

Received 1 November 2016 Accepted 22 December 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; hydrazone complex; hydrogen bond; dicarboxylic acid; halogen–halogen interactions; co-crystal.

CCDC references: 1524024; 1524023

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of two nickel compounds comprising neutral Ni^{II} hydrazone complexes and dicarboxylic acids

Takumi Nakanishi and Osamu Sato*

Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motoka, Nishi-ku, Fukuoka 819-0395, Japan. *Correspondence e-mail: sato@cm.kyushu-u.ac.jp

Two isostructural Ni^{II} compounds, bis{N-[1-(pyridin-2-vl- κN)ethylidene]pyridine-4-carbohydrazonato- $\kappa^2 N', O$ }nickel(II)-2,5-dichloroterephthalic acid (1/1), $[Ni(C_{13}H_{11}N_4O)_2](C_8H_4Cl_2O_4)$, and $bis\{N-[1-(pvridin-2-vl-\kappa N)ethvlidene]pvri$ dine-4-carbohydrazonato- $\kappa^2 N', O$ }nickel(II)–2,5-dibromoterephthalic acid (1/1), $[Ni(C_{13}H_{11}N_4O)_2](C_8H_4Br_2O_4)$, were synthesized and their crystal structures determined. The pair of N, N', O-tridentate N-[1-(pyridin-2-yl- κN)ethyl]pyridine-4-carbohydrazonate L ligands result in a cis-NiO₂N₄ octahedral coordination sphere for the metal ions. The asymmetric units consist of two half-molecules of the dicarboxylic acids, which are completed by crystallographic inversion symmetry. In the respective crystals, the 2,5-dichloroterephthalic acid (H₂Cl₂TPA, 1-Cl) molecules form zigzag hydrogen-bonded chains with the $[Ni(L)_2]$ molecules, with the hydrogen-bond distances in **1-Br** slightly longer than those in 1-Cl. The packing is consolidated by aromatic π - π stacking between the dicarboxylic acid molecules and terminal pyridine rings in $[Ni(L)_2]$ and short halogen-halogen interactions are also observed. The qualitative prediction of the H-atom position from the C-N-C angles of the terminal pyridine rings in L and the C-O distances in the carboxyl groups show that **1-Cl** and 1-Br are co-crystals rather than salts.

1. Chemical context

Metal complexes based on 2-acetylpyridine isonicotinoylhydrazone (HL) have attracted considerable attention for the construction of supramolecular materials (Servati Gargari et al., 2015; Valipour et al., 2016) and as functional complexes for applications in various biochemical fields (Ababei et al., 2012; Chang, Jia, Xu, Xu et al., 2015; Chang, Jia, Xu, Wu et al., 2015). Moreover, the precursors of HLs and related hydrazone ligands have been used in the design of complexes stabilized by strong hydrogen bonds (Lemmerer et al., 2010; Grobelny et al., 2011; Aakeröy et al., 2012; Cherukuvada & Nangia, 2012; Aitipamula et al., 2009) and spin-crossover complexes (Hill et al., 2010; Zhang et al., 2010). Thus, it is possible that metal complexes with HL ligands could be applied in the design of various functional materials. We have reported spin-crossover compounds consisting of $[Fe(L)_2]$ and H_2Cl_2TPA , and of $[Fe(L)_2]$ and H_2Br_2TPA ($H_2Cl_2TPA = 2,5$ -dichloroterephtalic acid, $H_2Br_2TPA = 2.5$ -dibromoterephthalic acid), and it was observed that a one-dimensional zigzag hydrogen-bonding network involving short hydrogen bonds was formed between the $[Fe(L)_2]$ molecules and dicarboxylic acids (Nakanishi & Sato, 2016). In this study, we present the crystal structures of the analogous Ni^{II} complexes, $[Ni(L)_2](H_2Cl_2TPA)$ (1-Cl) and $[Ni(L)_2)](H_2Br_2TPA)$ (1-Br).

research communications

Table 1 Selected geometric parameters (Å, °) for 1-Cl. Ni1-O1 2.0870 (17) Ni1-N6 1.985 (2) 2.1099 (19) Ni1-O2 C34-O3 1.316 (3) 2.106 (2) 1.206 (3) Ni1-N1 C34-O4 Ni1-N2 1.990(2)C27-O5 1.306(3)Ni1-N5 2.110(2)C27-O6 1.216 (3) C11-N4-C13 117.4 (2) C24-N8-C26 118.8 (2) Table 2 Selected geometric parameters (Å, °) for 1-Br. 2.079 (2) Ni1 - O1Ni1-N6 1.983 (3) Ni1 - O22.118 (3) C34-O3 1.324 (4) Ni1-N1 C34-O4 2.110(3)1.207 (4) Ni1-N2 1.986 (3) C27-O5 1.300 (4)

C27 - O6

C24-N8-C26

1.223 (4)

118.2 (3)

2.116 (3)

117.1 (3)

2. Structural commentary

The molecular structures of **1-Cl** and **1-Br** are displayed in Figs. 1 and 2, respectively. The crystal structures of **1-Cl** and **1-Br** are isostructural with each other: the asymmetric unit comprises one $[Ni(L)_2]$ molecule and two half dicarboxylic acid molecules, which are completed by crystallographic inversion symmetry. These are hereafter designated as $(H_2X_2TPA)_A$ with O3 and O4 and $(H_2X_2TPA)_B$ with O5 and O6 (X = Br, Cl). The pair of N,N',O-tridentate L ligands generate a *cis*-NiO₂N₄ octahedron in each case.

Unfortunately, the hydrogen-atom positions in the hydrogen-bonding network could not be determined from difference Fourier maps. However, the positions of hydrogen atoms involved in hydrogen bonds could be predicted qualitatively from the C-N-C angles of the terminal pyridine ring in L and the C-O bond lengths of the carboxyl group in H_2X_2 TPA. The coordination distances and angles related to the hydrogen-bonding network are listed in Table 1. The C13-N4-C11 and C24-N8-C26 bond angles in **1-Cl** are 117.4 (2)°

and 118.8 (2)°, respectively, and these are categorized as being part of a non-protonated pyridine ring (Bis & Zaworotko, 2005). Moreover, the C34–O3 and C27–O5 distances in **1-Cl** are 1.316 (3) and 1.306 (3) Å, respectively, and these clearly correspond to a protonated carboxylic acid (Bis & Zaworotko, 2005). These results indicate that the hydrogen atoms involved in hydrogen bonds are mainly located on the H₂X₂TPA side. Therefore, it could be concluded that **1-Cl** is a co-crystal, comprising neutral [Ni(L)₂] complexes and H₂Cl₂TPA molecules, rather than a salt. The same conclusion can be drawn concerning **1-Br** (Table 2).

3. Supramolecular features

Ni1 - N5

C11-N4-C13

The molecular arrangement in the hydrogen-bonding network in **1-Cl** is shown in Fig. 3. It was confirmed that $[Ni(L)_2]$ forms a one-dimensional zigzag hydrogen-bonding network with

Figure 1

The asymmetric unit of $[Ni(L)_2](H_2Cl_2TPA)$ (1-Cl), shown with 50% probability displacement ellipsoids.

Figure 2

The asymmetric unit of $[Ni(L)_2](H_2Br_2TPA)$ (1-Br), shown with 50% probability displacement ellipsoids.

Table 3		_		
Hydrogen-bond	geometry	(Å,	$^{\circ}$) for	1-Cl.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O3 {-} H25 {\cdots} N4^{i} \\ O5 {-} H26 {\cdots} N8^{ii} \end{array}$	0.84	1.84	2.679 (3)	177
	0.84	1.71	2.547 (3)	176

Symmetry codes: (i) x, y + 1, z; (ii) x + 1, y, z.

Table 4Hydrogen-bond geometry (Å, °) for 1-Br.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O3{-}H25{\cdots}N4^{i}\\ O5{-}H26{\cdots}N8^{ii} \end{array}$	0.84	1.87	2.706 (4)	178
	0.84	1.72	2.557 (4)	172

Symmetry codes: (i) x, y + 1, z; (ii) x + 1, y, z.

 H_2X_2TPA via the terminal py ring in L. In addition, in each case the two H_2X_2 TPA molecules can be differentiated from one another in terms of the hydrogen-bond distance in the hydrogen-bonding chain; the $(H_2X_2TPA)_A$ molecule forms a long hydrogen bond $[N4 \cdots O3 = 2.679(3) \text{ Å}]$ and the $(H_2X_2TPA)_B$ molecule forms a shorter hydrogen bond $[N8 \cdot \cdot \cdot O5 = 2.547 (3) \text{ Å}]$ (Table 3). The carboxyl groups in each H_2X_2 TPA molecule are related by inversion, hence exhibiting the same hydrogen bonds at each end of the molecule (Fig. 3). The hydrogen-bond distance N8···O5 [2.547 (3) Å] is relatively short, but not comparable with the distances observed in the organic compounds that exhibit proton migration (Steiner et al., 2001; Cowan et al., 2003, 2005). The hydrogen bond distances N4···O3 and N8···O5 in 1-Br are 2.706 (4) and 2.557 (4) Å (Table 4), respectively, and these are clearly longer than the equivalent bonds in 1-Cl; the same tendency was confirmed when comparing $[Fe(L)_2](H_2Cl_2TPA)$ and $[Fe(L)_2](H_2Br_2TPA)$ (Nakanishi & Sato, 2016).

Another intermolecular interaction in each H_2X_2TPA , a $\pi-\pi$ interaction, is found between the $(H_2X_2TPA)_A$ molecule and the terminal pyridine ring in [Ni(L)₂]. Furthermore, the

Figure 4

An overview of the two-dimensional supramolecular network comprising hydrogen bonds, π - π interactions and halogen-halogen interactions.

 $(H_2X_2TPA)_B$ molecules form halogen-halogen interactions with adjacent $(H_2X_2TPA)_B$ molecules $[1-CI: Cl1 \cdots Cl1^i = 3.435 (1) \text{ Å}, C30-Cl1 \cdots Cl1^i = 129.64 (9)^\circ; 1-Br: Br1 \cdots Br1 = 3.5240 (8) \text{ Å}, C30-Br1 \cdots Br1^i = 125.3 (1)^\circ;$ symmetry code: (i) 1 - x, -1 - y, -z] as observed in an overview of the crystal structure (Fig. 4).

4. Synthesis and crystallization

$[Ni(L)_2](H_2Cl_2TPA)$ (1-Cl)

HL was synthesized according to the published procedure (Ababei *et al.*, 2011). HL (48 mg, 0.20 mmol) was dissolved in methanol (40 ml); then, NiCl₂·6H₂O (24 mg, 0.10 mmol) was added to the solution. Following this, H_2Cl_2TPA (24 mg,

The molecular arrangement of $[Ni(L)_2]$ and H_2Cl_2TPA in a zigzag hydrogen-bonded chain.

research communications

Table 5 Experimental details.

	1-Cl	1-Br
Crystal data		
Chemical formula	$[Ni(C_{13}H_{11}N_4O)_2](C_8H_4Cl_2O_4)$	$[Ni(C_{13}H_{11}N_4O)_2](C_8H_4Br_2O_4)$
M_r	772.24	861.14
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	123	123
a, b, c (Å)	7.9596 (18), 8.7600 (17), 24.121 (4)	7.8740 (14), 8.9716 (15), 24.233 (4)
$\alpha, \beta, \gamma(\circ)$	76.138 (8), 81.803 (8), 87.253 (9)	75.040 (9), 82.162 (10), 86.007 (11)
$V(\dot{A}^3)$	1616.0 (6)	1637.3 (5)
Ζ	2	2
Radiation type	Μο <i>Κα</i>	Μο Κα
$\mu (\mathrm{mm}^{-1})^{-1}$	0.83	3.10
Crystal size (mm)	$0.02 \times 0.02 \times 0.01$	$0.02 \times 0.02 \times 0.01$
Data collection		
Diffractometer	Rigaku Saturn724	Rigaku Saturn724
Absorption correction	Multi-scan (REQAB; Rigaku, 1998)	Multi-scan (REQAB; Rigaku, 1998)
T_{\min}, T_{\max}	0.761, 0.848	0.467, 0.538
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflections	27850, 7359, 6814	28760, 7439, 6665
R _{int}	0.044	0.050
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.649	0.648
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.130, 1.13	0.051, 0.107, 1.14
No. of reflections	7359	7439
No. of parameters	464	464
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.57, -0.92	0.72, -0.75

Computer programs: CrystalClear and CrystalStructure (Rigaku, 2014), SIR97 (Altomare et al., 1999) and SHELXL2013 (Sheldrick, 2015).

0.10 mmol) was added to the solution. The mixture was stirred for 30 s. Subsequently, the solution was evaporated in air over a period of several days. Plate-shaped brown crystals were obtained.

 $[Ni(L)_2](H_2Br_2TPA) (1-Br)$

The synthesis procedure for **1-Br** is similar to that for **1-Cl**, except for the use of H_2Br_2TPA instead of H_2Cl_2TPA . Plate-shaped brown crystals were obtained.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The hydrogen atoms connected to the carbon atom were treated using a riding model: C–H (aromatic) = 0.96 Å and C–H (methyl) = 0.98 Å. The hydrogen atoms involved in hydrogen bonds were also treated as riding with O–H = 0.84 Å.

References

- Aakeröy, C. B., Forbes, S. & Desper, J. (2012). CrystEngComm, 14, 2435–2443.
- Ababei, L. V., Kriza, A., Andronescu, C. & Musuc, A. M. (2012. J. Therm. Anal. Calorim. 107, 573–584.
- Aitipamula, S., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2013). CrystEngComm, 15, 5877–5887.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179.

- Chang, H.-Q., Jia, L., Xu, J., Wu, W.-N., Zhu, T.-F., Chen, R.-H., Ma, T.-L., Wang, Y. & Xu, Z.-Q. (2015). *Transition Met. Chem.* **40**, 485– 491.
- Chang, H. Q., Jia, L., Xu, J., Xu, Z. Q., Chen, R. H., Wu, W. N., Bie, H. Y., Zhu, T. F., Ma, T. L. & Wang, Y. (2015). *Inorg. Chem. Commun.* 57, 8–10.
- Cherukuvada, S. & Nangia, A. (2012). CrystEngComm, 14, 2579–2588.
- Cowan, J. A., Howard, J. A. K., McIntyre, G. J., Lo, S. M.-F. & Williams, I. D. (2003). Acta Cryst. B59, 794–801.
- Cowan, J. A., Howard, J. A. K., McIntyre, G. J., Lo, S. M.-F. & Williams, I. D. (2005). *Acta Cryst.* B61, 724–730.
- Grobelny, P., Mukherjee, A. & Desiraju, G. R. (2011). CrystEng-Comm, 13, 4358–4364.
- Hill, S., Datta, S., Liu, J., Inglis, R., Milios, C. J., Feng, P. L., Henderson, J. J., del Barco, E., Brechin, E. K. & Hendrickson, D. N. (2010). *Dalton Trans.* **39**, 4693–4707.
- Lemmerer, A., Bernstein, J. & Kahlenberg, V. (2010). CrystEng-Comm, 12, 2856–2864.
- Nakanishi, T. & Sato, O. (2016). Crystals, 6, 131-138.
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2014). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Servati Gargari, M., Stilinović, V., Bauzá, A., Frontera, A., McArdle, P., Van Derveer, D., Ng, S. W. & Mahmoudi, G. (2015). *Chem. Eur.* J. 21, 17951–17958.
- Steiner, T., Majerz, I. & Wilson, C. C. (2001). Angew. Chem. Int. Ed. 40, 2651–2654.
- Valipour, A., Mirtamizdoust, B., Ghaedi, M., Taghizadeh, F. & Talemi, P. (2016). J. Inorg. Organomet. Polym. 26, 197–207.
- Zhang, L., Xu, G. C., Xu, H. B., Zhang, T., Wang, Z. M., Yuan, M. & Gao, S. (2010). *Chem. Commun.* **46**, 2554–2556.

Acta Cryst. (2017). E73, 103-106 [https://doi.org/10.1107/S2056989016020326]

Crystal structures of two nickel compounds comprising neutral Ni^{II} hydrazone complexes and dicarboxylic acids

Takumi Nakanishi and Osamu Sato

Computing details

For both compounds, data collection: *CrystalClear* (Rigaku, 2014); cell refinement: *CrystalClear* (Rigaku, 2014); data reduction: *CrystalClear* (Rigaku, 2014); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: *CrystalStructure* (Rigaku, 2014); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2014).

(1-Cl) Bis{ $N-[1-(pyridin-2-yl-\kappa N)ethylidene]$ pyridine-4-carbohydrazonato- $\kappa^2 N', O$ }nickel(II)-2,5-dichloroterephthalic acid (1/1)

Crystal data

Data collection

Rigaku Saturn724 diffractometer Detector resolution: 14.222 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*REQAB*; Rigaku, 1998) $T_{\min} = 0.761, T_{\max} = 0.848$ 27850 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.130$ S = 1.137359 reflections 464 parameters 0 restraints Z = 2 F(000) = 792.00 $D_x = 1.587 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 5812 reflections $\theta = 1.8-30.7^{\circ}$ $\mu = 0.83 \text{ mm}^{-1}$ T = 123 K Plate, brown $0.02 \times 0.02 \times 0.01 \text{ mm}$

7359 independent reflections 6814 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.044$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 3.1^\circ$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -31 \rightarrow 31$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0612P)^2 + 1.4269P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.57 ~{\rm e}~{\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.92 ~{\rm e}~{\rm \AA}^{-3} \end{array}$

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ni1	0.67086 (4)	0.43172 (3)	0.25224 (2)	0.01854 (10)
Cl1	0.41155 (8)	-0.35525 (7)	0.03245 (3)	0.02750 (15)
Cl2	0.79694 (9)	-0.13848 (8)	0.62117 (3)	0.03312 (17)
01	0.7541 (2)	0.2053 (2)	0.28890 (7)	0.0231 (4)
O2	0.4392 (2)	0.3451 (2)	0.24024 (7)	0.0216 (4)
O3	0.8331 (3)	0.3969 (2)	0.48427 (8)	0.0337 (5)
O4	1.0219 (3)	0.4091 (2)	0.40572 (9)	0.0391 (5)
O5	0.7989 (2)	0.0224 (2)	0.09773 (8)	0.0285 (4)
O6	0.9030 (3)	0.1760 (3)	0.01231 (8)	0.0330 (4)
N1	0.5819 (3)	0.6608 (2)	0.25437 (9)	0.0197 (4)
N2	0.6092 (3)	0.4157 (2)	0.33633 (8)	0.0188 (4)
N3	0.6286 (3)	0.2722 (2)	0.37388 (9)	0.0212 (4)
N4	0.7897 (3)	-0.2955 (3)	0.43917 (10)	0.0298 (5)
N5	0.9154 (3)	0.5276 (3)	0.22513 (9)	0.0210 (4)
N6	0.7008 (3)	0.4439 (2)	0.16820 (8)	0.0184 (4)
N7	0.5775 (3)	0.3818 (2)	0.14568 (8)	0.0198 (4)
N8	0.0405 (3)	0.1303 (3)	0.13524 (9)	0.0236 (4)
C1	0.5204 (3)	0.6749 (3)	0.30831 (10)	0.0187 (5)
C2	0.4620 (3)	0.8194 (3)	0.31865 (11)	0.0216 (5)
C3	0.4758 (3)	0.9523 (3)	0.27352 (11)	0.0253 (5)
C4	0.5456 (3)	0.9378 (3)	0.21886 (11)	0.0243 (5)
C5	0.5948 (3)	0.7898 (3)	0.21134 (10)	0.0224 (5)
C6	0.5269 (3)	0.5291 (3)	0.35434 (10)	0.0197 (5)
C7	0.4446 (4)	0.5154 (3)	0.41466 (11)	0.0292 (6)
C8	0.7073 (3)	0.1748 (3)	0.34310 (10)	0.0199 (5)
C9	0.7388 (3)	0.0127 (3)	0.37742 (10)	0.0214 (5)
C10	0.6540 (4)	-0.0432 (3)	0.43257 (11)	0.0277 (6)
C11	0.6816 (4)	-0.1960 (3)	0.46184 (12)	0.0322 (6)
C12	0.8510 (4)	-0.0892 (3)	0.35420 (11)	0.0256 (5)
C13	0.8734 (4)	-0.2401 (3)	0.38644 (11)	0.0285 (6)
C14	0.9496 (3)	0.5711 (3)	0.16687 (10)	0.0209 (5)
C15	1.0827 (3)	0.6692 (3)	0.13930 (12)	0.0292 (6)
C16	1.1852 (4)	0.7223 (4)	0.17243 (13)	0.0368 (7)
C17	1.1539 (4)	0.6737 (4)	0.23198 (13)	0.0364 (7)
C18	1.0174 (3)	0.5764 (3)	0.25663 (12)	0.0272 (5)
C19	0.8334 (3)	0.5091 (3)	0.13497 (10)	0.0195 (5)

C20	0.8694 (3)	0.5198 (3)	0.07165 (10)	0.0250 (5)
C21	0.4492 (3)	0.3366 (3)	0.18769 (10)	0.0195 (5)
C22	0.3055 (3)	0.2660 (3)	0.16921 (10)	0.0202 (5)
C23	0.3146 (3)	0.2441 (3)	0.11342 (11)	0.0243 (5)
C24	0.1815 (3)	0.1762 (3)	0.09809 (11)	0.0266 (5)
C25	0.1580 (3)	0.2183 (3)	0.20755 (10)	0.0208 (5)
C26	0.0296 (3)	0.1524 (3)	0.18879 (11)	0.0234 (5)
C27	0.7947 (3)	0.0902 (3)	0.04348 (11)	0.0232 (5)
C28	0.6401 (3)	0.0472 (3)	0.02141 (10)	0.0215 (5)
C29	0.5893 (3)	-0.1087 (3)	0.03644 (10)	0.0221 (5)
C30	0.4537 (3)	-0.1554 (3)	0.01532 (10)	0.0207 (5)
C31	0.9135 (3)	-0.0673 (3)	0.55392 (11)	0.0236 (5)
C32	0.8909 (3)	0.0907 (3)	0.52835 (11)	0.0242 (5)
C33	0.9751 (3)	0.1619 (3)	0.47446 (11)	0.0226 (5)
C34	0.9472 (3)	0.3356 (3)	0.45046 (11)	0.0249 (5)
H1	0.41316	0.82673	0.35624	0.0260*
H2	0.43799	1.05195	0.27992	0.0303*
Н3	0.55916	1.02732	0.1874	0.0291*
H4	0.64003	0.7793	0.17378	0.0269*
H5B	0.51437	0.44762	0.44126	0.0351*
H6C	0.3319	0.46964	0.41959	0.0351*
H7A	0.4332	0.61998	0.42288	0.0351*
H8	0.5774	0.02358	0.45005	0.0333*
Н9	0.62211	-0.23263	0.49945	0.0386*
H10	0.91159	-0.05553	0.31661	0.0307*
H11	0.95218	-0.30803	0.37036	0.0342*
H12	1.10347	0.69948	0.09841	0.0351*
H13	1.27605	0.79128	0.1545	0.0442*
H14	1.22456	0.70646	0.25544	0.0437*
H15	0.99564	0.54319	0.29744	0.0326*
H16C	0.96065	0.44528	0.06411	0.0299*
H17A	0.90443	0.62684	0.05154	0.0299*
H18B	0.76681	0.49436	0.05776	0.0299*
H19	0.41227	0.27593	0.08615	0.0291*
H20	0.18943	0.16126	0.06006	0.0319*
H21	0.14673	0.23126	0.24591	0.0250*
H22	-0.07078	0.12132	0.21482	0.0280*
H23	0.64945	-0.18442	0.06181	0.0265*
H24	0.81501	0.15245	0.54843	0.0290*
H25	0.82374	0.49396	0.4703	0.0404*
H26	0.882	0.05571	0.10908	0.0341*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.02329 (18)	0.01591 (17)	0.01524 (16)	0.00197 (12)	-0.00110 (12)	-0.00266 (12)
Cl1	0.0335 (3)	0.0171 (3)	0.0299 (3)	-0.0019 (2)	-0.0009(3)	-0.0035 (2)
Cl2	0.0421 (4)	0.0239 (3)	0.0274 (3)	0.0045 (3)	0.0084 (3)	-0.0030 (3)

01	0.0305 (10)	0.0197 (9)	0.0174 (8)	0.0048 (7)	-0.0001 (7)	-0.0036 (7)
O2	0.0253 (9)	0.0213 (9)	0.0182 (8)	-0.0013 (7)	-0.0008(7)	-0.0058 (7)
O3	0.0475 (12)	0.0179 (9)	0.0294 (10)	0.0098 (9)	0.0061 (9)	-0.0019 (8)
O4	0.0489 (13)	0.0232 (10)	0.0352 (11)	0.0071 (9)	0.0109 (10)	0.0015 (9)
05	0.0267 (10)	0.0383 (11)	0.0188 (9)	-0.0092 (8)	-0.0055 (7)	-0.0004 (8)
O6	0.0336 (11)	0.0384 (11)	0.0238 (10)	-0.0130 (9)	-0.0042(8)	0.0018 (8)
N1	0.0221 (10)	0.0177 (10)	0.0185 (10)	0.0029 (8)	-0.0025(8)	-0.0036(8)
N2	0.0218 (10)	0.0165 (10)	0.0170 (9)	0.0001 (8)	-0.0014(8)	-0.0024(8)
N3	0.0280 (11)	0.0166 (10)	0.0171 (10)	0.0016 (8)	-0.0025(8)	-0.0008(8)
N4	0.0436 (14)	0.0178 (11)	0.0263 (12)	0.0037 (10)	-0.0066(10)	-0.0019(9)
N5	0.0213(10)	0.0217(10)	0.0198 (10)	0.0039 (8)	-0.0032(8)	-0.0050(8)
N6	0.0214(10)	0.0158(10)	0.0175 (9)	0.0018 (8)	-0.0030(8)	-0.0030(8)
N7	0.0226(10)	0.0201(10)	0.0167 (9)	-0.0011(8)	-0.0024(8)	-0.0041(8)
N8	0.0220(10) 0.0235(11)	0.0242(11)	0.0214(10)	-0.0001(9)	-0.0030(8)	-0.0023(9)
C1	0.0255(11)	0.0212(11) 0.0194(11)	0.0195(11)	-0.0006(9)	-0.0028(9)	-0.0023(9)
C2	0.0103(11) 0.0271(13)	0.0199(11)	0.0199(12)	0.0008 (9)	-0.0026(9)	-0.0039(9)
C2	0.0279(13)	0.0109(11) 0.0200(12)	0.0199(12) 0.0288(13)	0.0000(9)	-0.0052(10)	-0.0039(9)
C_4	0.0275(13)	0.0200(12)	0.0230(12)	0.0041(10) 0.0028(10)	-0.0032(10)	0.007 + (10)
C4 C5	0.0293(13)	0.0108(12) 0.0228(12)	0.0230(12) 0.0179(11)	0.0028(10)	-0.0017(9)	0.0003(10)
C5 C6	0.0233(12)	0.0228(12)	0.0173(11)	-0.0028(10)	-0.0017(9)	-0.0002(9)
C0 C7	0.0210(12)	0.0180(12)	0.0103(11) 0.0214(13)	0.0004(9)	0.0001(9)	-0.0032(9)
C°	0.0407(10)	0.0200(13)	0.0214(13)	0.0037(11)	-0.0036(0)	-0.0020(10)
	0.0220(12) 0.0263(13)	0.0180(12)	0.0104(11)	0.0013(9)	-0.0030(9) -0.0051(0)	-0.0014(9)
C9	0.0203(13)	0.0179(12)	0.0195(12)	0.0020(10)	-0.0031(9)	-0.0023(9)
C10	0.0332(13)	0.0224(13)	0.0220(12)	0.0033(11)	0.0010(11)	-0.0022(10)
CII	0.0437(17)	0.0218 (13)	0.0241 (13)	0.0044 (12)	0.0028(12)	0.0028 (11)
C12	0.0323(14)	0.0221(13)	0.0216(12)	0.0038(10)	-0.0032(10)	-0.0049(10)
C13	0.0389 (15)	0.0209 (13)	0.0257 (13)	0.0081 (11)	-0.0044 (11)	-0.00/1 (10)
C14	0.0196 (12)	0.0210 (12)	0.0212 (12)	0.0054 (9)	-0.0015 (9)	-0.0050 (9)
CI5	0.0244 (13)	0.0356 (15)	0.0259 (13)	-0.0007 (11)	-0.0022 (10)	-0.0043 (11)
C16	0.0245 (14)	0.0495 (19)	0.0356 (16)	-0.0112 (13)	-0.0011 (12)	-0.0080 (14)
C17	0.0266 (14)	0.0505 (19)	0.0354 (16)	-0.0052 (13)	-0.0077 (12)	-0.0136 (14)
C18	0.0252 (13)	0.0338 (14)	0.0232 (13)	0.0030 (11)	-0.0050 (10)	-0.0078 (11)
C19	0.0210 (12)	0.0171 (11)	0.0176 (11)	0.0029 (9)	-0.0006 (9)	-0.0004 (9)
C20	0.0284 (13)	0.0268 (13)	0.0176 (12)	-0.0020 (10)	0.0019 (10)	-0.0037 (10)
C21	0.0250 (12)	0.0138 (11)	0.0180 (11)	0.0051 (9)	-0.0034 (9)	-0.0015 (9)
C22	0.0244 (12)	0.0131 (11)	0.0216 (12)	0.0053 (9)	-0.0033 (9)	-0.0021 (9)
C23	0.0233 (12)	0.0298 (14)	0.0192 (12)	0.0008 (10)	0.0007 (9)	-0.0069 (10)
C24	0.0276 (13)	0.0346 (14)	0.0184 (12)	-0.0004 (11)	-0.0010 (10)	-0.0092 (11)
C25	0.0231 (12)	0.0199 (12)	0.0184 (11)	0.0019 (9)	-0.0007 (9)	-0.0039 (9)
C26	0.0247 (13)	0.0235 (13)	0.0206 (12)	0.0024 (10)	-0.0015 (9)	-0.0040 (10)
C27	0.0269 (13)	0.0217 (12)	0.0202 (12)	-0.0004 (10)	-0.0016 (10)	-0.0044 (10)
C28	0.0228 (12)	0.0232 (12)	0.0176 (11)	0.0002 (10)	0.0004 (9)	-0.0048 (9)
C29	0.0273 (13)	0.0187 (12)	0.0187 (11)	0.0031 (10)	-0.0027 (9)	-0.0020 (9)
C30	0.0264 (12)	0.0182 (11)	0.0168 (11)	0.0001 (9)	-0.0012 (9)	-0.0039 (9)
C31	0.0267 (13)	0.0224 (12)	0.0205 (12)	0.0024 (10)	-0.0006 (10)	-0.0051 (10)
C32	0.0268 (13)	0.0212 (12)	0.0254 (13)	0.0034 (10)	-0.0019 (10)	-0.0089 (10)
C33	0.0246 (13)	0.0197 (12)	0.0242 (12)	0.0013 (10)	-0.0051 (10)	-0.0054 (10)
C34	0.0305 (14)	0.0179 (12)	0.0255 (13)	0.0041 (10)	-0.0029 (10)	-0.0050 (10)

Geometric parameters (Å, °)

Ni1—O1	2.0870 (17)	C16—C17	1.386 (4)
Ni1—O2	2.1099 (19)	C17—C18	1.386 (4)
Ni1—N1	2.106 (2)	C19—C20	1.494 (3)
Ni1—N2	1.990 (2)	C21—C22	1.495 (4)
Ni1—N5	2.110 (2)	C22—C23	1.396 (4)
Ni1—N6	1.985 (2)	C22—C25	1.400 (3)
C11-C30	1 738 (3)	C23—C24	1 374 (4)
Cl_2 — $C31$	1 739 (2)	C_{25} C_{25} C_{26}	1 377 (4)
01-C8	1 274 (3)	C_{27} C_{28}	1 506 (4)
02-C21	1 278 (3)	C_{28} C_{29}	1 391 (4)
$C_{34} = 0_{3}$	1.276(3)	$C_{28} = C_{30}^{i}$	1.391(1) 1.400(3)
$C_{34} = 0.04$	1.206 (3)	$C_{20} = C_{30}$	1.400(3) 1.375(4)
$C_{27} = 05$	1.200 (3)	$C_{2}^{31} - C_{3}^{32}$	1 388 (3)
C2706	1.300(3) 1.216(3)	$C_{31} = C_{32}^{31}$	1.300(3)
N1 C1	1.210(3) 1 355 (3)	C_{32} C_{33}	1.404(4) 1.300(3)
N1_C5	1.335(3)	$C_{32}^{32} = C_{33}^{34}$	1.590(3)
N2 N2	1.335(3) 1.370(3)	03 H25	0.840
N2 C6	1.379(3) 1.202(2)	05 H26	0.840
N2 C9	1.292(3) 1.238(2)	C2 H1	0.040
$N_{A} = C_{0}$	1.330(3) 1.350(4)		0.950
N4 C12	1.330(4) 1.228(2)	C_{3}	0.950
$N_{4} = C_{13}$ N5 C_{14}	1.356 (3)	C4—H3	0.950
N5 C18	1.330(3) 1.236(4)	C7 H5P	0.930
NG N7	1.330(4) 1.278(2)	С7—Н5В	0.980
NG C10	1.378(3)		0.980
N0-C19	1.290 (3)	C = H/A	0.980
N/	1.333(3)	C10—H8	0.950
N8-C24	1.345 (3)	С12 ние	0.950
N8—C26	1.342 (4)		0.950
C1 = C2	1.393 (4)		0.950
C1 - C6	1.482 (3)		0.950
C2—C3	1.387 (3)		0.950
C3—C4	1.389 (4)		0.950
C4—C5	1.382 (4)		0.950
C6-C/	1.488 (3)	C20—H16C	0.980
C8—C9	1.492 (3)	C20—H17A	0.980
C9—C10	1.389 (3)	C20—H18B	0.980
C9—C12	1.389 (4)	C23—H19	0.950
C10—C11	1.379 (4)	C24—H20	0.950
C12—C13	1.382 (3)	C25—H21	0.950
C14—C15	1.384 (3)	C26—H22	0.950
C14—C19	1.481 (4)	С29—Н23	0.950
C15—C16	1.386 (5)	C32—H24	0.950
01—Ni1—O2	91.34 (7)	N8—C26—C25	122.6 (2)
O1—Ni1—N1	154.21 (8)	O5—C27—O6	125.6 (3)
O1—Ni1—N2	77.13 (8)	O5—C27—C28	112.6 (2)

O1—Ni1—N5	95.75 (8)	O6—C27—C28	121.8 (2)
O1—Ni1—N6	104.55 (8)	C27—C28—C29	119.0 (2)
O2—Ni1—N1	96.67 (8)	C27—C28—C30 ⁱ	123.5 (2)
O2—Ni1—N2	95.71 (8)	C29—C28—C30 ⁱ	117.5 (2)
O2—Ni1—N5	154.86 (8)	C28—C29—C30	121.3 (2)
O2—Ni1—N6	77.12 (8)	$C11 - C30 - C28^{i}$	121.3 (2)
N1—Ni1—N2	77.70 (8)	C11—C30—C29	117.39 (18)
N1—Ni1—N5	87.32 (8)	$C_{28^{i}}$ C C C C C C C C C C C C C C C C C C	121.2 (2)
N1—Ni1—N6	101.13 (8)	C12 - C31 - C32	116.7(2)
N2—Ni1—N5	109.38 (9)	Cl2—C31—C33 ⁱⁱ	123.01 (18)
N2—Ni1—N6	172.61 (9)	C_{32} C_{31} C_{33}	120.3(2)
N5—Ni1—N6	77.75 (9)	C_{31} $-C_{32}$ $-C_{33}$	120.0(2) 122.4(2)
Ni1-O1-C8	108 99 (15)	$C_{31}^{ii} - C_{33}^{ii} - C_{32}^{ii}$	1172(2)
Ni1 - 02 - C21	108 26 (15)	$C_{31}^{ii} - C_{33}^{ii} - C_{34}^{ii}$	1237(2)
Ni1 - N1 - C1	$112\ 70\ (15)$	C_{32} C_{33} C_{34}	129.7(2) 119.1(2)
Ni1-N1-C5	128.03 (18)	03-C34-04	1242(2)
C1-N1-C5	118.9(2)	03-C34-C33	121.2(2) 1121(2)
Ni1N2N3	118 43 (16)	$04 - C_{34} - C_{33}$	1237(2)
Ni1 - N2 - C6	120 19 (15)	$C_{34} - C_{3} - H_{25}$	109 478
N3—N2—C6	120.36 (19)	$C_{27} = 05 = H_{26}$	109.170
N2—N3—C8	10753(19)	C1	120 325
C11 - N4 - C13	117 4 (2)	C3-C2-H1	120.322
Ni1-N5-C14	111.70 (17)	C2-C3-H2	120.450
Ni1—N5—C18	128.02(17)	C4—C3—H2	120.447
C14 - N5 - C18	1187(2)	C3-C4-H3	120.816
Ni1—N6—N7	118.72 (13)	C5-C4-H3	120.812
Ni1-N6-C19	120.82(19)	N1—C5—H4	118.447
N7—N6—C19	120.5 (2)	C4—C5—H4	118.448
N6—N7—C21	108.0 (2)	C6-C7-H5B	109.470
C24—N8—C26	118.8 (2)	C6—C7—H6C	109.478
N1-C1-C2	121.0 (2)	C6—C7—H7A	109.475
N1—C1—C6	115.3 (2)	H5B—C7—H6C	109.469
C2—C1—C6	123.6 (2)	H5B—C7—H7A	109.464
C1—C2—C3	119.4 (2)	H6C—C7—H7A	109.472
C2—C3—C4	119.1 (2)	С9—С10—Н8	120.135
C3—C4—C5	118.4 (2)	С11—С10—Н8	120.151
N1—C5—C4	123.1 (2)	N4—C11—H9	118.708
N2—C6—C1	113.0 (2)	С10—С11—Н9	118.699
N2—C6—C7	123.9 (2)	C9—C12—H10	120.404
C1—C6—C7	123.1 (2)	C13—C12—H10	120.405
O1—C8—N3	127.3 (2)	N4—C13—H11	118.362
O1—C8—C9	118.1 (2)	C12—C13—H11	118.358
N3—C8—C9	114.6 (2)	C14—C15—H12	120.607
C8—C9—C10	121.6 (2)	C16—C15—H12	120.613
C8—C9—C12	120.6 (2)	C15—C16—H13	120.324
C10—C9—C12	117.8 (2)	C17—C16—H13	120.330
C9—C10—C11	119.7 (3)	C16—C17—H14	120.669
N4—C11—C10	122.6 (2)	C18—C17—H14	120.655

C9-C12-C13	119.2 (2)	N5-C18-H15	118.782
N4—C13—C12	123.3 (3)	C17 - C18 - H15	118.778
N5-C14-C15	122.0(3)	C19—C20—H16C	109.476
N5-C14-C19	115.6(2)	C19—C20—H17A	109 482
C_{15} C_{14} C_{19}	1225(2)	C19 - C20 - H18B	109.102
C14-C15-C16	112.3(2) 118.8(3)	$H_{16C} - C_{20} - H_{17A}$	109.466
C_{15} C_{16} C_{17}	110.0(3) 119.3(3)	H16C - C20 - H18B	109.468
$C_{16} - C_{17} - C_{18}$	119.5(3) 118.7(3)	H17A - C20 - H18B	109.463
N_{5} C_{18} C_{17}	110.7(3) 1224(3)	C^{22} C^{23} H^{19}	120 140
N6-C19-C14	122.4(5) 112.5(2)	C_{24} C_{23} H_{19}	120.140
$N_{0} = C_{1} = C_{1}$	112.5(2) 124.7(2)	$N_{24} = C_{23} = H_{13}$	118 075
C_{14} C_{19} C_{20}	124.7(2) 1228(2)	C^{23} C^{24} H^{20}	118.973
O_{2}^{2} C_{21}^{2} N7	122.0(2) 127.5(2)	$C_{23} = C_{24} = H_{20}$	120 510
02 - 021 - 07	127.3(2) 1187(2)	$C_{22} = C_{23} = H_{21}$	120.510
N7 C21 C22	113.7(2)	N8 C26 H22	120.521
$N = C_2 = C_2 Z_2$	113.8(2) 121.1(2)	10 - 0.20 - 1122	118.075
$C_{21} = C_{22} = C_{23}$	121.1(2) 121.0(2)	$C_{23} = C_{20} = H_{22}$	110.077
$C_{21} = C_{22} = C_{23}$	121.0(2) 117.8(2)	$C_{20} = C_{29} = H_{23}$	119.339
$C_{23} = C_{22} = C_{23}$	117.0(2) 110.7(2)	$C_{30} - C_{29} - H_{23}$	119.342
$V_{22} = V_{23} = V_{24}$	119.7(2) 122.0(3)	$C_{31} = C_{32} = H_{24}$	110.705
10-024-025	122.0(3)	С55—С52—П24	116.780
022-025-020	119.0 (2)		
01—Ni1—O2—C21	-99.87 (11)	Ni1—N6—N7—C21	5.8 (2)
O2—Ni1—O1—C8	-89.54 (12)	Ni1-N6-C19-C14	-0.9 (3)
01—Ni1—N1—C1	-17.2 (3)	Ni1—N6—C19—C20	178.20 (13)
O1—Ni1—N1—C5	155.73 (14)	N7—N6—C19—C14	178.99 (17)
N1—Ni1—O1—C8	18.9 (3)	N7—N6—C19—C20	-1.9 (3)
O1—Ni1—N2—N3	-7.52 (13)	C19—N6—N7—C21	-174.06 (19)
O1—Ni1—N2—C6	-176.01 (17)	N6—N7—C21—O2	-1.1 (3)
N2—Ni1—O1—C8	6.01 (12)	N6—N7—C21—C22	-179.84 (16)
O1—Ni1—N5—C14	114.34 (13)	C24—N8—C26—C25	-0.9 (3)
O1—Ni1—N5—C18	-80.17 (17)	C26—N8—C24—C23	0.4 (4)
N5—Ni1—O1—C8	114.62 (13)	N1—C1—C2—C3	-3.6 (4)
O1—Ni1—N6—N7	82.01 (14)	N1—C1—C6—N2	7.8 (3)
O1-Ni1-N6-C19	-98.13 (14)	N1—C1—C6—C7	-171.4 (2)
N6—Ni1—O1—C8	-166.58 (12)	C2-C1-C6-N2	-169.9(2)
O2—Ni1—N1—C1	90.00 (14)	C2—C1—C6—C7	10.9 (4)
O2—Ni1—N1—C5	-97.03 (17)	C6—C1—C2—C3	173.9 (2)
N1—Ni1—O2—C21	104.69 (11)	C1—C2—C3—C4	0.9 (4)
O2—Ni1—N2—N3	82.55 (14)	C2—C3—C4—C5	1.6 (4)
O2—Ni1—N2—C6	-85.94 (16)	C3—C4—C5—N1	-1.5(4)
N2—Ni1—O2—C21	-177.07 (11)	O1—C8—C9—C10	-162.4(2)
O2—Ni1—N5—C14	8.7 (3)	O1—C8—C9—C12	15.5 (4)
O2—Ni1—N5—C18	174.18 (12)	N3—C8—C9—C10	16.5 (4)
N5—Ni1—O2—C21	6.7 (2)	N3—C8—C9—C12	-165.5 (2)
O2—Ni1—N6—N7	-6.01 (12)	C8—C9—C10—C11	177.2 (2)
O2—Ni1—N6—C19	173.85 (16)	C8—C9—C12—C13	-178.0 (2)
N6—Ni1—O2—C21	4.75 (10)	C10—C9—C12—C13	0.0 (4)
	× /		

N1—Ni1—N2—N3	178.16 (16)	C12—C9—C10—C11	-0.8 (4)
N1—Ni1—N2—C6	9.67 (15)	C9—C10—C11—N4	0.4 (5)
N2—Ni1—N1—C1	-4.42 (13)	C9—C12—C13—N4	1.2 (5)
N2—Ni1—N1—C5	168.55 (19)	N5-C14-C15-C16	0.9 (4)
N1—Ni1—N5—C14	-91.35 (14)	N5-C14-C19-N6	10.7 (3)
N1—Ni1—N5—C18	74.15 (17)	N5—C14—C19—C20	-168.44 (19)
N5—Ni1—N1—C1	-114.92 (14)	C15—C14—C19—N6	-168.3 (2)
N5—Ni1—N1—C5	58.05 (18)	C15—C14—C19—C20	12.6 (4)
N1—Ni1—N6—N7	-100.40 (14)	C19—C14—C15—C16	179.8 (2)
N1—Ni1—N6—C19	79.46 (15)	C14—C15—C16—C17	1.2 (4)
N6—Ni1—N1—C1	168.12 (13)	C15—C16—C17—C18	-1.7 (5)
N6—Ni1—N1—C5	-18.91 (19)	C16—C17—C18—N5	0.1 (4)
N2—Ni1—N5—C14	-167.31 (12)	O2—C21—C22—C23	-175.62 (18)
N2—Ni1—N5—C18	-1.82 (19)	O2—C21—C22—C25	3.7 (3)
N5—Ni1—N2—N3	-99.16 (15)	N7—C21—C22—C23	3.2 (3)
N5—Ni1—N2—C6	92.36 (16)	N7—C21—C22—C25	-177.40 (18)
N5—Ni1—N6—N7	174.84 (15)	C21—C22—C23—C24	178.79 (19)
N5—Ni1—N6—C19	-5.30 (14)	C21—C22—C25—C26	-179.32 (18)
N6—Ni1—N5—C14	10.66 (13)	C23—C22—C25—C26	0.0 (3)
N6—Ni1—N5—C18	176.15 (18)	C25—C22—C23—C24	-0.6 (3)
Ni1—O1—C8—N3	-4.5 (3)	C22—C23—C24—N8	0.4 (4)
Ni1—O1—C8—C9	174.20 (14)	C22—C25—C26—N8	0.7 (4)
Ni1—O2—C21—N7	-3.5 (3)	O5—C27—C28—C29	-43.4 (3)
Ni1—O2—C21—C22	175.16 (13)	O5-C27-C28-C30 ⁱ	138.8 (2)
Ni1—N1—C1—C2	177.44 (15)	O6—C27—C28—C29	134.9 (2)
Ni1—N1—C1—C6	-0.3 (2)	O6-C27-C28-C30 ⁱ	-43.0 (4)
Ni1—N1—C5—C4	-173.77 (15)	C27—C28—C29—C30	-177.0(2)
C1—N1—C5—C4	-1.2 (4)	C27-C28-C30 ⁱ -C11 ⁱ	-7.1 (3)
C5—N1—C1—C2	3.8 (3)	C27—C28—C30 ⁱ —C29 ⁱ	176.9 (2)
C5—N1—C1—C6	-173.9 (2)	C29—C28—C30 ⁱ —C11 ⁱ	175.04 (18)
Ni1—N2—N3—C8	7.2 (2)	C29—C28—C30 ⁱ —C29 ⁱ	-1.0 (3)
Ni1—N2—C6—C1	-12.4 (3)	C30 ⁱ —C28—C29—C30	1.0 (3)
Ni1—N2—C6—C7	166.82 (15)	C28-C29-C30-C11	175.15 (19)
N3—N2—C6—C1	179.38 (19)	C28-C29-C30-C28 ⁱ	-1.0 (4)
N3—N2—C6—C7	-1.4 (4)	Cl2—C31—C32—C33	-179.38 (18)
C6—N2—N3—C8	175.6 (2)	Cl2—C31—C33 ⁱⁱ —C32 ⁱⁱ	179.35 (18)
N2—N3—C8—O1	-1.3 (4)	Cl2—C31—C33 ⁱⁱ —C34 ⁱⁱ	1.3 (4)
N2—N3—C8—C9	179.92 (18)	C32—C31—C33 ⁱⁱ —C32 ⁱⁱ	-0.1 (4)
C11—N4—C13—C12	-1.7 (4)	C32—C31—C33 ⁱⁱ —C34 ⁱⁱ	-178.2 (2)
C13—N4—C11—C10	0.9 (4)	C33 ⁱⁱ —C31—C32—C33	0.1 (4)
Ni1—N5—C14—C15	164.49 (15)	C31—C32—C33—C31 ⁱⁱ	-0.1 (4)
Ni1—N5—C14—C19	-14.5 (2)	C31—C32—C33—C34	-178.3 (2)
Ni1—N5—C18—C17	-162.65 (15)	C31 ⁱⁱ —C33—C34—O3	178.1 (2)
C14—N5—C18—C17	2.0 (4)	C31 ⁱⁱ —C33—C34—O4	-2.4 (5)
C18—N5—C14—C15	-2.5 (3)	C32—C33—C34—O3	-3.9 (4)
C18—N5—C14—C19	178.5 (2)	C32—C33—C34—O4	175.6 (3)

Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O3—H25…N4 ⁱⁱⁱ	0.84	1.84	2.679 (3)	177
O5—H26…N8 ^{iv}	0.84	1.71	2.547 (3)	176

Symmetry codes: (iii) *x*, *y*+1, *z*; (iv) *x*+1, *y*, *z*.

(1-Br) Bis{N-[1-(pyridin-2-yl- κN)ethylidene]pyridine-4-carbohydrazonato- $\kappa^2 N'$, O}nickel(II)-2,5-

dibromoterephthalic acid (1/1)

Crystal data

[Ni(C ₁₃ H ₁₁ N ₄ O) ₂](C ₈ H ₄ Br ₂ O ₄) $M_r = 861.14$ Triclinic, $P\overline{1}$ a = 7.8740 (14) Å b = 8.9716 (15) Å c = 24.233 (4) Å a = 75.040 (9)° $\beta = 82.162$ (10)° $\gamma = 86.007$ (11)° V = 1637.3 (5) Å ³	Z = 2 F(000) = 864.00 $D_x = 1.747 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 6236 reflections $\theta = 1.8-30.8^{\circ}$ $\mu = 3.10 \text{ mm}^{-1}$ T = 123 K Plate, brown $0.02 \times 0.02 \times 0.01 \text{ mm}$
Rigaku Saturn724 diffractometer Detector resolution: 14.222 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>REQAB</i> ; Rigaku, 1998) $T_{min} = 0.467, T_{max} = 0.538$ 28760 measured reflections	7439 independent reflections 6665 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.050$ $\theta_{max} = 27.4^\circ$, $\theta_{min} = 3.1^\circ$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -31 \rightarrow 31$
Refinement Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.051$	Secondary atom site location: difference Fourier map

	•
$R[F^2 > 2\sigma(F^2)] = 0.051$	map
$wR(F^2) = 0.107$	Hydrogen site location: inferred from
<i>S</i> = 1.14	neighbouring sites
7439 reflections	H-atom parameters constrained
464 parameters	$w = 1/[\sigma^2(F_o^2) + (0.036P)^2 + 2.3422P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.72 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.75 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F². R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F²) is used only for calculating Rfactor (gt).

	~		-	IT */IT	
	λ	<i>y</i>	2	$U_{\rm iso} / U_{\rm eq}$	
Brl	0.08134 (5)	0.36721 (4)	0.45974 (2)	0.03504 (11)	
Br2	0.71262 (5)	0.14742 (4)	0.87301 (2)	0.02901 (11)	
N1l	0.17274 (6)	0.41976 (5)	0.75363 (2)	0.02102 (11)	
01	0.2587 (3)	0.1969 (3)	0.79096 (10)	0.0250 (5)	
02	-0.0585(3)	0.3334 (3)	0.74089 (9)	0.0236 (5)	
03	0.3310 (4)	0.3923 (3)	0.98699 (11)	0.0321 (6)	
04	0.5246 (4)	0.4085 (3)	0.90949 (12)	0.0394 (7)	
05	0.3029 (3)	0.0259 (3)	0.59558 (10)	0.0335 (6)	
06	0.4060 (4)	0.1768 (3)	0.50971 (11)	0.0392 (7)	
N1	0.0800 (4)	0.6459 (3)	0.75401 (12)	0.0219 (6)	
N2	0.1146 (4)	0.4059 (3)	0.83712 (11)	0.0198 (6)	
N3	0.1365 (4)	0.2643 (3)	0.87523 (11)	0.0206 (6)	
N4	0.2905 (4)	-0.3001 (3)	0.94192 (13)	0.0280 (7)	
N5	0.4171 (4)	0.5170 (3)	0.72801 (12)	0.0230 (6)	
N6	0.2067 (4)	0.4314 (3)	0.67004 (11)	0.0207 (6)	
N7	0.0867 (4)	0.3661 (3)	0.64776 (11)	0.0226 (6)	
N8	-0.4536 (4)	0.1265 (3)	0.63430 (12)	0.0262 (6)	
C1	0.0264 (4)	0.6627 (4)	0.80766 (14)	0.0201 (7)	
C2	-0.0243 (5)	0.8064 (4)	0.81732 (15)	0.0250 (7)	
C3	-0.0113 (5)	0.9368 (4)	0.77106 (15)	0.0278 (8)	
C4	0.0499 (5)	0.9204 (4)	0.71676 (15)	0.0281 (8)	
C5	0.0911 (5)	0.7722 (4)	0.70999 (15)	0.0264 (8)	
C6	0.0339 (4)	0.5190 (4)	0.85436 (14)	0.0210 (7)	
C7	-0.0436 (5)	0.5096 (4)	0.91452 (14)	0.0275 (8)	
C8	0.2134 (4)	0.1678 (4)	0.84499 (14)	0.0211 (7)	
C9	0.2437 (4)	0.0059 (4)	0.87960 (14)	0.0210 (7)	
C10	0.1563 (5)	-0.0480(4)	0.93437 (15)	0.0277 (8)	
C11	0.1833 (5)	-0.2009 (4)	0.96349 (16)	0.0308 (8)	
C12	0.3547 (5)	-0.0961 (4)	0.85712 (15)	0.0260 (7)	
C13	0.3756 (5)	-0.2461 (4)	0.88957 (15)	0.0275 (8)	
C14	0.4490 (4)	0.5644 (4)	0.66952 (14)	0.0234 (7)	
C15	0.5748 (5)	0.6703 (4)	0.64261 (16)	0.0303 (8)	
C16	0.6693 (5)	0.7273 (5)	0.67645 (18)	0.0394 (10)	
C17	0.6416 (5)	0.6749 (5)	0.73531 (17)	0.0366 (9)	
C18	0.5135 (5)	0.5698 (4)	0.75984 (16)	0.0291 (8)	
C19	0.3388 (4)	0.4983 (4)	0.63754 (14)	0.0221 (7)	
C20	0.3813 (5)	0.5089 (4)	0.57493 (14)	0.0291 (8)	
C21	-0.0439 (5)	0.3231 (4)	0.68878 (14)	0.0224 (7)	
C22	-0.1881 (4)	0.2546 (4)	0.66969 (14)	0.0216 (7)	
C23	-0.1743 (5)	0.2322 (4)	0.61435 (15)	0.0266 (8)	
C24	-0.3091 (5)	0.1685 (4)	0.59875 (15)	0.0298 (8)	
C25	-0.3379 (5)	0.2111 (4)	0.70672 (14)	0.0233 (7)	
C26	-0.4671 (5)	0.1476 (4)	0.68768 (15)	0.0263 (7)	
C27	0.2984 (5)	0.0920 (4)	0.54129 (15)	0.0285 (8)	
C28	0.1417 (5)	0.0496 (4)	0.51998 (14)	0.0244 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C29	0.0942 (5)	-0.1046 (4)	0.53744 (15)	0.0267 (8)
C30	0.0450 (5)	0.1528 (4)	0.48204 (14)	0.0244 (7)
C31	0.5852 (4)	0.0696 (4)	0.94649 (14)	0.0220 (7)
C32	0.3907 (5)	0.0870 (4)	1.02952 (14)	0.0238 (7)
C33	0.4753 (4)	0.1608 (4)	0.97543 (14)	0.0221 (7)
C34	0.4474 (5)	0.3329 (4)	0.95307 (15)	0.0250 (7)
H1	-0.06715	0.8156	0.85493	0.0299*
H2	-0.0442	1.03605	0.77688	0.0333*
H3	0.06352	1.00786	0.68481	0.0337*
H25	0.32047	0.48804	0.97322	0.0385*
H4	0.12896	0.76008	0.67241	0.0317*
H5C	-0.15805	0.46729	0.92075	0.0329*
H26	0.38949	0.05396	0.60649	0.0401*
H6B	-0.05285	0.61312	0.92131	0.0329*
H7A	0.02902	0.44235	0.9412	0.0329*
H8	0.07957	0.01854	0.95149	0.0333*
H9	0.12243	-0.23709	1.00075	0.0370*
H10	0.41592	-0.06346	0.81974	0.0312*
H11	0.45427	-0.31402	0.8739	0.0330*
H12	0.59537	0.7028	0.60182	0.0363*
H13	0.75282	0.80224	0.659	0.0473*
H14	0.70869	0.70983	0.75891	0.0439*
H15	0.49388	0.53435	0.80057	0.0350*
H16B	0.38648	0.61772	0.55362	0.0349*
H17A	0.2927	0.45945	0.56184	0.0349*
H18C	0.49271	0.45663	0.56808	0.0349*
H19	-0.07407	0.26017	0.58795	0.0319*
H20	-0.29926	0.1537	0.561	0.0358*
H21	-0.35117	0.22499	0.74466	0.0280*
H22	-0.56868	0.11802	0.7132	0.0315*
H23	0.15861	-0.17759	0.56312	0.0320*
H24	0.31469	0.14613	1.05021	0.0285*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0421 (2)	0.02082 (19)	0.0378 (2)	-0.00217 (16)	0.00356 (18)	-0.00364 (16)
Br2	0.0364 (2)	0.02332 (19)	0.02352 (18)	0.00005 (15)	0.00553 (15)	-0.00413 (14)
Ni1	0.0290 (2)	0.0171 (2)	0.0152 (2)	0.00158 (18)	-0.00022 (17)	-0.00274 (16)
01	0.0351 (14)	0.0193 (12)	0.0176 (11)	0.0045 (10)	0.0019 (10)	-0.0031 (9)
02	0.0299 (13)	0.0218 (12)	0.0179 (11)	-0.0006 (10)	0.0003 (10)	-0.0045 (10)
03	0.0476 (16)	0.0161 (12)	0.0278 (13)	0.0055 (12)	0.0054 (12)	-0.0038 (10)
04	0.0522 (18)	0.0197 (13)	0.0363 (15)	0.0025 (12)	0.0146 (14)	-0.0004 (12)
05	0.0342 (15)	0.0445 (16)	0.0210 (12)	-0.0107 (13)	-0.0038 (11)	-0.0044 (12)
06	0.0393 (16)	0.0491 (18)	0.0258 (13)	-0.0160 (14)	-0.0021 (12)	-0.0004 (13)
N1	0.0258 (15)	0.0195 (14)	0.0189 (13)	0.0014 (12)	-0.0010 (12)	-0.0039 (11)
N2	0.0245 (15)	0.0157 (13)	0.0175 (13)	-0.0005 (11)	-0.0013 (11)	-0.0021 (11)
N3	0.0283 (15)	0.0148 (13)	0.0159 (13)	-0.0002 (12)	-0.0007 (11)	-0.0004 (11)

N4	0.0367(18)	0.0170(14)	0.0275(15)	0.0020(13)	-0.0031(14)	-0.0036(12)
N5	0.0259(15)	0.0206 (14)	0.0275(13) 0.0217(14)	0.0020(13) 0.0047(12)	-0.0029(12)	-0.0049(12)
N6	0.0244 (15)	0.0191 (14)	0.0164 (13)	0.0043 (12)	-0.0006(11)	-0.0026(11)
N7	0.0266 (15)	0.0225 (14)	0.0173 (13)	0.0006 (12)	-0.0011 (12)	-0.0037 (11)
N8	0.0287 (16)	0.0276 (16)	0.0215 (14)	0.0007 (13)	-0.0018(12)	-0.0057(12)
C1	0.0215 (16)	0.0187 (16)	0.0200 (15)	-0.0002(13)	-0.0012 (13)	-0.0052 (13)
C2	0.0281 (18)	0.0211 (17)	0.0241 (17)	0.0004 (14)	0.0027 (14)	-0.0063 (14)
C3	0.035 (2)	0.0180 (17)	0.0292 (18)	0.0049 (15)	-0.0018 (16)	-0.0063 (15)
C4	0.033 (2)	0.0217 (18)	0.0248 (18)	0.0036 (15)	-0.0010 (15)	0.0006 (14)
C5	0.0308 (19)	0.0233 (18)	0.0211 (17)	0.0041 (15)	0.0017 (15)	-0.0020 (14)
C6	0.0256 (17)	0.0180 (16)	0.0184 (15)	-0.0029 (14)	0.0019 (13)	-0.0043 (13)
C7	0.035 (2)	0.0220 (18)	0.0218 (17)	0.0014 (15)	0.0051 (15)	-0.0042 (14)
C8	0.0229 (17)	0.0190 (16)	0.0200 (16)	-0.0004 (14)	-0.0013 (13)	-0.0034 (13)
C9	0.0241 (17)	0.0182 (16)	0.0208 (16)	-0.0020 (14)	-0.0021 (13)	-0.0051 (13)
C10	0.035 (2)	0.0222 (18)	0.0251 (18)	0.0011 (15)	0.0012 (15)	-0.0066 (14)
C11	0.041 (2)	0.0214 (18)	0.0249 (18)	-0.0005 (16)	0.0032 (16)	0.0005 (15)
C12	0.034 (2)	0.0229 (18)	0.0210 (17)	-0.0011 (15)	-0.0023 (15)	-0.0060 (14)
C13	0.033 (2)	0.0233 (18)	0.0285 (18)	0.0050 (15)	-0.0060 (16)	-0.0106 (15)
C14	0.0260 (18)	0.0210 (17)	0.0207 (16)	0.0045 (14)	0.0005 (14)	-0.0042 (14)
C15	0.032 (2)	0.031 (2)	0.0248 (18)	-0.0023 (16)	0.0010 (16)	-0.0046 (16)
C16	0.031 (2)	0.045 (2)	0.042 (2)	-0.0127 (19)	0.0019 (18)	-0.010 (2)
C17	0.032 (2)	0.049 (3)	0.032 (2)	-0.0068 (19)	-0.0012 (17)	-0.0148 (19)
C18	0.031 (2)	0.033 (2)	0.0244 (18)	0.0048 (16)	-0.0049 (15)	-0.0091 (16)
C19	0.0244 (17)	0.0214 (17)	0.0184 (16)	0.0052 (14)	-0.0003 (13)	-0.0038 (13)
C20	0.033 (2)	0.032 (2)	0.0195 (17)	-0.0017 (16)	0.0017 (15)	-0.0043 (15)
C21	0.0292 (18)	0.0149 (15)	0.0209 (16)	0.0051 (14)	-0.0008 (14)	-0.0031 (13)
C22	0.0263 (18)	0.0161 (16)	0.0210 (16)	0.0041 (14)	-0.0010 (14)	-0.0045 (13)
C23	0.0277 (18)	0.0303 (19)	0.0202 (16)	0.0013 (15)	0.0037 (14)	-0.0076 (15)
C24	0.034 (2)	0.039 (2)	0.0184 (16)	0.0008 (17)	-0.0017 (15)	-0.0106 (16)
C25	0.0300 (18)	0.0196 (17)	0.0186 (16)	0.0046 (14)	-0.0011 (14)	-0.0042 (13)
C26	0.0282 (19)	0.0246 (18)	0.0225 (17)	0.0030 (15)	-0.0000 (14)	-0.0024 (14)
C27	0.033 (2)	0.0277 (19)	0.0251 (18)	-0.0006 (16)	-0.0020 (16)	-0.0074 (15)
C28	0.0291 (18)	0.0257 (18)	0.0173 (16)	-0.0005 (15)	0.0004 (14)	-0.0055 (14)
C29	0.033 (2)	0.0238 (18)	0.0199 (16)	0.0031 (15)	-0.0004 (15)	-0.0018 (14)
C30	0.0312 (19)	0.0193 (16)	0.0196 (16)	-0.0017 (14)	0.0052 (14)	-0.0031 (13)
C31	0.0258 (17)	0.0213 (17)	0.0191 (15)	0.0005 (14)	-0.0003 (13)	-0.0071 (13)
C32	0.0287 (18)	0.0232 (17)	0.0201 (16)	-0.0003 (14)	-0.0010 (14)	-0.0077 (14)
C33	0.0276 (18)	0.0188 (16)	0.0201 (16)	-0.0018 (14)	-0.0027 (14)	-0.0049 (13)
C34	0.0311 (19)	0.0182 (17)	0.0254 (17)	0.0026 (15)	-0.0055 (15)	-0.0050 (14)

Geometric parameters (Å, °)

Br1-C30	1.890 (3)	C16—C17	1.373 (6)	
Br2—C31	1.906 (3)	C17—C18	1.392 (5)	
Nil—Ol	2.079 (2)	C19—C20	1.488 (5)	
Ni1—O2	2.118 (3)	C21—C22	1.506 (5)	
Nil—N1	2.110 (3)	C22—C23	1.395 (5)	
Ni1—N2	1.986 (3)	C22—C25	1.394 (5)	

Ni1—N5	2.116 (3)	C23—C24	1.378 (6)
Ni1—N6	1.983 (3)	C25—C26	1.385 (6)
01—C8	1.272 (4)	C27—C28	1.508 (6)
O2—C21	1.279 (4)	C28—C29	1,399 (5)
C34-03	1.324 (4)	C28—C30	1.391 (5)
C34—O4	1.227(4)	$C29 - C30^{i}$	1 388 (6)
C27—O5	1 300 (4)	$C31 - C32^{ii}$	1.385(5)
C27—O6	1.300(1) 1.223(4)	C31 - C33	1 394 (5)
N1-C1	1 354 (5)	C_{32} C_{33}	1.391(3) 1 406 (4)
N1_C5	1 339 (4)	C_{33} C_{34}	1,100 (1)
N1-03 N2 N3	1.337(4)	O3 H25	0.840
N2 C6	1.300(3) 1 200(4)	O5 H26	0.840
$N_2 = C_0$	1.290(4) 1.227(5)	$C_2 H_1$	0.840
N_{3} C_{11}	1.337(3)	C_2 —H1 C_2 —H2	0.930
N4 - C12	1.339 (3)	C_{3} H_{2}	0.950
N4	1.558 (4)	C4—H3	0.950
N5	1.364 (4)	C5—H4	0.950
N5	1.340 (5)	C/—H5C	0.980
N6—N7	1.380 (4)	С/—Н6В	0.980
N6-C19	1.297 (4)	C/—H/A	0.980
N7—C21	1.332 (4)	C10—H8	0.950
N8—C24	1.343 (4)	С11—Н9	0.950
N8—C26	1.344 (5)	C12—H10	0.950
C1—C2	1.391 (5)	C13—H11	0.950
C1—C6	1.484 (4)	C15—H12	0.950
C2—C3	1.394 (4)	C16—H13	0.950
C3—C4	1.379 (5)	C17—H14	0.950
C4—C5	1.392 (5)	C18—H15	0.950
C6—C7	1.485 (5)	C20—H16B	0.980
С8—С9	1.499 (4)	C20—H17A	0.980
C9—C10	1.391 (4)	C20—H18C	0.980
C9—C12	1.383 (5)	C23—H19	0.950
C10-C11	1.387 (5)	C24—H20	0.950
C12—C13	1.384 (5)	C25—H21	0.950
C14—C15	1.394 (5)	C26—H22	0.950
C14—C19	1.482 (6)	C29—H23	0.950
C15—C16	1.387 (7)	C32—H24	0.950
01—Ni1—02	90.25 (9)	N8—C26—C25	122.2 (3)
01-Ni1-N1	154.75 (11)	O5-C27-O6	126.1 (4)
01—Ni1—N2	77 64 (10)	05 - C27 - C28	111.6(3)
01 Ni1 N5	96 88 (10)	06-C27-C28	1223(3)
01—Ni1—N6	103 71 (11)	C_{27} C_{28} C_{29}	122.3(3) 118 1 (3)
$\Omega^2 = Ni1 = N1$	97 70 (11)	C_{27} C_{28} C_{30}	174.1(3)
$\Omega^2 = Ni1 = N^2$	97.76 (11)	C_{29} C_{28} C_{30}	127.1(3) 1177(4)
02 Ni1 N5	155 /1 (10)	$C_{29} = C_{20} = C_{30}^{i}$	117.7(T) 121.2(2)
Ω_2 Ni1 N6	77 36 (10)	B_{r1} C_{30} C_{28}	121.3(3) 1225(3)
N1 N1 N2	77 60 (11)	$Br1 C30 C20^{i}$	122.3(3) 1162(3)
$\frac{1}{1} - \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{2}$	25 79 (11)	$C_{28} C_{20} C_{20}$	110.2(2) 121.1(2)
1V1	05.70(11)	020-030-027	121.1(3)

N1—Ni1—N6	101.41 (11)	Br2—C31—C32 ⁱⁱ	115.4 (3)
N2—Ni1—N5	107.23 (12)	Br2—C31—C33	123.7 (2)
N2—Ni1—N6	174.40 (12)	C32 ⁱⁱ —C31—C33	121.0 (3)
N5—Ni1—N6	78.10 (12)	C31 ⁱⁱ —C32—C33	121.9 (3)
Ni1—O1—C8	108.6 (2)	C31—C33—C32	117.1 (3)
Ni1—O2—C21	107.8 (2)	C31—C33—C34	124.0 (3)
Ni1—N1—C1	112.86 (19)	C32—C33—C34	118.8 (3)
Ni1—N1—C5	127.7 (2)	O3—C34—O4	123.7 (3)
C1—N1—C5	118.7 (3)	O3—C34—C33	112.6 (3)
Ni1—N2—N3	117.9 (2)	O4—C34—C33	123.7 (3)
Ni1—N2—C6	120.5 (2)	C34—O3—H25	109.465
N3—N2—C6	120.7 (3)	C27—O5—H26	109.470
N2—N3—C8	107.6 (2)	C1C2H1	120.447
C11—N4—C13	117.1 (3)	C3—C2—H1	120.444
Ni1—N5—C14	110.8 (2)	C2-C3-H2	120.318
Ni1—N5—C18	127.9 (2)	C4—C3—H2	120.314
C14 - N5 - C18	118 8 (3)	C3—C4—H3	120.872
Ni1—N6—N7	118 25 (18)	C5-C4-H3	120.072
Ni1 - N6 - C19	1204(3)	N1-C5-H4	118 484
N7_N6_C19	120.4(3) 121.3(3)	C4-C5-H4	118 485
N6-N7-C21	121.3(3) 1084(3)	C6-C7-H5C	100 473
$C_{24} N_{8} C_{26}$	118.2(3)	C6-C7-H6B	109.475
N1 - C1 - C2	110.2(3) 121 4 (3)	C6-C7-H7A	109.407
N1 - C1 - C2	121.4(3) 1149(3)	H5C	109.476
$C_2 = C_1 = C_6$	114.9 (3)	H5C C7 H7A	109.470
$C_{2} - C_{1} - C_{0}$	123.0(3) 1101(3)	H6B C7 H7A	109.472
$C_1 = C_2 = C_3$	119.1(3) 110.4(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.405
$C_2 = C_3 = C_4$	119.4(3) 118.2(3)	$C_{2} = C_{10} = 118$	120.050
$C_3 = C_4 = C_3$	110.3(3) 1220(2)	N4 C11 H0	120.050
N1 - C3 - C4 N2 - C6 - C1	123.0(3) 113.0(3)	11 - 11 - 119	118.224
N2 C6 C7	113.0(3) 124.4(2)	$C_{10} - C_{11} - H_{10}$	110.224
$N_2 = C_0 = C_7$	124.4(3) 122.5(2)	$C_{12} = C_{12} = H_{10}$	120.307
C1 = C0 = C7	122.3(3)	C13-C12-H10	120.297
$O1 = C_0 = N_3$	127.7(3)	$N4-C13-\Pi11$	110.3//
01-08-09	11/.4 (3)	C12—C13—H11	118.380
$N_{3} = C_{8} = C_{9}$	114.9 (3)	C14—C15—H12	120.595
$C_8 = C_9 = C_{10}$	121.0(3)	C15_C16_H12	120.579
$C_8 = C_9 = C_{12}$	120.9 (3)	C15—C16—H13	120.167
C10 - C9 - C12	118.0(3)	C1/-C16-H13	120.138
C9-C10-C11	118.7 (3)	C10 - C17 - H14	120.526
N4—C11—C10	123.6 (3)	C18—C17—H14	120.526
C9—C12—C13	119.4 (3)	N5—C18—H15	118.856
N4—C13—C12	123.2 (3)	C17—C18—H15	118.858
N5—C14—C15	121.4 (4)	C19—C20—H16B	109.483
N5—C14—C19	115.4 (3)	C19—C20—H1/A	109.479
C15—C14—C19	123.3 (3)	C19—C20—H18C	109.470
C14—C15—C16	118.8 (3)	H16B—C20—H17A	109.459
C15—C16—C17	119.7 (4)	H16B—C20—H18C	109.470
C16—C17—C18	118.9 (4)	H17A—C20—H18C	109.466

N5—C18—C17	122.3 (3)	С22—С23—Н19	120.672
N6-C19-C14	112.8 (3)	C24—C23—H19	120.657
N6-C19-C20	125.3 (4)	N8—C24—H20	118.393
C14—C19—C20	121.9 (3)	С23—С24—Н20	118.385
O2—C21—N7	127.6 (3)	С22—С25—Н21	120.311
O2—C21—C22	118.3 (3)	C26—C25—H21	120.324
N7—C21—C22	114.1 (3)	N8—C26—H22	118.897
$C_{21} - C_{22} - C_{23}$	120.6 (3)	C25—C26—H22	118.896
$C_{21} - C_{22} - C_{25}$	121.1(3)	C28—C29—H23	119.375
C^{23} C^{22} C^{25}	118 3 (3)	$C_{30^{i}}$ C_{29} H_{23}	119 374
$C_{22} = C_{23} = C_{24}$	118.7(3)	$C_{31i} = C_{32} = H_{24}$	119.053
N8-C24-C23	1232(4)	C_{33} C_{32} H_{24}	119.046
C_{22} C_{25} C_{26}	123.2(4) 110 4 (3)	035 032 1124	119.040
022-025-020	119.4 (5)		
O1—Ni1—O2—C21	-98.39 (14)	Ni1—N6—N7—C21	7.7 (3)
O2—Ni1—O1—C8	-91.08 (16)	Ni1—N6—C19—C14	-1.8(3)
01—Ni1—N1—C1	-13.5 (4)	Ni1—N6—C19—C20	177.56 (19)
O1—Ni1—N1—C5	156.50 (19)	N7—N6—C19—C14	178.4 (2)
N1—Ni1—O1—C8	17.8 (3)	N7—N6—C19—C20	-2.2(5)
01—Ni1—N2—N3	-7.43 (18)	C19—N6—N7—C21	-172.6(3)
01—Ni1—N2—C6	-176.7(2)	N6—N7—C21—O2	-2.2(4)
N2—Ni1—O1—C8	6.30 (16)	N6—N7—C21—C22	178.0(2)
01 - Ni1 - N5 - C14	115 31 (17)	C24 - N8 - C26 - C25	0.2(5)
01 - Ni1 - N5 - C18	-831(2)	$C_{26} N_{8} C_{24} C_{23}$	-0.0(5)
N5_Ni1_01_C8	11250(17)	N1 - C1 - C2 - C3	-33(5)
Ω_1 N_1 N_2 N_3 N_1 N_2 N_1 N_2 N_2 N_1 N_2 N_2 N_1 N_2 N_2 N_2 N_1 N_2 N_2 N_2 N_1 N_2 N_2 N_1 N_2 N_2 N_1 N_2 N_2 N_1 N_2	79 58 (19)	N1 - C1 - C2 - C3 N1 - C1 - C6 - N2	99(4)
O1 Ni1 N6 C19	-100.16(19)	N1 = C1 = C6 = N2	-170.5(3)
$N_{1} = N_{1} = N_{1} = N_{1} = 0$	-168 13 (16)	$C_{1}^{-} = C_{1}^{-} = C_{0}^{-} = C_{1}^{-}$	-167.5(3)
$\frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} = \frac{1}{100} - \frac{1}{100} - \frac{1}{100} = \frac{1}$	100.13(10)	$C_2 = C_1 = C_0 = N_2$	107.5(3)
O_2 Ni1 N1 C5	-062(2)	$C_2 = C_1 = C_0 = C_7$	12.1(3) 1720(3)
02—NII—NI—C3	-90.2(2)	$C_0 - C_1 - C_2 - C_3$	1/3.9(3)
NI = NII = 02 = 021	103.03(14)	C1 = C2 = C3 = C4	0.0(3)
02 Ni N2 CC	81.25 (19)	$C_2 = C_3 = C_4 = C_5$	2.1 (5)
02—N11—N2—C6	-88.0(2)	$C_3 - C_4 - C_5 - N_1$	-2.5(6)
$N_2 = N_1 = O_2 = C_2 I$	-1/5.96(14)	01_08_09_010	-161.1(3)
02 - N11 - N5 - C14	9.4 (4)	01 - 08 - 09 - 012	16.4 (5)
02—N11—N5—C18	171.00 (16)	N3-C8-C9-C10	17.2 (5)
N5—N11—O2—C21	8.9 (3)	N3—C8—C9—C12	-165.3 (3)
O2—Ni1—N6—N7	-7.56 (16)	C8—C9—C10—C11	177.1 (3)
O2—Ni1—N6—C19	172.7 (2)	C8—C9—C12—C13	-178.0 (3)
N6—Ni1—O2—C21	5.61 (14)	C10—C9—C12—C13	-0.4(5)
N1—Ni1—N2—N3	177.6 (2)	C12—C9—C10—C11	-0.5(5)
N1—Ni1—N2—C6	8.3 (2)	C9—C10—C11—N4	0.5 (6)
N2—Ni1—N1—C1	-1.98 (18)	C9—C12—C13—N4	1.5 (6)
N2—Ni1—N1—C5	168.0 (3)	N5-C14-C15-C16	0.4 (5)
N1—Ni1—N5—C14	-89.92 (18)	N5-C14-C19-N6	13.5 (4)
N1—Ni1—N5—C18	71.7 (2)	N5-C14-C19-C20	-165.9 (3)
N5—Ni1—N1—C1	-110.67 (19)	C15—C14—C19—N6	-165.1 (3)
N5—Ni1—N1—C5	59.3 (2)	C15-C14-C19-C20	15.5 (5)

N1—Ni1—N6—N7	-103.00 (18)	C19—C14—C15—C16	178.9 (3)
N1-Ni1-N6-C19	77.3 (2)	C14—C15—C16—C17	2.2 (6)
N6—Ni1—N1—C1	172.39 (18)	C15—C16—C17—C18	-2.6 (6)
N6—Ni1—N1—C5	-17.6 (3)	C16—C17—C18—N5	0.5 (6)
N2—Ni1—N5—C14	-165.54 (16)	O2—C21—C22—C23	-176.1 (2)
N2—Ni1—N5—C18	-3.9 (2)	O2—C21—C22—C25	3.5 (4)
N5—Ni1—N2—N3	-100.89 (19)	N7—C21—C22—C23	3.7 (4)
N5—Ni1—N2—C6	89.8 (2)	N7—C21—C22—C25	-176.7 (2)
N5—Ni1—N6—N7	173.9 (2)	C21—C22—C23—C24	179.7 (3)
N5—Ni1—N6—C19	-5.89 (18)	C21—C22—C25—C26	-179.6 (2)
N6—Ni1—N5—C14	12.69 (16)	C23—C22—C25—C26	0.0 (4)
N6—Ni1—N5—C18	174.3 (2)	C25—C22—C23—C24	0.1 (4)
Ni1-01-C8-N3	-5.3 (4)	C22—C23—C24—N8	-0.1 (5)
Ni1—O1—C8—C9	172.72 (19)	C22—C25—C26—N8	-0.2 (5)
Ni1—O2—C21—N7	-3.6 (4)	O5—C27—C28—C29	-43.0 (4)
Ni1—O2—C21—C22	176.19 (17)	O5—C27—C28—C30	139.8 (3)
Ni1—N1—C1—C2	174.0 (2)	O6—C27—C28—C29	136.1 (3)
Ni1—N1—C1—C6	-3.4 (3)	O6—C27—C28—C30	-41.1 (5)
Ni1—N1—C5—C4	-169.6 (2)	C27-C28-C29-C30 ⁱ	-177.8 (3)
C1—N1—C5—C4	-0.1 (5)	C27-C28-C30-Br1	-8.3 (5)
C5—N1—C1—C2	3.0 (5)	C27-C28-C30-C29 ⁱ	177.6 (3)
C5—N1—C1—C6	-174.4 (3)	C29-C28-C30-Br1	174.6 (3)
Ni1—N2—N3—C8	6.7 (3)	C29—C28—C30—C29 ⁱ	0.4 (5)
Ni1—N2—C6—C1	-12.3 (4)	C30-C28-C29-C30 ⁱ	-0.4 (5)
Ni1—N2—C6—C7	168.1 (2)	$C28-C29-C30^{i}-Br1^{i}$	174.9 (3)
N3—N2—C6—C1	178.7 (3)	$C28 - C29 - C30^{i} - C28^{i}$	0.5 (5)
N3—N2—C6—C7	-0.9 (5)	Br2—C31—C32 ⁱⁱ —C33 ⁱⁱ	179.7 (2)
C6—N2—N3—C8	176.0 (3)	Br2—C31—C33—C32	-179.7 (2)
N2—N3—C8—O1	-0.5 (5)	Br2—C31—C33—C34	-1.8 (5)
N2—N3—C8—C9	-178.5 (2)	C32 ⁱⁱ —C31—C33—C32	-0.2 (5)
C11—N4—C13—C12	-1.5 (6)	C32 ⁱⁱ —C31—C33—C34	177.7 (3)
C13—N4—C11—C10	0.5 (6)	C33—C31—C32 ⁱⁱ —C33 ⁱⁱ	0.2 (6)
Ni1—N5—C14—C15	161.1 (2)	C31 ⁱⁱ —C32—C33—C31	0.2 (5)
Ni1—N5—C14—C19	-17.6 (3)	C31 ⁱⁱ —C32—C33—C34	-177.8 (3)
Ni1—N5—C18—C17	-158.3 (2)	C31—C33—C34—O3	177.0 (3)
C14—N5—C18—C17	2.0 (5)	C31—C33—C34—O4	-4.1 (6)
C18—N5—C14—C15	-2.4 (5)	C32—C33—C34—O3	-5.2 (5)
C18—N5—C14—C19	178.9 (3)	C32—C33—C34—O4	173.8 (3)

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) -*x*+1, -*y*, -*z*+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
O3—H25…N4 ⁱⁱⁱ	0.84	1.87	2.706 (4)	178
O5—H26…N8 ^{iv}	0.84	1.72	2.557 (4)	172

Symmetry codes: (iii) *x*, *y*+1, *z*; (iv) *x*+1, *y*, *z*.