	0.631892	0.061158	0.070^{*}
H4T2	0.035486	0.759603	0.022257	0.070^{*}
H4T3	-0.111104	0.807899	0.059085	0.070^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0275(6)$	$0.0267(6)$	$0.0350(6)$	$0.0137(5)$	$0.0094(5)$	$0.0150(5)$
C2	$0.0297(6)$	$0.0289(6)$	$0.0402(7)$	$0.0168(5)$	$0.0122(5)$	$0.0169(5)$
C3	$0.0297(6)$	$0.0253(6)$	$0.0382(7)$	$0.0147(5)$	$0.0143(5)$	$0.0130(5)$
C3A	$0.0256(6)$	$0.0229(6)$	$0.0331(6)$	$0.0092(5)$	$0.0105(5)$	$0.0129(5)$
C3A1	$0.0226(5)$	$0.0204(6)$	$0.0323(6)$	$0.0087(5)$	$0.0088(5)$	$0.0124(5)$
C4	$0.0327(6)$	$0.0255(6)$	$0.0324(6)$	$0.0129(5)$	$0.0126(5)$	$0.0112(5)$
C5	$0.0357(7)$	$0.0287(7)$	$0.0286(6)$	$0.0132(5)$	$0.0095(5)$	$0.0131(5)$
C6	$0.0306(6)$	$0.0263(6)$	$0.0319(6)$	$0.0130(5)$	$0.0088(5)$	$0.0153(5)$
C6A	$0.0239(6)$	$0.0221(6)$	$0.0312(6)$	$0.0088(5)$	$0.0082(5)$	$0.0132(5)$
C7	$0.0248(6)$	$0.0223(6)$	$0.0309(6)$	$0.0106(5)$	$0.0074(5)$	$0.0128(5)$
C7A	$0.0256(6)$	$0.0229(6)$	$0.0307(6)$	$0.0114(5)$	$0.0077(5)$	$0.0131(5)$
C8	$0.0272(6)$	$0.0247(6)$	$0.0320(6)$	$0.0145(5)$	$0.0078(5)$	$0.0137(5)$
C8A	$0.0247(6)$	$0.0224(6)$	$0.0290(6)$	$0.0112(5)$	$0.0058(4)$	$0.0110(5)$
C8B	$0.0239(6)$	$0.0218(6)$	$0.0315(6)$	$0.0093(5)$	$0.0078(5)$	$0.0124(5)$
C1M	$0.0378(7)$	$0.0472(8)$	$0.0390(7)$	$0.0293(6)$	$0.0127(6)$	$0.0218(6)$
C1P	$0.0294(6)$	$0.0279(6)$	$0.0255(6)$	$0.0152(5)$	$0.0097(5)$	$0.0137(5)$
C2P	$0.0245(6)$	$0.0276(6)$	$0.0327(6)$	$0.0117(5)$	$0.0083(5)$	$0.0144(5)$
C3P	$0.0283(6)$	$0.0237(6)$	$0.0351(6)$	$0.0123(5)$	$0.0098(5)$	$0.0144(5)$
C4P	$0.0277(6)$	$0.0269(6)$	$0.0315(6)$	$0.0142(5)$	$0.0091(5)$	$0.0135(5)$
C5P	$0.0256(6)$	$0.0279(7)$	$0.0434(7)$	$0.0104(5)$	$0.0041(5)$	$0.0146(6)$
C6P	$0.0311(6)$	$0.0229(6)$	$0.0409(7)$	$0.0114(5)$	$0.0055(5)$	$0.0139(5)$
C1T	$0.0261(6)$	$0.0300(7)$	$0.0477(7)$	$0.0144(5)$	$0.0088(5)$	$0.0171(6)$
C2T	$0.0397(8)$	$0.0401(8)$	$0.0768(11)$	$0.0247(7)$	$0.0285(7)$	$0.0292(8)$
C3T	$0.0315(7)$	$0.0308(7)$	$0.0654(9)$	$0.0172(6)$	$0.0110(6)$	$0.0232(7)$
C4T	$0.0373(7)$	$0.0427(8)$	$0.0607(9)$	$0.0206(7)$	$-0.0017(7)$	$0.0205(7)$

Geometric parameters ($\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 2$	$1.4068(18)$	$\mathrm{C} 1 \mathrm{M}-\mathrm{H} 1 \mathrm{M} 2$	0.9800
$\mathrm{C} 1-\mathrm{C} 8 \mathrm{~B}$	$1.4084(17)$	$\mathrm{C} 1 \mathrm{M}-\mathrm{H} 1 \mathrm{M} 3$	0.9800
$\mathrm{C} 1-\mathrm{C} 1 \mathrm{M}$	$1.5159(17)$	$\mathrm{C} 1 \mathrm{P}-\mathrm{C} 2 \mathrm{P}$	$1.3902(17)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.3655(18)$	$\mathrm{C} 1 \mathrm{P}-\mathrm{C} 6 \mathrm{P}$	$1.3905(17)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9500	$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 3 \mathrm{P}$	$1.3896(17)$

C3-C3A	1.4117 (17)
C3-H3	0.9500
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	1.4178 (17)
C3A-C3A1	1.4247 (17)
C3A1-C8B	1.4335 (17)
C3A1-C6A	1.4394 (17)
C4-C5	1.3689 (18)
C4-H4	0.9500
C5-C6	1.3970 (18)
C5-H5	0.9500
C6-C6A	1.3926 (17)
C6-H6	0.9500
C6A-C7	1.4409 (17)
C7-C7A	1.3813 (17)
C7-C1P	1.4952 (16)
C7A-C8	1.4353 (17)
C7A-C8A	1.4572 (16)
C8-C8A ${ }^{\text {i }}$	1.3664 (17)
C8-H8	0.9500
C8A-C8B	1.4756 (17)
C1M-H1M1	0.9800
C2-C1-C8B	118.76 (11)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 1 \mathrm{M}$	115.40 (11)
C8B-C1-C1M	125.82 (11)
C3-C2-C1	123.15 (12)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	118.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	118.4
C2-C3-C3A	119.76 (12)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.1
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3$	120.1
C3-C3A-C4	121.12 (11)
C3-C3A-C3A1	118.58 (11)
C4-C3A-C3A1	120.30 (11)
C3A-C3A1-C8B	120.68 (11)
C3A-C3A1-C6A	118.01 (11)
C8B-C3A1-C6A	121.30 (11)
C5-C4-C3A	120.49 (11)
C5-C4-H4	119.8
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4$	119.8
C4-C5-C6	120.12 (11)
C4-C5-H5	119.9
C6-C5-H5	119.9
C6A-C6-C5	121.78 (12)
C6A-C6-H6	119.1
C5-C6-H6	119.1
C6-C6A-C3A1	119.22 (11)
C6-C6A-C7	121.14 (11)

$\mathrm{C} 2 \mathrm{P}-\mathrm{H} 2 \mathrm{P}$	0.9500
C3P-C4P	1.3928 (17)
C3P-H3P	0.9500
C4P-C5P	1.3950 (17)
C4P-C1T	1.5331 (17)
C5P-C6P	1.3804 (17)
C5P-H5P	0.9500
C6P-H6P	0.9500
C1T-C3T	1.5220 (18)
C1T-C2T	1.5361 (19)
C1T-C4T	1.538 (2)
$\mathrm{C} 2 \mathrm{~T}-\mathrm{H} 2 \mathrm{~T} 1$	0.9800
C2T-H2T2	0.9800
$\mathrm{C} 2 \mathrm{~T}-\mathrm{H} 2 \mathrm{~T} 3$	0.9800
C3T-H3T1	0.9800
C3T-H3T2	0.9800
C3T-H3T3	0.9800
C4T-H4T1	0.9800
C4T-H4T2	0.9800
C4T-H4T3	0.9800

$\mathrm{C} 1-\mathrm{C} 1 \mathrm{M}-\mathrm{H} 1 \mathrm{M} 3$	109.5
$\mathrm{H} 1 \mathrm{M} 1-\mathrm{C} 1 \mathrm{M}-\mathrm{H} 1 \mathrm{M} 3$	109.5
$\mathrm{H} 1 \mathrm{M} 2-\mathrm{C} 1 \mathrm{M}-\mathrm{H} 1 \mathrm{M} 3$	109.5
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 1 \mathrm{P}-\mathrm{C} 6 \mathrm{P}$	$117.68(11)$
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 1 \mathrm{P}-\mathrm{C} 7$	$122.52(11)$
$\mathrm{C} 6 \mathrm{P}-\mathrm{C} 1 \mathrm{P}-\mathrm{C} 7$	$119.66(11)$
$\mathrm{C} 3 \mathrm{P}-\mathrm{C} 2 \mathrm{P}-\mathrm{C} 1 \mathrm{P}$	$121.00(11)$
$\mathrm{C} 3 \mathrm{P}-\mathrm{C} 2 \mathrm{P}-\mathrm{H} 2 \mathrm{P}$	119.5
$\mathrm{C} 1 \mathrm{P}-\mathrm{C} 2 \mathrm{P}-\mathrm{H} 2 \mathrm{P}$	119.5
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{C} 4 \mathrm{P}$	$121.54(11)$
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{H} 3 \mathrm{P}$	119.2
$\mathrm{C} 4 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{H} 3 \mathrm{P}$	119.2
$\mathrm{C} 3 \mathrm{P}-\mathrm{C} 4 \mathrm{P}-\mathrm{C} 5 \mathrm{P}$	$116.84(11)$
$\mathrm{C} 3 \mathrm{P}-\mathrm{C} 4 \mathrm{P}-\mathrm{C} 1 \mathrm{~T}$	$123.67(11)$
$\mathrm{C} 5 \mathrm{P}-\mathrm{C} 4 \mathrm{P}-\mathrm{C} 1 \mathrm{~T}$	$119.45(11)$
$\mathrm{C} 6 \mathrm{P}-\mathrm{C} 5 \mathrm{P}-\mathrm{C} 4 \mathrm{P}$	$121.80(11)$
$\mathrm{C} 6 \mathrm{P}-\mathrm{C} 5 \mathrm{P}-\mathrm{H} 5 \mathrm{P}$	119.1
$\mathrm{C} 4 \mathrm{P}-\mathrm{C} 5 \mathrm{P}-\mathrm{H} 5 \mathrm{P}$	119.1
$\mathrm{C} 5 \mathrm{P}-\mathrm{C} 6 \mathrm{P}-\mathrm{C} 1 \mathrm{P}$	$121.12(12)$
$\mathrm{C} 5 \mathrm{P}-\mathrm{C} 6 \mathrm{P}-\mathrm{H} 6 \mathrm{P}$	119.4
$\mathrm{C} 1 \mathrm{P}-\mathrm{C} 6 \mathrm{P}-\mathrm{H} 6 \mathrm{P}$	119.4
$\mathrm{C} 3 \mathrm{~T}-\mathrm{C} 1 \mathrm{~T}-\mathrm{C} 4 \mathrm{P}$	$112.58(10)$
$\mathrm{C} 3 \mathrm{~T}-\mathrm{C} 1 \mathrm{~T}-\mathrm{C} 2 \mathrm{~T}$	$109.31(12)$
C4P-C1T-C2T	$108.22(11)$
C3T-C1T-C4T	$108.22(11)$
C4P-C1T-C4T	$109.63(11)$

C3A1-C6A-C7	119.64 (11)
C7A-C7-C6A	120.21 (11)
C7A-C7-C1P	119.24 (11)
C6A-C7-C1P	120.20 (10)
C7-C7A-C8	120.18 (11)
C7-C7A-C8A	121.18 (11)
C8-C7A-C8A	118.35 (11)
C8A ${ }^{\text {i }}$ - 8 - C 7 A	124.58 (11)
C8A ${ }^{\text {i }}$ - $88-\mathrm{H} 8$	117.7
C7A-C8-H8	117.7
C8- ${ }^{\text {i }} 88$ - 77 A	116.82 (11)
C8i-C8A-C8B	124.06 (11)
C7A-C8A-C8B	119.05 (11)
C1-C8B-C3A1	118.48 (11)
$\mathrm{C} 1-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 8 \mathrm{~A}$	124.42 (11)
C3A1-C8B-C8A	117.10 (11)
C1-C1M-H1M1	109.5
C1-C1M-H1M2	109.5
H1M1-C1M-H1M2	109.5
C8B-C1-C2-C3	-0.49 (19)
$\mathrm{C} 1 \mathrm{M}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.09 (12)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}$	5.13 (19)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	176.25 (11)
C2-C3-C3A-C3A1	-2.76 (17)
C3-C3A-C3A1-C8B	-4.01 (17)
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A} 1-\mathrm{C} 8 \mathrm{~B}$	176.97 (10)
$\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A} 1-\mathrm{C} 6 \mathrm{~A}$	175.79 (10)
C4-C3A-C3A1-C6A	-3.22 (17)
C3-C3A-C4-C5	-177.21 (11)
C3A1-C3A-C4-C5	1.78 (18)
C3A-C4-C5-C6	0.71 (18)
C4-C5-C6-C6A	-1.71 (19)
C5-C6-C6A-C3A1	0.18 (18)
C5-C6-C6A-C7	-179.66 (11)
C3A-C3A1-C6A-C6	2.25 (16)
C8B-C3A1-C6A-C6	-177.94 (10)
C3A-C3A1-C6A-C7	-177.91 (10)
C8B-C3A1-C6A-C7	1.89 (17)
C6-C6A-C7-C7A	172.31 (11)
C3A1-C6A-C7-C7A	-7.52 (17)
C6-C6A-C7-C1P	-0.83 (17)
C3A1-C6A-C7-C1P	179.33 (10)
C6A-C7-C7A-C8	-171.72 (10)
C1P-C7-C7A-C8	1.50 (17)
C6A-C7-C7A-C8A	2.04 (17)
C1P-C7-C7A-C8A	175.25 (10)
C7-C7A-C8-C8A ${ }^{\text {i }}$	168.00 (12)

C2T-C1T-C4T	108.82 (12)
$\mathrm{C} 1 \mathrm{~T}-\mathrm{C} 2 \mathrm{~T}-\mathrm{H} 2 \mathrm{~T} 1$	109.5
$\mathrm{C} 1 \mathrm{~T}-\mathrm{C} 2 \mathrm{~T}-\mathrm{H} 2 \mathrm{~T} 2$	109.5
$\mathrm{H} 2 \mathrm{~T} 1-\mathrm{C} 2 \mathrm{~T}-\mathrm{H} 2 \mathrm{~T} 2$	109.5
$\mathrm{C} 1 \mathrm{~T}-\mathrm{C} 2 \mathrm{~T}-\mathrm{H} 2 \mathrm{~T} 3$	109.5
$\mathrm{H} 2 \mathrm{~T} 1-\mathrm{C} 2 \mathrm{~T}-\mathrm{H} 2 \mathrm{~T} 3$	109.5
H2T2-C2T-H2T3	109.5
C1T-C3T-H3T1	109.5
C1T-C3T-H3T2	109.5
H3T1-C3T-H3T2	109.5
C1T-C3T-H3T3	109.5
H3T1-C3T-H3T3	109.5
H3T2-C3T-H3T3	109.5
C1T-C4T-H4T1	109.5
C1T-C4T-H4T2	109.5
H4T1-C4T- H 4 T 2	109.5
C1T-C4T-H4T3	109.5
H4T1-C4T- H 4 T 3	109.5
H4T2-C4T-H4T3	109.5
C2-C1-C8B-C3A1	-6.23 (17)
$\mathrm{C} 1 \mathrm{M}-\mathrm{C} 1-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 3 \mathrm{~A} 1$	172.20 (11)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 8 \mathrm{~A}$	173.80 (11)
$\mathrm{C} 1 \mathrm{M}-\mathrm{C} 1-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 8 \mathrm{~A}$	-7.76 (19)
C3A-C3A1-C8B-C1	8.50 (17)
C6A-C3A1-C8B-C1	-171.30 (10)
C3A-C3A1-C8B-C8A	-171.53 (10)
C6A-C3A1-C8B-C8A	8.67 (16)
C8i-C8A-C8B-C1	-16.91 (19)
C7A-C8A-C8B-C1	166.07 (11)
C8- $8^{\text {- }} 8 \mathrm{~A}-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 3 \mathrm{~A} 1$	163.12 (11)
C7A-C8A-C8B-C3A1	-13.90 (16)
C7A-C7-C1P-C2P	81.89 (15)
C6A-C7-C1P-C2P	-104.89 (14)
C7A-C7-C1P-C6P	-93.64 (14)
C6A-C7-C1P-C6P	79.58 (14)
$\mathrm{C} 6 \mathrm{P}-\mathrm{C} 1 \mathrm{P}-\mathrm{C} 2 \mathrm{P}-\mathrm{C} 3 \mathrm{P}$	1.16 (17)
C7-C1P-C2P-C3P	-174.46 (10)
C1P-C2P-C3P-C4P	0.31 (18)
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{C} 4 \mathrm{P}-\mathrm{C} 5 \mathrm{P}$	-1.40 (18)
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{C} 4 \mathrm{P}-\mathrm{C} 1 \mathrm{~T}$	176.39 (11)
$\mathrm{C} 3 \mathrm{P}-\mathrm{C} 4 \mathrm{P}-\mathrm{C} 5 \mathrm{P}-\mathrm{C} 6 \mathrm{P}$	1.05 (19)
C1T-C4P-C5P-C6P	-176.83 (12)
C4P-C5P-C6P-C1P	0.4 (2)
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 1 \mathrm{P}-\mathrm{C} 6 \mathrm{P}-\mathrm{C} 5 \mathrm{P}$	-1.51 (18)
C7-C1P-C6P-C5P	174.24 (11)
C3P-C4P-C1T-C3T	7.25 (18)
C5P-C4P-C1T-C3T	-175.02 (12)

$\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8-\mathrm{C} 8 \mathrm{~A}^{\mathrm{i}}$	$-5.93(19)$
$\mathrm{C} 7-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8^{\mathrm{i}}$	$-168.40(12)$
$\mathrm{C} 8-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8^{\mathrm{i}}$	$5.47(18)$
$\mathrm{C} 7-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8 \mathrm{~B}$	$8.83(17)$
$\mathrm{C} 8-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8 \mathrm{~B}$	$-177.30(10)$

$\mathrm{C} 3 \mathrm{P}-\mathrm{C} 4 \mathrm{P}-\mathrm{C} 1 \mathrm{~T}-\mathrm{C} 2 \mathrm{~T}$	$-113.67(14)$
$\mathrm{C} 5 \mathrm{P}-\mathrm{C} 4 \mathrm{P}-\mathrm{C} 1 \mathrm{~T}-\mathrm{C} 2 \mathrm{~T}$	$64.06(15)$
$\mathrm{C} 3 \mathrm{P}-\mathrm{C} 4 \mathrm{P}-\mathrm{C} 1 \mathrm{~T}-\mathrm{C} 4 \mathrm{~T}$	$127.77(13)$
$\mathrm{C} 5 \mathrm{P}-\mathrm{C} 4 \mathrm{P}-\mathrm{C} 1 \mathrm{~T}-\mathrm{C} 4 \mathrm{~T}$	$-54.50(15)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{C} 3 \mathrm{~A} / \mathrm{C} 3 \mathrm{~A} 1 / \mathrm{C} 8 \mathrm{~B}$ and $\mathrm{C} 3 \mathrm{~A} 1 / \mathrm{C} 3 \mathrm{~A} / \mathrm{C} 4-\mathrm{C} 6 / \mathrm{C} 6 \mathrm{~A}$ rings, respectively.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 P-\mathrm{H} 3 P \cdots C g 1^{\mathrm{ii}}$	0.95	2.80	$3.6278(15)$	147
$\mathrm{C} 3 T — \mathrm{H} 3 T 2 \cdots C g 2^{\mathrm{ii}}$	0.98	2.97	$3.7929(17)$	143

Symmetry code: (ii) $x, y+1, z$.

