CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 2 December 2016 Accepted 14 December 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; μ-pyridylvinylidene; binuclear complex; iron; palladium.

CCDC reference: 1523136

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of μ-carbonyl-1:2 $\kappa^{2} C$: C-carbonyl$1 \kappa C$-($1 \eta^{5}$-cyclopentadienyl)iodido- $2 \kappa /-[\mu-2-$ (pyridin-2-yl)ethene-1,1-diyl- $\left.1 \kappa C^{1}: 2 \kappa^{2} N, C^{1}\right]$ ironpalladium $(F e-P d)$ benzene monosolvate

Victor V. Verpekin, ${ }^{\text {a }}$ Arkadii Z. Kreindlin, ${ }^{\text {b }}$ Oleg V. Semeikin, ${ }^{\text {b }}$ Alexander F. Smol'yakov, ${ }^{\text {b }}$ Fedor M. Dolgushin, ${ }^{\text {b }} *$ Oleg S. Chudin ${ }^{\text {a }}$ and Nikolai A. Ustynyuk ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ Institute of Chemistry and Chemical Technology, Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50-24, Krasnoyarsk, 660036, Russian Federation, and ${ }^{\text {b }}$ A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russian Federation.
*Correspondence e-mail: fedya@ineos.ac.ru

The reaction of $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{FeI}$ with 2-ethynylpyridine under Sonogashira conditions [5\% $\left.\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, 10 \% \mathrm{CuI}, \mathrm{THF}-\mathrm{NEt}_{3}(2: 1)\right]$ afforded the title binuclear μ-pyridylvinylidene FePd complex (FePd1) as a benzene solvate, $\left[\mathrm{FePd}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{I}(\mathrm{CO})_{2}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{6}$, in a very low yield rather than the expected iron o-pyridylethynyl complex $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Fe}-\mathrm{C} \equiv \mathrm{C}-\left(2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$. The Fe and Pd atoms in FePd1 are bridged by carbonyl and pyridylvinylidene ligands, the pyridyl N atom being bonded to the palladium atom. The use of equimolar amounts of PdCl_{2} increases the yield of $\mathbf{F e P d} \mathbf{1}$ to 12%. The reaction pathway leading to $\mathbf{F e P d} \mathbf{1}$ is proposed.

1. Chemical context

Transition metal σ-pyridylethynyl complexes attract considerable research interest since they can act as precursors for pyridylvinylidene complexes (Chou et al., 2008) and as buildings blocks for supramolecular assemblies in molecular electronics (Le Stang et al., 1999), as well as materials for nonlinear optics (Wu et al., 1997).

Since the presence of two Lewis base centres $\left(\mathrm{C}_{\beta}\right.$ and N atoms) makes pyridylethynyl complexes potential catalysts for electrochemical proton reduction (Valyaev et al., 2007), we decided to study the CV behavior of the o-pyridylethynyl iron complex $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Fe}-\mathrm{C} \equiv \mathrm{C}-\left(2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$ in acidified solutions. The efficient preparation of iron arylethynyls $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Fe}$ $\mathrm{C} \equiv \mathrm{C}-\mathrm{Ar}$ by $\mathrm{Pd} / \mathrm{Cu}$-catalyzed Sonogashira coupling of

Figure 1
The reaction pathway.
$\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{FeI}(\mathrm{FpI})$ with terminal arylacetylenes $\mathrm{HC} \equiv \mathrm{C}-\mathrm{Ar}$ (Nakaya et al., 2009) inspired us to study the reaction of $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{FeI}$ with o-pyridylacetylene $\mathrm{HC} \equiv \mathrm{C}-\left(2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$ under the same conditions ($5 \% \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, 10 \% \mathrm{CuI}$, THF: $\left.\mathrm{NEt}_{3}(2: 1), 333 \mathrm{~K}\right)$. This reaction was found to afford no target complex. Instead, the binuclear $\mathrm{FePd} \mu_{2}$-pyridylvinylidene complex (FePd1) was isolated in a yield of 2%. The yield increases to 12% using PdCl_{2} as an educt instead of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}$ and pure diisopropylamine as the solvent. The structure of $\mathbf{F e P d}$, which crystallized as a benzene solvate $\left[\mathrm{FePd}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{I}(\mathrm{CO})_{2}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{6}$, was determined by X-ray diffraction.

Thus, while the alkynylation of FpI with terminal arylacetylens $\mathrm{HC} \equiv \mathrm{C}$-Ar proceeds along the typical Sonogashira pathway to afford $\mathrm{FpC} \equiv \mathrm{C}-\mathrm{Ar}$ in reasonable yields (Nakaya et al., 2009), the same reaction of o-pyridylacetylene did not result in the Sonogashira alkynylation product, but afforded the binuclear complex FePd1 where the metal atoms are bridged through the carbonyl and pyridylvinylidene ligands, the pyridyl nitrogen atom being bound to the palladium atom. Although additional experimental and probably theoretical studies are needed to reveal the true reaction pathway, one can assume the formation of FePd1 to be caused by the
following successive steps in the palladium coordination sphere: (i) the oxidation addition of FpI at the Fe -I bond, (ii) the acetylene-vinylidene rearrangement of the π-pyridylacetylene ligand followed by (iii) insertion of the $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Fe}-$ fragment into the $\mathrm{Pd}=\mathrm{C}$ bond and accompanied by (iv) formation of the bridging carbonyl group and the $\mathrm{Pd}-\mathrm{N}$ bond (Fig. 1, pathway A). Presumably, it is the $\mathrm{Pd}-\mathrm{N}$ bond that efficiently stabilizes FePd1, thereby favoring pathway A. This stabilization cannot occur in the case of reactions of arylacetylenes, and the typical Sonogashira reaction proceeds via the formation of a pyridylethynyl complex followed by the Fe-C-reductive elimination (Sonogashira, 1998) (Fig. 1, pathway B).

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 2. The iron atom is coordinated by the cyclopentadienyl ligand [the $\mathrm{Fe}-\mathrm{C}$ distances lie between 2.075 (3) and 2.128 (3) \AA and the $\mathrm{Fe}-\mathrm{Cp}$ centroid distance is 1.731 (1) \AA] and to two carbonyl ligands, one of which is terminal [the $\mathrm{Fe} 1-\mathrm{C} 1-\mathrm{O} 1$ angle is $177.6(3)^{\circ}$] and the second one is bridging to the palladium atom [the $\mathrm{Fe} 1-\mathrm{C} 2-\mathrm{O} 2$ and $\mathrm{O} 2-$

Figure 2
The molecular structure of complex FePd1 with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The benzene solvent molecule is omitted.
$\mathrm{C} 2-\mathrm{Pd} 1$ angles are 141.7 (2) and 137.0 (2) $)^{\circ}$, respectively, and the $\mathrm{Fe} 1-\mathrm{C} 2$ and $\mathrm{Pd} 1-\mathrm{C} 2$ distances are 1.942 (3) \AA and 2.012 (3) \AA, respectively]. In addition, the iron and palladium atoms are linked through the bridging pyridylvinylidene fragment coordinated by the C3 atom. The four-membered ring $\mathrm{Fe} 1-\mathrm{C} 2-\mathrm{Pd} 1-\mathrm{C} 3$ thereby formed is folded slightly by 11.61 (14) ${ }^{\circ}$ along the $\mathrm{Fe} 1 \cdots \mathrm{Pd} 1$ line with a short metal-metal distance of 2.5779 (4) \AA [for comparison the values of the covalent radii for these metals are $r(\mathrm{Fe})=1.32, r(\mathrm{Pd})=1.39 \AA$; Cordero et al., 2008]. The Fe1-C3 distance of 1.836 (3) \AA is noticeably longer compared to the analogous distances in mononuclear iron vinylidene complexes: for example, $1.744(4) \AA \quad$ in $\quad\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})(=\mathrm{C}=\mathrm{CHPh})$ (Adams et al., 1999) and 1.744 (9) \AA in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Fe}(\mathrm{CO})$ $(\mathrm{TMS})(=\mathrm{C}=\mathrm{C}(\mathrm{TMS}) \mathrm{Ph})$ (Kalman et al., 2014), and the $\mathrm{Fe} 1-\mathrm{C} 3-\mathrm{C} 4$ angle of 156.9 (2) ${ }^{\circ}$ is noticeably deviated from linearity. At the same time, the $\mathrm{Pd} 1-\mathrm{C} 3-\mathrm{C} 4$ angle is $118.58(19)^{\circ}$, which suggests an unsymmetrical coordination of the C3 atom to the iron and palladium atoms. This asymmetry can be explained by the η^{2}-coordination of the $\mathrm{Fe}=\mathrm{C}$ double bond to the palladium atom. It is noteworthy that in $\mathrm{Fe}-M$ type binuclear μ_{2}-vinylidene complexes, the coordination to the metal atoms is characterized by approximately equal values for the $\mathrm{Fe}-\mathrm{C}-\mathrm{C}$ and $M-\mathrm{C}-\mathrm{C}$ angles [131.8-145.3 according to a CCDC (Groom et al., 2016) search]. The C3C4 distance of 1.328 (4) \AA in the vinylidene fragment corresponds with typical $\mathrm{C}=\mathrm{C}$ double-bond lengths in olefins. Besides coordination to C 3 , the palladium atom binds to the pyridylvinylidene fragment via the nitrogen atom of the pyridine ring to a five-membered chelating ring (the ring is almost planar and the maximum deviation from the mean plane is $0.02 \AA$ for atoms C3 and C4). The iodine atom completes the coordination sphere of the 16 -electron palladium atom, which corresponds to a slightly distorted squareplanar geometry [the dihedral angle between the N1/Pd1/C3 and $\mathrm{I} 1 / \mathrm{Pd} / \mathrm{C} 2$ planes is $3.2(1)^{\circ}$].

3. Supramolecular features

In the crystal, the complexes form centrosymmetrical dimers (Fig. 3) due to π-stacking interactions between the pyridylvinylidene fragments with an interplanar distance of $3.36 \AA$ and a shortest interatomic $\mathrm{C} 5 \cdots \mathrm{C} 9(1-x,-y,-z)$ distance of 3.339 (4) \AA. The outer plane of the pyridylvinylidene fragment in the dimer is additionally shielded by the solvating benzene molecule, which is oriented by one of its $\mathrm{C}-\mathrm{H}$ groups to the centroid a of the five-membered chelating palladacycle [the $\mathrm{C} 6 S-\mathrm{H} 6 S A \cdots C g 1$ distance is $2.67 \AA$; $C g 1$ is the centroid of the five-membered ring, the angle between the $C g 1 \cdots$ H6SA vector and the ring normal is 9.7°, and the $\mathrm{C} 6 S-\mathrm{H} 6 S A \cdots C g 1$ angle is 160°].

4. Synthesis and crystallization

A mixture of $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{FeI}(127.3 \mathrm{mg}, 0.419 \mathrm{mmol})$ and PdCl_{2} $(76 \mathrm{mg}, 0.429 \mathrm{mmol})$ in diisopropyl amine (4 ml) was heated to 315 K and $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}\left(2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)(0.3 \mathrm{ml})$ was added. The mixture was stirred for 16 h at 333 K and the diisopropyl amine was removed under reduced pressure. The crude mixture was extracted with dichloromethane, the extract was filtered through celite, and the solvent was evaporated to dryness. The residue was dissolved in a dichloromethanehexane (1:1) mixture and chromatographed on a silica column $(9.5 \times 1 \mathrm{~cm})$. A dark-yellow band was eluted with dichloromethane and the eluate was evaporated to yield $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Fe}\left(\mu-\mathrm{C}=\mathrm{CH}\left(2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) \mathrm{PdI}\right.$ (FePd1) $(29 \mathrm{mg}, 12 \%)$ as a brown solid. Red-brown crystals of the complex suitable for X-ray diffraction analysis were obtained after recrystallization

Figure 3
Centrosymmetric stacked dimer in the crystal packing. Atoms labelled with the suffix A are generated by the symmetry operation (1-x, -y, $-z$).
from a dichloromethane-benzene solvent mixture. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \nu / \mathrm{cm}^{-1}\right): 2028 s, 1880 s\left(v_{\mathrm{CO}}\right), 1600 m, 1584 m, 1548 m$, $1468 m\left(v_{\mathrm{C}=\mathrm{C}}\right.$ and $\left.v_{\mathrm{C}=\mathrm{N}}\right)$.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Atom H4 of the vinyl group was located in a difference Fourier map and refined freely. All other H atoms were fixed geometrically and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Funding information

Funding for this research was provided by: Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Region Science and Technology Support Fund (award No. 16-43-243078).

References

Adams, H., Broughton, S. G., Walters, S. J. \& Winter, M. J. (1999). Chem. Commun. pp. 1231-1232.
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chou, H.-H., Lin, Y.-C., Huang, Sh.-L., Liu, Y.-H. \& Wang, Y. (2008). Organometallics, 27, 5212-5220.
Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. \& Alvarez, S. (2008). Dalton Trans. pp. 2832-2838.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Kalman, S. E., Gunnoe, T. B. \& Sabat, M. (2014). Organometallics, 33, 5457-5463.
Le Stang, S., Lenz, D., Paul, F. \& Lapinte, C. (1999). J. Organomet. Chem. 572, 189-192.
Nakaya, R., Yasuda, S., Yorimitsu, H. \& Oshima, K. (2009). Tetrahedron Lett. pp. 5274-5276.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Table 1
Experimental details.

Crystal data	
Chemical formula	$\underset{\mathrm{C}_{6} \mathrm{H}_{6}}{\left[\mathrm{FeP}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{I}(\mathrm{CO})_{2}\right]-}$
$M_{\text {r }}$	591.49
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	100
$a, b, c(\AA)$	14.3058 (8), 9.0983 (5), 14.7315 (8)
$\beta{ }^{\circ}$)	100.553 (1)
$V\left(\mathrm{~A}^{3}\right)$	1885.00 (18)
Z	4
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	3.38
Crystal size (mm)	$0.24 \times 0.18 \times 0.08$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}, T_{\text {max }}$	0.578, 0.774
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	23041, 5501, 5075
$R_{\text {int }}$	0.023
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.703
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.026, 0.066, 1.15
No. of reflections	5501
No. of parameters	239
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.74, -0.81

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97 and SHELXTL (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

Sonogashira, K. (1998). Metal-Catalyzed Cross-Coupling Reactions, edited by F. Diederich \& P. J. Stang, ch. 5. New York: Wiley-VCH. Valyaev, D. A., Peterleitner, M. G., Semeikin, O. V., Utegenov, K. I., Ustynyuk, N. A., Sournia-Saquet, A., Lugan, N. \& Lavigne, G. (2007). J. Organomet. Chem. 692, 3207-3211.

Wu, I.-Y., Lin, J. T., Luo, J., Sun, S.-S., Li, C.-S., Lin, K. J., Tsai, C., Hsu, C.-C. \& Lin, J.-L. (1997). Organometallics, 16, 2038-2048.

supporting information

Acta Cryst. (2017). E73, 68-71 [https://doi.org/10.1107/S2056989016019915]
Crystal structure of μ-carbonyl- $1: 2 \kappa^{2} C$:C-carbonyl- $1 \kappa C$ - $\left(1 \eta^{5}\right.$-cyclo-pentadienyl)iodido-2 κ l-[μ-2-(pyridin-2-yl)ethene-1,1-diyl- $1 \kappa C^{1}: 2 \kappa^{2} N, C^{1}$]ironpalladium $(F e-P d)$ benzene monosolvate

Victor V. Verpekin, Arkadii Z. Kreindlin, Oleg V. Semeikin, Alexander F. Smol'yakov, Fedor M. Dolgushin, Oleg S. Chudin and Nikolai A. Ustynyuk

Computing details

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
μ-Carbonyl-1:2 $\kappa^{2} C: C$-carbonyl- $1 \kappa C-\left(1 \eta^{5}\right.$-cyclopentadienyl)iodido-2 κI - $[\mu$-2-(pyridin-2-yl)ethene-1,1-
diyl- $\left.1 \kappa C^{1}: 2 \kappa^{2} N, C^{1}\right]$ ironpalladium $(F e-P d)$ benzene monosolvate

Crystal data

$\left[\mathrm{FePd}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{I}(\mathrm{CO})_{2}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{6}$
$M_{r}=591.49$
Monoclinic, $P 2{ }_{1} / c$
$a=14.3058$ (8) \AA
$b=9.0983$ (5) \AA
$c=14.7315$ (8) \AA
$\beta=100.553(1)^{\circ}$
$V=1885.00(18) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.578, T_{\text {max }}=0.774$
23041 measured reflections
$F(000)=1136$
$D_{\mathrm{x}}=2.084 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9930 reflections
$\theta=2.6-33.2^{\circ}$
$\mu=3.38 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, red-brown
$0.24 \times 0.18 \times 0.08 \mathrm{~mm}$

5501 independent reflections
5075 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=1.5^{\circ}$
$h=-20 \rightarrow 20$
$k=-12 \rightarrow 12$
$l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.066$
$S=1.15$
5501 reflections

239 parameters

0 restraints

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement

supporting information

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0294 P)^{2}+3.6027 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=1.74 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.81 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Pd1	0.30724 (2)	0.14951 (2)	0.06141 (2)	0.01181 (5)
Fel	0.25581 (3)	0.41750 (4)	0.02367 (3)	0.01291 (7)
I1	0.29779 (2)	-0.05920 (2)	0.18779 (2)	0.01770 (5)
O1	0.43529 (15)	0.5582 (2)	0.10253 (15)	0.0230 (4)
O2	0.23406 (14)	0.3136 (2)	0.20723 (14)	0.0190 (4)
N1	0.37283 (15)	0.0155 (2)	-0.03060 (15)	0.0140 (4)
C1	0.36439 (19)	0.5038 (3)	0.07341 (18)	0.0162 (5)
C2	0.25372 (17)	0.3042 (3)	0.13501 (18)	0.0149 (4)
C3	0.32265 (18)	0.2919 (3)	-0.03820 (17)	0.0145 (4)
C4	0.36562 (18)	0.2467 (3)	-0.10583 (17)	0.0154 (5)
H4	0.376 (3)	0.311 (4)	-0.156 (3)	0.020 (9)*
C5	0.39136 (18)	0.0925 (3)	-0.10481 (17)	0.0148 (4)
C6	0.43071 (19)	0.0223 (3)	-0.17359 (18)	0.0178 (5)
H6A	0.4448	0.0770	-0.2244	0.021*
C7	0.44904 (19)	-0.1271 (3)	-0.16727 (19)	0.0196 (5)
H7A	0.4746	-0.1763	-0.2141	0.024*
C8	0.42948 (19)	-0.2043 (3)	-0.09119 (19)	0.0192 (5)
H8A	0.4414	-0.3069	-0.0853	0.023*
C9	0.39229 (19)	-0.1283 (3)	-0.02432 (19)	0.0169 (5)
H9A	0.3801	-0.1805	0.0281	0.020*
C10	0.11143 (19)	0.3898 (3)	-0.0416 (2)	0.0211 (5)
H10A	0.0767	0.2940	-0.0511	0.025*
C11	0.1632 (2)	0.4550 (3)	-0.1039 (2)	0.0213 (5)
H11A	0.1706	0.4153	-0.1654	0.026*
C12	0.2014 (2)	0.5884 (3)	-0.0635 (2)	0.0222 (6)
H12A	0.2398	0.6603	-0.0925	0.027*
C13	0.1717 (2)	0.6070 (3)	0.0232 (2)	0.0248 (6)
H13A	0.1859	0.6933	0.0655	0.030*
C14	0.1163 (2)	0.4836 (3)	0.0370 (2)	0.0230 (6)
H14A	0.0853	0.4656	0.0915	0.028*
C1S	-0.1486 (2)	0.1192 (3)	0.2145 (2)	0.0238 (6)
H1SA	-0.2048	0.1147	0.2400	0.029*
C2S	-0.0785 (2)	0.2217 (3)	0.2473 (2)	0.0237 (6)
H2SA	-0.0870	0.2876	0.2951	0.028*
C3S	0.0040 (2)	0.2276 (3)	0.2099 (2)	0.0245 (6)
H3SA	0.0518	0.2980	0.2321	0.029*

C4S	$0.0165(2)$	$0.1307(4)$	$0.1402(2)$	$0.0261(6)$
H4SA	0.0733	0.1334	0.1155	0.031^{*}
C5S	$-0.0544(2)$	$0.0301(4)$	$0.1070(2)$	$0.0272(6)$
H5SA	-0.0469	-0.0347	0.0583	0.033^{*}
C6S	$-0.1363(2)$	$0.0238(3)$	$0.1447(2)$	$0.0242(6)$
H6SA	-0.1842	-0.0464	0.1224	0.029^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	$0.01461(9)$	$0.00833(8)$	$0.01273(9)$	$0.00015(6)$	$0.00316(6)$	$0.00055(6)$
Fe1	$0.01464(16)$	$0.00873(15)$	$0.01475(16)$	$0.00053(12)$	$0.00109(13)$	$0.00039(12)$
I1	$0.02540(9)$	$0.01143(8)$	$0.01803(9)$	$-0.00009(6)$	$0.00861(6)$	$0.00256(6)$
O1	$0.0235(10)$	$0.0192(10)$	$0.0246(10)$	$-0.0048(8)$	$-0.0001(8)$	$0.0015(8)$
O2	$0.0224(9)$	$0.0154(9)$	$0.0191(9)$	$0.0037(7)$	$0.0035(7)$	$-0.0003(7)$
N1	$0.0162(9)$	$0.0120(9)$	$0.0140(9)$	$0.0002(8)$	$0.0033(7)$	$-0.0005(7)$
C1	$0.0212(12)$	$0.0108(11)$	$0.0165(11)$	$0.0006(9)$	$0.0033(9)$	$0.0024(9)$
C2	$0.0140(10)$	$0.0106(10)$	$0.0195(11)$	$-0.0002(8)$	$0.0014(9)$	$-0.0010(9)$
C3	$0.0162(11)$	$0.0103(10)$	$0.0161(11)$	$-0.0004(8)$	$0.0004(9)$	$0.0027(9)$
C4	$0.0182(11)$	$0.0147(11)$	$0.0133(11)$	$-0.0015(9)$	$0.0030(9)$	$0.0025(9)$
C5	$0.0152(11)$	$0.0157(11)$	$0.0133(11)$	$-0.0021(9)$	$0.0019(9)$	$-0.0002(9)$
C6	$0.0191(11)$	$0.0185(12)$	$0.0160(11)$	$-0.0005(10)$	$0.0038(9)$	$-0.0003(9)$
C7	$0.0201(12)$	$0.0192(12)$	$0.0201(12)$	$0.0020(10)$	$0.0048(10)$	$-0.0056(10)$
C8	$0.0207(12)$	$0.0141(12)$	$0.0224(13)$	$0.0023(9)$	$0.0030(10)$	$-0.0033(10)$
C9	$0.0188(11)$	$0.0126(11)$	$0.0195(12)$	$0.0000(9)$	$0.0044(9)$	$0.0003(9)$
C10	$0.0171(12)$	$0.0157(12)$	$0.0280(14)$	$-0.0008(9)$	$-0.0029(10)$	$0.0020(10)$
C11	$0.0205(12)$	$0.0232(13)$	$0.0178(12)$	$0.0037(10)$	$-0.0027(10)$	$0.0022(10)$
C12	$0.0230(13)$	$0.0136(12)$	$0.0273(14)$	$0.0019(10)$	$-0.0027(11)$	$0.0092(10)$
C13	$0.0246(13)$	$0.0135(12)$	$0.0327(15)$	$0.0083(10)$	$-0.0042(11)$	$-0.0032(11)$
C14	$0.0177(12)$	$0.0275(14)$	$0.0233(13)$	$0.0080(11)$	$0.0026(10)$	$0.0002(11)$
C1S	$0.0204(13)$	$0.0207(13)$	$0.0311(15)$	$0.0027(10)$	$0.0065(11)$	$0.0073(11)$
C2S	$0.0275(14)$	$0.0209(13)$	$0.0229(13)$	$0.0016(11)$	$0.0046(11)$	$0.0003(11)$
C3S	$0.0231(13)$	$0.0216(13)$	$0.0278(14)$	$-0.0055(11)$	$0.0023(11)$	$-0.0022(11)$
C4S	$0.0245(14)$	$0.0274(15)$	$0.0283(15)$	$-0.0056(11)$	$0.0100(11)$	$-0.0025(12)$
C5S	$0.0352(16)$	$0.0223(14)$	$0.0255(14)$	$-0.0081(12)$	$0.0094(12)$	$-0.0041(11)$
C6S	$0.0227(13)$	$0.0206(13)$	$0.0280(14)$	$-0.0041(11)$	$0.0008(11)$	$0.0045(11)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Pd1- C 3	$1.999(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.387(4)$
$\mathrm{Pd} 1-\mathrm{C} 2$	$2.012(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9500
$\mathrm{Pd} 1-\mathrm{N} 1$	$2.161(2)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9500
$\mathrm{Pd} 1-\mathrm{Fe} 1$	$2.5779(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.411(4)$
$\mathrm{Pd} 1-\mathrm{H} 1$	$2.6800(3)$	$\mathrm{C} 10-\mathrm{C} 14$	$1.430(4)$
$\mathrm{Fe} 1-\mathrm{C} 1$	$1.775(3)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	1.0000
$\mathrm{Fe} 1-\mathrm{C} 3$	$1.836(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.416(4)$
$\mathrm{Fe} 1-\mathrm{C} 2$	$1.942(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	1.0000
$\mathrm{Fe} 1-\mathrm{C} 12$	$2.075(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.428(5)$

Fe1-C13	2.102 (3)
Fe1-C11	2.119 (3)
Fe1-C14	2.128 (3)
Fe1-C10	2.128 (3)
$\mathrm{O} 1-\mathrm{C} 1$	1.140 (3)
O2-C2	1.152 (3)
N1-C9	1.337 (3)
N1-C5	1.365 (3)
C3-C4	1.328 (4)
C4-C5	1.449 (4)
C4-H4	0.97 (4)
C5-C6	1.400 (4)
C6-C7	1.384 (4)
C6-H6A	0.9500
C7-C8	1.394 (4)
C7-H7A	0.9500
C3-Pd1-C2	92.66 (10)
C3-Pd1-N1	77.66 (9)
C2—Pd1-N1	169.95 (9)
C3-Pd1-Fe1	45.13 (7)
C2-Pd1-Fe1	48.15 (7)
N1—Pd1-Fe1	122.54 (6)
C3-Pd1-I1	174.36 (7)
C2—Pd1-I1	92.79 (7)
N1—Pd1-I1	96.83 (6)
Fel-Pd1-I1	140.469 (12)
C1-Fe1-C3	89.11 (12)
$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{C} 2$	91.94 (11)
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{C} 2$	100.29 (11)
$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{C} 12$	97.17 (12)
C3-Fe1-C12	109.26 (12)
C2-Fe1-C12	149.12 (12)
C1-Fe1-C13	95.50 (12)
C3-Fe1-C13	149.20 (12)
C2-Fe1-C13	109.93 (12)
C12-Fe1-C13	39.97 (13)
C1-Fe1-C11	130.76 (12)
C3-Fe1-C11	87.59 (11)
C2-Fe1-C11	136.91 (11)
C12-Fel-C11	39.46 (11)
C13-Fe1-C11	66.44 (12)
C1-Fe1-C14	126.99 (12)
C3-Fe1-C14	143.55 (12)
C2-Fe1-C14	84.98 (11)
C12-Fe1-C14	66.00 (12)
C13-Fe1-C14	38.94 (12)
C11-Fe1-C14	65.88 (11)

$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	1.0000
$\mathrm{C} 13-\mathrm{C} 14$	$1.410(4)$
$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	1.0000
$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	1.0000
C1S—C6S	$1.381(5)$
C1S-C2S	$1.389(4)$
C1S—H1SA	0.9500
C2S-C3S	$1.392(4)$
C2S—H2SA	0.9500
C3S-C4S	$1.389(4)$
C3S—H3SA	0.9500
C4S-C5S	$1.388(4)$
C4S-H4SA	0.9500
C5S-C6S	$1.386(4)$
C5S-H5SA	0.9500
C6S—H6SA	0.9500

124.7 (2)
119.7 (3)
120.1
120.1
119.0 (2)
120.5
120.5
118.6 (2)
120.7
120.7
122.7 (2)
118.6
118.6
108.8 (3)
70.25 (15)
70.36 (15)
125.6
125.6
125.6
107.2 (3)
70.95 (16)
68.61 (15)
126.4
126.4
126.4
108.8 (3)
71.93 (16)
71.03 (16)
125.6
125.6
125.6

C1-Fe1-C10	160.54 (11)
C3-Fe1-C10	104.63 (11)
C2-Fe1-C10	98.91 (11)
C12-Fe1-C10	65.54 (11)
C13-Fe1-C10	65.65 (11)
C11-Fe1-C10	38.80 (11)
C14-Fe1-C10	39.26 (11)
C1—Fe1-Pd1	97.81 (8)
C3-Fe1-Pd1	50.52 (8)
C2-Fe1—Pd1	50.48 (7)
C12—Fel—Pd1	154.42 (9)
C13-Fe1—Pd1	156.51 (10)
C11-Fe1-Pd1	116.79 (8)
C14-Fe1-Pd1	118.88 (9)
C10-Fe1-Pd1	101.57 (8)
C9-N1-C5	119.3 (2)
C9-N1-Pd1	128.13 (18)
C5-N1-Pd1	112.53 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Fe} 1$	177.6 (3)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{Fe} 1$	141.7 (2)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{Pd} 1$	137.0 (2)
Fe1-C2-Pd1	81.37 (10)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Fe} 1$	156.9 (2)
C4-C3-Pd1	118.58 (19)
Fe1-C3-Pd1	84.35 (10)
C3-C4-C5	116.3 (2)
C3-C4-H4	122 (2)
C5-C4-H4	121 (2)
N1-C5-C6	120.5 (2)
N1-C5-C4	114.8 (2)

$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$107.5(3)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{Fe} 1$	$71.51(16)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{Fe} 1$	$68.99(16)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	126.2
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	126.2
$\mathrm{Fe} 1-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	126.2
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 10$	$107.7(3)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{Fe} 1$	$69.55(16)$
$\mathrm{C} 10-\mathrm{C} 14-\mathrm{Fe} 1$	$70.37(16)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	126.1
$\mathrm{C} 10-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	126.1
Fe1-C14-H14A	126.1
C6S-C1S-C2S	$120.0(3)$
C6S-C1S-H1SA	120.0
C2S-C1S-H1SA	120.0
C1S-C2S-C3S	$119.9(3)$
C1S-C2S-H2SA	120.1
C3S-C2S-H2SA	120.1
C4S-C3S-C2S	$120.1(3)$
C4S-C3S-H3SA	120.0
C2S-C3S-H3SA	120.0
C5S-C4S-C3S	$119.6(3)$
C5S-C4S-H4SA	120.2
C3S-C4S-H4SA	120.2
C6S-C5S-C4S	$120.2(3)$
C6S-C5S-H5SA	119.9
C4S-C5S-H5SA	119.9
C1S-C6S-C5S	$120.2(3)$
C1S-C6S-H6SA	119.9
C5S-C6S-H6SA	119.9

