CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 9 September 2016
Accepted 18 October 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; 1,8-naphthyridine $\mathrm{BF}_{2}$ complex; hydrogen bonding.

CCDC reference: 1510400

Supporting information: this article has supporting information at journals.iucr.org/e

open 〇 access

# Crystal structure of 9-(dibromomethyl)-1,1-di-fluoro-3,7-dimethyl-1H-[1,3,5,2]oxadiaza-borinino[3,4-a][1,8]naphthyridin-11-ium-1-uide 

Bang Zhong Wang, Jun Ping Zhou, Yong Zhou, Jian Song Luo and Shao Ming Chi*

College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China. *Correspondence e-mail: chishaoming@gmail.com

The molecule of the title 1,8-naphthyridine- $\mathrm{BF}_{2}$ derivative, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BBr}_{2} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}$, is located on a mirror plane running parallel to the entire ring system and the attached methyl C atoms. Individual molecules are stacked along the $b$-axis direction. The cohesion in the crystal structure is accomplished by $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds and additional off-set $\pi-\pi$ interactions [centroid-to-centroid distance $=3.6392$ (9) $\AA$, slippage $0.472 \AA$ ], leading to the formation of a threedimensional supramolecular network.

## 1. Chemical context

1,8-Naphthyridines are one of the most widely studied naphthyridine derivatives (Quan et al., 2012). They can exhibit diverse coordination modes and have excellent optical properties or biological activities. They are also widely employed in the synthesis of metal complexes, e.g. for the identification of small molecules (Liang et al., 2012; Tanaka et al., 2012) or metal cations (Liu et al., 2014), as luminescent materials and in biomedical fields (Eweas et al., 2014; Di Braccio et al., 2014). $\mathrm{BF}_{2}$ compounds based on 1,8-naphthyridine ligands are used as fluorescent dyes due to their high fluorescence quantum yields (Zheng et al., 2015) and high photochemical stabilities. Their characteristic absorption and emission spectra (Wu et al., 2013; Li et al., 2010) can be applied in many fields, such as cell imaging, as molecular probes, solar cells and so on (Boens et al., 2012; Loudet \& Burgess, 2007). However, only a few $\mathrm{BF}_{2}$ compounds based on the 1,8 -naphthyridine moiety have been described in the literature. In view of their importance, the title compound, 9-(dibromomethyl)-1,1-difluoro-3,7-dime-thyl-1H-[1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridin-11-ium-1-uide, was synthesized and structurally characterized by single crystal X-ray diffraction.



Figure 1
The molecular structure of the title compound, with displacement ellipsoids drawn at the $50 \%$ probability level. [Symmetry code: (A) $x$, $-y+\frac{1}{2}, z$.]

## 2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The 1,8 -naphthyridine ring system is fused with a mixed difluororoxadiazaborinino unit. The entire oxadiazaborininonaphthyridine ring system is planar due to its location on a mirror plane running parallel to the ring system. In addition, the C atoms of the two methyl groups ( C 8 and C 1 ) as well as the C atom (C12) of the dibromomethyl group are located on the mirror plane, hence only two pairs of the methyl H atoms, the two Br atoms and the two F atoms are above and below this plane. The $\mathrm{F} 1-\mathrm{B} 1-\mathrm{F} 1^{\mathrm{i}}$ and $\mathrm{Br} 1^{\mathrm{i}}-$ $\mathrm{C} 12-\mathrm{Br} 1$ angles [symmetry code: (i) $x,-y+\frac{1}{2}, z$ ] are 113.6 (7) and 110.3 (3) ${ }^{\circ}$, and the distances of the Br and F atoms to the plane are 1.5916 (6) and 1.141 (3) A, respectively. The individual $\mathrm{F}-\mathrm{B}$ bond length is 1.364 (5) $\AA$ and the $\mathrm{Br}-\mathrm{C}$ bond length 1.940 (4) $\AA$. Compared with the molecular structure of


Figure 2
A view along the $a$ axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{~F} 1^{\mathrm{i}}$ | 0.96 | 2.41 | $3.163(6)$ | 135 |

Symmetry code: (i) $-x+\frac{1}{2},-y, z+\frac{1}{2}$.
a related compound (Wu et al., 2012), the difference between the $\mathrm{F} 1-\mathrm{B} 1-\mathrm{F} 1^{\mathrm{i}}$ angles is $2.16^{\circ}$, while the bond lengths and angles in the oxadiazaborine ring moiety of the two structures are almost the same.

## 3. Supramolecular features

In the crystal structure of the title compound, the molecules are stacked along the $b$-axis direction and linked into a threedimensional network through $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds involving one of the methyl groups as acceptor H atoms (Fig. 2, Table 1). The cohesion in this network is reinforced via off-set $\pi-\pi$ interactions [Cg2 $\cdots C g 2^{i}=3.6392$ (9) $\AA$, interplanar distance $=3.6085$ (1) $\AA$, slippage $=0.472 \AA ; C g 2$ is the centroid of the $\mathrm{N} 2 / \mathrm{C} 3-\mathrm{C} 6 / \mathrm{C} 11$ ring; symmetry code: (i) $-x,-\frac{1}{2}+y$, $2-z]$ (Fig. 3).

## 4. Database survey

Owing to the shortage of $\mathrm{BF}_{2}$ compounds based on 1,8 naphthyridine derivatives, there are only a few examples of similar compounds in the literature. A search of the Cambridge Structural Database (CSD version 5.37; August 19, 2016; Groom et al., 2016) revealed the structure of another very similar compound, viz. [ $N$-(5,7-dimethyl-1,8-naphthyr-idin-2-yl)ethanimidato](difluoro)borate (CSD code MONGED; Du et al., 2014).


Figure 3
A view along the $b$ axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

## 5. Synthesis and crystallization

$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2 \mathrm{ml}, 16 \mathrm{mmol})$ was added dropwise to an icecooled solution of 2,6 -lutidine $(1 \mathrm{ml})$ and $N$ - [7-(dibromo-methyl)-5-methyl-1,8-naphthyridin-2-yl]acetamide $\quad(0.37 \mathrm{~g}$, 1 mmol ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$ under a nitrogen atmosphere. After the mixture had been stirred for 24 h under ambient temperature, the reaction was quenched with 20 ml distilled water. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $3 \times 50 \mathrm{ml}$ ); the organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The residue was purified by silica gel chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to give the pure product as a bright white powder (yield $0.19 \mathrm{~g}, 45 \%$ ). Yellow crystals of the title compound were obtained from its $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution by slow evaporation at room temperature.

## 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions and included in the final cycles of refinement using a riding-model approximation with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

## Acknowledgements

Support from 'Spring Sunshine' Plan of the Ministry of Education of China (grant No. Z2011125) and the National Natural Science Foundation of China (grant No. 21262049) is gratefully acknowledged.

## References

Boens, N., Leen, V. \& Dehaen, W. (2012). Chem. Soc. Rev. 41, 11301172.

Di Braccio, M., Grossi, G., Alfei, S., Ballabeni, V., Tognolini, M., Flammini, L., Giorgio, C., Bertoni, S. \& Barocelli, E. (2014). Eur. J. Med. Chem. 86, 394-405.
Du, M. L., Hu, C. Y., Wang, L. F., Li, C., Han, Y. Y., Gan, X., Chen, Y., Mu, W. H., Huang, M. L. \& Fu, W. F. (2014). Dalton Trans. 43, 13924-13931.
Eweas, A. F., Khalifa, N. M., Ismail, N. S., Al-Omar, M. A. \& Soliman, A. M. M. (2014). Med. Chem. Res. 23, 76-86.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Li, H. J., Fu, W. F., Li, L., Gan, X., Mu, W. H., Chen, W. Q., Duan, X. M. \& Song, H. B. (2010). Org. Lett. 12, 2924-2927.

Table 2
Experimental details.
Crystal data

| Chemical formula | $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BBr}_{2} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}$ |
| :---: | :---: |
| $M_{\text {r }}$ | 420.86 |
| Crystal system, space group | Orthorhombic, Pnma |
| Temperature (K) | 293 |
| $a, b, c(\AA)$ | 17.161 (3), 7.2169 (14), 11.678 (2) |
| $V\left(\AA^{3}\right)$ | 1446.3 (5) |
| Z | 4 |
| Radiation type | Mo $K \alpha$ |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 5.63 |
| Crystal size (mm) | $0.32 \times 0.30 \times 0.28$ |
| Data collection |  |
| Diffractometer | Rigaku R-AXIS RAPID |
| Absorption correction | $\begin{aligned} & \text { Multi-scan (ABSCOR; Higashi, } \\ & \text { 1995) } \end{aligned}$ |
| $T_{\text {min }}, T_{\text {max }}$ | 0.266, 0.302 |
| No. of measured, independent and observed $[I>2 \sigma(I)$ ] reflections | 13517, 1765, 937 |
| $R_{\text {int }}$ | 0.139 |
| $(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$ | 0.647 |
| Refinement |  |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | 0.054, 0.120, 0.95 |
| No. of reflections | 1765 |
| No. of parameters | 122 |
| H -atom treatment | H-atom parameters constrained |
| $\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$ | 0.50, -0.37 |

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2006), SHELXS97, SHELXL97 and XP in SHELXTL (Sheldrick, 2008).

Liang, F., Lindsay, S. \& Zhang, P. (2012). Org. Biomol. Chem. 10, 8654-8659.
Liu, X. J., Chen, M. X., Liu, Z. P., Yu, M. M., Wei, L. H. \& Li, Z. X. (2014). Tetrahedron, 70, 658-663.

Loudet, A. \& Burgess, K. (2007). Chem. Rev. 107, 4891-4932.
Quan, L., Chen, Y., Lv, X. J. \& Fu, W. F. (2012). Chem. Eur. J. 18, 14599-14604.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tanaka, K., Murakami, M., Jeon, J.-H. \& Chujo, Y. (2012). Org. Biomol. Chem. 10, 90-95.
Wu, Y. Y., Chen, Y., Gou, G. Z., Mu, W. H., Lv, X. J., Du, M. L. \& Fu, W. F. (2012). Org. Lett. 14, 5226-5229.

Wu, Y. Y., Chen, Y., Mu, W. H., Lv, X. J. \& Fu, W. F. (2013). J. Photochem. Photobiol. Chem. 272, 73-79.
Zheng, J., Huang, F., Li, Y. J., Xu, T. W., Xu, H., Jia, J. H., Ye, Q. \& Gao, J. R. (2015). Dyes Pigments, 113, 502-509.

## supporting information

Acta Cryst. (2016). E72, 1642-1644 [https://doi.org/10.1107/S2056989016016704]

## Crystal structure of 9-(dibromomethyl)-1,1-difluoro-3,7-di-

 methyl-1 H-[1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridin-11-ium-1-uide
## Bang Zhong Wang, Jun Ping Zhou, Yong Zhou, Jian Song Luo and Shao Ming Chi

## Computing details

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

9-(Dibromomethyl)-1,1-difluoro-3,7-dimethyl-1H-[1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridin-11-ium-1uide

## Crystal data

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BBr}_{2} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}$
$M_{r}=420.86$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=17.161$ (3) A
$b=7.2169$ (14) $\AA$
$c=11.678$ (2) $\AA$
$V=1446.3(5) \AA^{3}$
$Z=4$

## Data collection

Rigaku R-AXIS RAPID diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega$ scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.266, T_{\text {max }}=0.302$
$F(000)=816$
$D_{\mathrm{x}}=1.933 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1765 reflections
$\theta=3.1-26.0^{\circ}$
$\mu=5.63 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, yellow
$0.32 \times 0.30 \times 0.28 \mathrm{~mm}$

13517 measured reflections
1765 independent reflections
937 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.139$
$\theta_{\text {max }}=27.4^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-22 \rightarrow 22$
$k=-8 \rightarrow 9$
$l=-15 \rightarrow 15$

## Refinement

Refinement on $F^{2} \quad$ Primary atom site location: structure-invariant
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.120$
$S=0.95$
1765 reflections
122 parameters
0 restraints direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0519 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.50 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.37$ e $\AA^{-3}$

Extinction correction: SHELXL, $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0042 (6)

## Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of $\mathrm{F}^{2}$ against ALL reflections. The weighted R -factor wR and goodness of fit S are based on $\mathrm{F}^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on $\mathrm{F}^{2}$ are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| Br1 | $0.11449(3)$ | $0.02946(8)$ | $0.57510(5)$ | $0.0624(3)$ |
| B1 | $0.1752(5)$ | 0.2500 | $0.9765(7)$ | $0.041(2)$ |
| F1 | $0.19639(16)$ | $0.0919(4)$ | $0.9205(3)$ | $0.0585(8)$ |
| N1 | $0.1041(4)$ | 0.2500 | $1.2022(6)$ | $0.0524(16)$ |
| N2 | $0.0835(3)$ | 0.2500 | $1.0005(5)$ | $0.0349(13)$ |
| N3 | $0.0640(3)$ | 0.2500 | $0.8049(5)$ | $0.0385(14)$ |
| O1 | $0.2143(3)$ | 0.2500 | $1.0882(5)$ | $0.0558(14)$ |
| C1 | $0.2326(5)$ | 0.2500 | $1.2869(8)$ | $0.063(2)$ |
| H1A | 0.2025 | 0.2500 | 1.3562 | $0.095^{*}$ |
| H1B | 0.2649 | 0.1414 | 1.2847 | $0.095^{*}$ |
| C2 | $0.1794(5)$ | 0.2500 | $1.1872(7)$ | $0.0450(19)$ |
| C3 | $0.0572(4)$ | 0.2500 | $1.1095(7)$ | $0.0408(18)$ |
| C4 | $-0.0249(5)$ | 0.2500 | $1.1303(8)$ | $0.055(2)$ |
| H4A | -0.0433 | 0.2500 | 1.2079 | $0.065^{*}$ |
| C5 | $-0.0760(4)$ | 0.2500 | $1.0421(8)$ | $0.049(2)$ |
| H5A | -0.1309 | 0.2500 | 1.0579 | $0.059^{*}$ |
| C6 | $-0.0513(4)$ | 0.2500 | $0.9274(8)$ | $0.0417(18)$ |
| C7 | $-0.1003(4)$ | 0.2500 | $0.8304(7)$ | $0.0435(19)$ |
| C8 | $-0.1880(4)$ | 0.2500 | $0.8438(8)$ | $0.060(2)$ |
| H8A | -0.2125 | 0.2500 | 0.7698 | $0.089^{*}$ |
| H8B | -0.2036 | 0.1414 | 0.8854 | $0.089^{*}$ |
| C9 | $-0.0662(4)$ | 0.2500 | $0.7256(7)$ | $0.0463(19)$ |
| H9A | -0.0981 | 0.2500 | 0.6580 | $0.056^{*}$ |
| C10 | $0.0160(4)$ | 0.2500 | $0.7152(7)$ | $0.0424(18)$ |
| C11 | $0.0314(4)$ | 0.2500 | $0.9079(6)$ | $0.0349(17)$ |
| C12 | $0.0518(4)$ | 0.2500 | $0.5979(7)$ | $0.050(2)$ |
| H12A | 0.0104 | 0.2500 | 0.05425 |  |
|  |  |  |  | $0.059^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Br1 | $0.0685(4)$ | $0.0646(4)$ | $0.0542(5)$ | $0.0055(3)$ | $0.0040(3)$ | $-0.0122(3)$ |


| B1 | $0.037(5)$ | $0.055(5)$ | $0.029(5)$ | 0.000 | $-0.010(4)$ | 0.000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| F1 | $0.0538(17)$ | $0.0646(18)$ | $0.057(2)$ | $0.0161(15)$ | $-0.0013(15)$ | $-0.0145(17)$ |
| N1 | $0.062(4)$ | $0.059(4)$ | $0.037(4)$ | 0.000 | $0.004(4)$ | 0.000 |
| N2 | $0.042(3)$ | $0.033(3)$ | $0.030(4)$ | 0.000 | $-0.002(3)$ | 0.000 |
| N3 | $0.040(3)$ | $0.044(3)$ | $0.032(4)$ | 0.000 | $0.000(3)$ | 0.000 |
| O1 | $0.055(3)$ | $0.076(4)$ | $0.036(4)$ | 0.000 | $-0.006(3)$ | 0.000 |
| C1 | $0.079(6)$ | $0.068(5)$ | $0.042(6)$ | 0.000 | $-0.016(5)$ | 0.000 |
| C2 | $0.073(6)$ | $0.031(4)$ | $0.031(5)$ | 0.000 | $-0.003(4)$ | 0.000 |
| C3 | $0.056(5)$ | $0.033(3)$ | $0.034(5)$ | 0.000 | $0.004(4)$ | 0.000 |
| C4 | $0.065(5)$ | $0.053(4)$ | $0.046(6)$ | 0.000 | $0.023(5)$ | 0.000 |
| C5 | $0.044(4)$ | $0.051(4)$ | $0.053(6)$ | 0.000 | $0.011(4)$ | 0.000 |
| C6 | $0.037(4)$ | $0.035(3)$ | $0.053(5)$ | 0.000 | $0.008(4)$ | 0.000 |
| C7 | $0.040(4)$ | $0.036(4)$ | $0.055(6)$ | 0.000 | $-0.002(4)$ | 0.000 |
| C8 | $0.036(4)$ | $0.063(5)$ | $0.080(7)$ | 0.000 | $0.004(4)$ | 0.000 |
| C9 | $0.047(4)$ | $0.047(4)$ | $0.045(6)$ | 0.000 | $-0.009(4)$ | 0.000 |
| C10 | $0.043(4)$ | $0.040(4)$ | $0.044(5)$ | 0.000 | $-0.004(4)$ | 0.000 |
| C11 | $0.046(4)$ | $0.024(3)$ | $0.035(5)$ | 0.000 | $0.004(3)$ | 0.000 |
| C12 | $0.046(4)$ | $0.063(5)$ | $0.039(6)$ | 0.000 | $-0.006(4)$ | 0.000 |

Geometric parameters ( $A,{ }^{\circ}$ )

| Br1-C12 | $1.940(4)$ | C4-C5 | $1.353(11)$ |
| :--- | :--- | :--- | :--- |
| B1-F1 | $1.364(5)$ | C4-H4A | 0.9600 |
| B1-F1 | $1.364(5)$ | C5-C6 | $1.406(11)$ |
| B1-O1 | $1.467(9)$ | C5-H5A | 0.9600 |
| B1-N2 | $1.599(10)$ | C6-C7 | $1.410(11)$ |
| N1-C2 | $1.303(9)$ | C6-C11 | $1.437(9)$ |
| N1-C3 | $1.349(9)$ | C7-C9 | $1.357(10)$ |
| N2-C3 | $1.351(9)$ | C7-C8 | $1.514(9)$ |
| N2-C11 | $1.403(9)$ | C8-H8A | 0.9600 |
| N3-C11 | $1.327(8)$ | C8-H8B | 0.9600 |
| N3-C10 | $1.332(9)$ | C9-C10 | $1.416(9)$ |
| O1-C2 | $1.302(9)$ | C9-H9A | 0.9600 |
| C1-C2 | $1.481(11)$ | C10-C12 | $1.501(10)$ |
| C1-H1A | 0.9600 | C12-Br1 | $1.940(4)$ |
| C1-H1B | 0.9600 | C12-H12A | 0.9600 |
| C3-C4 | $1.431(10)$ |  |  |
|  |  |  |  |
| F1-B1-F1 | $113.6(7)$ | C6-C5-H5A | 118.7 |
| F1-B1-O1 | $107.7(4)$ | C5-C6-C7 | $125.8(6)$ |
| F1-B1-O1 | $107.7(4)$ | C5-C6-C11 | $116.7(7)$ |
| F1-B1-N2 | $110.2(4)$ | C7-C6-C11 | $117.5(7)$ |
| F1-B1-N2 | $110.2(4)$ | C9-C7-C6 | $117.8(7)$ |
| O1-B1-N2 | $107.1(6)$ | C9-C7-C8 | $121.5(7)$ |
| C2-N1-C3 | $118.9(7)$ | C6-C7-C8 | $120.7(7)$ |
| C3-N2-C11 | $120.9(6)$ | C7-C8-H8A | 110.0 |
| C3-N2-B1 | $119.6(6)$ | C7-C8-H8B | 109.2 |
| C11-N2-B1 | $119.5(6)$ | H8A-C8-H8B | 109.5 |

supporting information

| $\mathrm{C} 11-\mathrm{N} 3-\mathrm{C} 10$ | $116.9(6)$ | $\mathrm{C} 7-\mathrm{C} 9-\mathrm{C} 10$ | $120.5(7)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 2-\mathrm{O} 1-\mathrm{B} 1$ | $125.4(6)$ | $\mathrm{C} 7-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$ | 119.7 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 109.3 | $\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$ | 119.8 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 109.5 | $\mathrm{~N} 3-\mathrm{C} 10-\mathrm{C} 9$ | $123.2(7)$ |
| $\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 109.5 | $\mathrm{~N} 3-\mathrm{C} 10-\mathrm{C} 12$ | $117.7(6)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 1$ | $125.2(7)$ | $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 12$ | $119.1(7)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$ | $120.4(8)$ | $\mathrm{N} 3-\mathrm{C} 11-\mathrm{N} 2$ | $115.5(6)$ |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$ | $114.4(7)$ | $\mathrm{N} 3-\mathrm{C} 11-\mathrm{C} 6$ | $124.0(7)$ |
| $\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 1$ | $123.9(7)$ | $\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 6$ | $120.5(7)$ |
| $\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$ | $119.2(7)$ | $\mathrm{C} 10-\mathrm{C} 12-\mathrm{Br} 1^{\mathrm{i}}$ | $110.6(3)$ |
| $\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$ | $116.9(7)$ | $\mathrm{C} 10-\mathrm{C} 12-\mathrm{Br} 1$ | $110.6(3)$ |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ | $120.7(8)$ | $\mathrm{Br} 1-\mathrm{C} 12-\mathrm{Br} 1$ | $110.3(3)$ |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 120.4 | $\mathrm{Cr} 10-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$ | 108.2 |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 119.0 | $\mathrm{Br} 1-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A} 12 \mathrm{~A}$ | 108.5 |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $122.0(7)$ |  | 108.5 |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$ | 119.3 |  |  |

Symmetry code: (i) $x,-y+1 / 2, z$.
Hydrogen-bond geometry (A, o)

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 1 — \mathrm{H} 1 B \cdots \mathrm{~F} 1^{\mathrm{ii}}$ | 0.96 | 2.41 | $3.163(6)$ | 135 |

Symmetry code: (ii) $-x+1 / 2,-y, z+1 / 2$.

