

Received 4 September 2016 Accepted 3 October 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; bis(imino)pyridine ligand; pyridine-diimine; redox-active; iron; radical anion.

CCDC reference: 1507934

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 1-phenylimido-1- $\{6-[1-(phenyl-imino)ethyl]pyridin-2-yl\}$ ethan-1-yl- $\kappa^3 N, N', N''$)-iron(II)

Ka-Cheong Lau, Alexander S. Filatov and Richard F. Jordan*

Department of Chemistry, The University of Chicago, 5735 South Ellis ave, Chicago, II 60637, USA. *Correspondence e-mail: rfjordan@uchicago.edu

The title iron complex, $[Fe(C_{21}H_{19}N_3)_2]$, consists of an Fe^{II} atom chelated by two tridentate bis(imino)pyridine radical anions in a slightly distorted octahedral coordination environment. In the solid state, there are two independent half-molecules in the asymmetric unit, and the complete molecular structure is formed by applying twofold rotation symmetry with the twofold rotation axis passing through an Fe atom. In the crystal, the Fe-containing complexes are not involved in any particular direct intermolecular interactions, with the shortest $C-H_{Ar}$ contacts between neighboring phenyl groups being *ca* 3.2 Å.

1. Chemical context

Transition metal complexes that contain bis(imino)pyridine ligands are highly active catalysts for olefin oligomerization and polymerization (Small et al., 1998; Britovsek et al., 1998, 1999; Small, 2015), and many other reactions (for example: Bart et al., 2004; Tondreau et al., 2012a,b; Obligacion & Chirik, 2013; Bouwkamp et al., 2006; Hoyt et al., 2015; Sylvester & Chirik, 2009). In pursuit of this chemistry, dicationic iron(II) complexes that are chelated by two neutral bis(imino)pyridine ligands have been synthesized and characterized by X-ray diffraction (for example: de Bruin et al., 2000; Ionkin et al., 2006). However, until recently, neutral {bis(imino)pyridine]2Fe complexes were only generated in situ and characterized by cyclic voltammetry and electronic spectroscopy (de Bruin et al., 2000). Thus far, four neutral {bis(imino)pyridine}2Fe complexes that contain alkyl or functionalizedphenyl substituents on the imine nitrogen atoms have been crystallographically characterized (Wile et al., 2009). Here we report the crystal structure of a parent molecule of the class, $(PDI)_2Fe [PDI = 2,6-(C_6H_5-N=CMe)_2-C_5H_3N], 1.$

research communications

Schematic representation of the synthesis of **1**.

2. Structural commentary

Complex 1 was synthesized by reduction of (PDI)FeCl₂ with NaHBEt₃ (Fig. 1). Crystals of **1** suitable for X-ray diffraction were obtained from Et₂O solution. There are two independent molecules in the asymmetric unit (Fig. 2a). The whole molecular structure is formed by applying twofold rotation symmetry with the twofold rotation axis passing through an Fe atom (Fig. 2b). The two independent molecules have very similar bond lengths and angles except for the N(imine)-Fe bond lengths (Table 1). One molecule (Fe2) has two equivalent N(imine) – Fe bond lengths [2.155 (2), 2.157 (2) Å], while the other (Fe1) has two noticeably different N(imine)-Fe bond lengths [2.149 (2), 2.173 (2) Å] (Table 1). The C-C bond lengths in the pyridine and phenyl rings [1.380 (3)-1.401 (3) Å] and the C–N bond lengths in the pyridine rings [1.366 (3), 1.372 (3) Å] in the two molecules are very similar. The N(imine)-Fe-N(pyridine) angles in the two molecules are also similar $[73.85 (8)-75.01 (8)^{\circ}]$. The two chelate planes formed by (PDI)Fe units are almost perpendicular to each other, presumably to avoid steric congestion [92.05 (9) and 93.32 (8) for Fe1- and Fe2-containing complexes, respectively, and measured as a dihedral angle between two planes passing through three nitrogen atoms of the coordinating PDI ligand].

An analogue of **1** containing a *para*-methoxy substituent on the imine-phenyl ring, $\{2,6-(4-\text{MeO-C}_6H_4-\text{N}=CMe)_2-C_5H_3\text{N}\}_2\text{Fe}$ (**2**) was also crystallized with two independent molecules in the asymmetric unit (Wile *et al.*, 2009), and it is

Table 1Selected bond lengths (Å).

6 ()		
2.149 (2)	N3-C14	1.300 (3)
2.028 (2)	C7-C9	1.443 (4)
2.173 (2)	C13-C14	1.450 (4)
1.327 (3)	Fe2-N4	2.155 (2)
1.368 (3)	Fe2-N5	2.029 (2)
1.372 (3)	Fe2-N6	2.157 (2)
	2.149 (2) 2.028 (2) 2.173 (2) 1.327 (3) 1.368 (3) 1.372 (3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

interesting to compare the geometric parameters of **1** and **2**. As observed for **1**, the N(imine)—Fe bond lengths in one of the two independent molecules in the asymmetric unit of **2** are similar [2.1278 (19), 2.1481 (19) Å], while those in the other exhibit much greater disparity [2.1159 (19), 2.1711 (19) Å]. Although the electron-donating methoxy substituents of **2** are expected to render the imino nitrogens more basic than those in **1**, the N(imine)—Fe bond lengths in **1** and **2** are very similar [range for **1**: 2.149 (2) – 2.173 (2) Å; range for **2**: 2.1159 (19) – 2.1711 (19) Å].

Bis(imino)pyridine ligands are redox-active owing to the extensive π -conjugation (de Bruin *et al.*, 2000; Budzelaar *et al.*, 2001; Knijnenburg et al., 2006). Reduction of the ligand causes characteristic changes in bond lengths, as expected from the resonance structures of the mono-reduced ligand as shown in Fig. 3 (Bart et al., 2006). In particular, reduction by 1 e⁻ lengthens the C(imine) -N(imine) bond length from ca 1.28 to 1.32 Å and shortens the C(imine)-C(ipso) bond length from ca 1.50 to 1.44 Å. In the free ligand, the C(imine)-N(imine)and C(imine) - C(ipso) bond lengths are 1.266 (4) and 1.497 (5) Å (Mentes et al., 2001). The electronic structure of 2 was shown to consist of an Fe^{II} atom and two mono-reduced bis(imino)pyridine radical anions by Mössbauer spectroscopy, magnetic data, crystallographic data and broken-symmetry DFT calculations. The C(imine) – N(imine) [1.294 (3)– 1.327 (3) Å] and C(imine) – C(ipso) [1.440 (4)-1.456 (3) Å]bond lengths in 1 are close to those in 2 [C(imine) – N(imine)

Figure 2

(a) The asymmetric unit of 1, showing the two half-complexes and (b) the molecular structure of one of the complexed complexes (Fe1) with H atoms omitted for clarity and displacement ellipsoids shown at the 50% probability level.

Figure 3 Resonance structures of the mono-reduced ligand in 1.

= 1.306 (3)–1.313 (3) Å and C(imine)–C(ipso) = 1.432 (3)– 1.444 (3) Å], consistent with mono-reduced PDI ligands and an Fe^{II} atom as observed for **2**. cell. In the crystal, the Fe-containing complexes are not involved in any particular direct intermolecular interactions. The shortest $C \cdots H_{Ar}$ contacts with neighboring phenyl groups start at about 3.2 Å.

3. Supramolecular features

The structure crystallizes in the orthorhombic *Ccce* space group (No. 68) with rather large unit-cell parameters (*b* and *c* axes are both greater than 30 Å). Fig. 4 shows the crystal packing with Fe atoms forming a sub-lattice with $\simeq 1/4$ of the cell volume. The different relative orientation of ligands around the central Fe atoms leads to the obtained large unit

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, last update November 2015; Groom *et al.*, 2016) reveals several crystallographically characterized neutral iron(II) complexes that are chelated by two bis(imino)-pyridine radical anions [CSD refcodes: DUFCAJ, DUFBOW,

research communications

DUFCEN, DUFBUC (Wile *et al.*, 2009)]. Examples containing chromium [CSD refcode: OGUYOG (Wang *et al.*, 2015)] and molybdenum [CSD refcode: OGUYEW (Wang *et al.*, 2015)] have also been reported.

5. Synthesis and crystallization

Compound **1** was isolated from the attempted synthesis of (PDI)FeCl by reduction of (PDI)FeCl₂ with NaHBEt₃ in Et₂O. Et₂O (10 ml) was added to (PDI)FeCl₂ (0.113 g, 0.26 mmol) in a Schlenk flask to form a purple slurry. A solution of NaHBEt₃ in Et₂O (0.065 *M*, 4 ml, 0.26 mmol) was added dropwise at 238 K to the slurry. The mixture was warmed to room temperature (*ca* 293 K) for 1 h and evolved to a red slurry. The mixture was filtered and the filtrate was concentrated under vacuum to afford purple crystals of **1**, which were identified by X-ray crystallographic analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All carbon-bound H atoms were included in idealized positions for structure factor calculations $[C-H = 0.95-0.98 \text{ Å}, U_{iso}(H) \text{ set to } 1.2-1.5U_{eq}(C)].$

Acknowledgements

This work was supported by the University of Chicago Women's Board.

References

- Bart, S. C., Chłopek, K., Bill, E., Bouwkamp, M. W., Lobkovsky, E., Neese, F., Wieghardt, K. & Chirik, P. J. (2006). J. Am. Chem. Soc. 128, 13901–13912.
- Bart, S. C., Lobkovsky, E. & Chirik, P. J. (2004). J. Am. Chem. Soc. 126, 13794–13807.
- Bouwkamp, M. W., Bowman, A. C., Lobkovsky, E. & Chirik, P. J. (2006). J. Am. Chem. Soc. 128, 13340–13341.
- Britovsek, G. J. P., Bruce, M., Gibson, V. C., Kimberley, B. S., Maddox, P. J., Mastroianni, S., McTavish, S. J., Redshaw, C., Solan, G. A., Strömberg, S., White, A. J. P. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 8728–8740.
- Britovsek, G. J. P., Gibson, V. C., McTavish, S. J., Solan, G. A., White, A. J. P., Williams, D. J., Britovsek, G. J. P., Kimberley, B. S. & Maddox, P. J. (1998). *Chem. Commun.* pp. 849–850.
- Bruin, B. de, Bill, E., Bothe, E., Weyhermüller, T. & Wieghardt, K. (2000). *Inorg. Chem.* **39**, 2936–2947.
- Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Budzelaar, P. H. M., de Bruin, B., Gal, A. W., Wieghardt, K. & van Lenthe, J. H. (2001). *Inorg. Chem.* 40, 4649–4655.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hoyt, J. M., Schmidt, V. A., Tondreau, A. M. & Chirik, P. J. (2015). Science, 349, 960–963.

Table 2 Experimental details.	
Crystal data	- /
Chemical formula	$[Fe(C_{21}H_{19}N_3)_2]$
M _r	682.63
Crystal system, space group	Orthorhombic, Ccce
$\begin{array}{c} \text{Iemperature (K)} \\ a, b, c (\text{\AA}) \end{array}$	100 11.9028 (5), 32.2189 (14), 35.5223 (15)
$V(Å^3)$	13622.6 (10)
Z	16
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.48
Crystal size (mm)	$0.32\times0.24\times0.10$
Data collection	
Diffractometer	Bruker D8 Venture PHOTON 100 CMOS
Absorption correction	Multi-scan (SADABS; Bruker, 2014)
T_{\min}, T_{\max}	0.662, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	116689, 7006, 5821
R _{int}	0.062
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.626
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.128, 1.19
No. of reflections	7006
No. of parameters	447
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.66, -0.63

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

- Ionkin, A. S., Marshall, W. J., Adelman, D. J., Fones, B. B., Fish, B. M. & Schiffhauer, M. F. (2006). Organometallics, 25, 2978–2992.
- Knijnenburg, Q., Gambarotta, S. & Budzelaar, P. H. M. (2006). Dalton Trans. pp. 5442–5448.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mentes, A., Fawcett, J. & Kemmitt, R. D. W. (2001). Acta Cryst. E57, 0424–0425.
- Obligacion, J. V. & Chirik, P. (2013). Org. Lett. 15, 2680-2683.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Small, B. L. (2015). Acc. Chem. Res. 48, 2599–2611.
- Small, B. L., Brookhart, M. & Bennett, A. M. A. (1998). J. Am. Chem. Soc. 120, 4049–4050.
- Sylvester, K. T. & Chirik, P. J. (2009). J. Am. Chem. Soc. 131, 8772–8774.
- Tondreau, A. M., Atienza, C. C. H., Darmon, J. M., Milsmann, C., Hoyt, H. M., Weller, K. J., Nye, S. A., Lewis, K. M., Boyer, J., Delis, J. G. P., Lobkovsky, E. & Chirik, P. J. (2012b). Organometallics, **31**, 4886–4893.
- Tondreau, A. M., Atienza, C. C. H., Weller, K. J., Nye, S. A., Lewis, K. M., Delis, J. G. P. & Chirik, P. J. (2012a). Science, 335, 567–570.
- Wang, M., Weyhermüller, T. & Wieghardt, K. (2015). Eur. J. Inorg. Chem. pp. 3246–3254.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wile, B. M., Trovitch, R. J., Bart, S. C., Tondreau, A. M., Lobkovsky, E., Milsmann, C., Bill, E., Wieghardt, K. & Chirik, P. J. (2009). *Inorg. Chem.* 48, 4190–4200.

Acta Cryst. (2016). E72, 1595-1598 [https://doi.org/10.1107/S2056989016015528]

Crystal structure of 1-phenylimido-1-{6-[1-(phenylimino)ethyl]pyridin-2yl}ethan-1-yl- $\kappa^3 N, N', N''$)iron(II)

Ka-Cheong Lau, Alexander S. Filatov and Richard F. Jordan

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015*b*); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

1-Phenylimido-1-{6-[1-(phenylimino)ethyl]pyridin-2-yl}ethan-1-yl- $\kappa^3 N, N', N''$)iron(II)

Crystal data	
$[Fe(C_{21}H_{19}N_{3})_{2}]$ $M_{r} = 682.63$ Orthorhombic, <i>Ccce</i> a = 11.9028 (5) Å b = 32.2189 (14) Å c = 35.5223 (15) Å V = 13622.6 (10) Å ³ Z = 16 F(000) = 5728	$D_x = 1.331 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9834 reflections $\theta = 2.2-26.4^{\circ}$ $\mu = 0.48 \text{ mm}^{-1}$ T = 100 K Plate, dark violet $0.32 \times 0.24 \times 0.10 \text{ mm}$
Data collection	
 Bruker D8 Venture PHOTON 100 CMOS diffractometer Radiation source: INCOATEC ImuS microfocus source Mirrors monochromator Detector resolution: 10.4167 pixels mm⁻¹ ω and phi scans Absorption correction: multi-scan (SADABS; Bruker, 2014) 	$T_{\min} = 0.662, T_{\max} = 0.745$ 116689 measured reflections 7006 independent reflections 5821 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.062$ $\theta_{\text{max}} = 26.4^{\circ}, \theta_{\text{min}} = 1.9^{\circ}$ $h = -14 \rightarrow 14$ $k = -40 \rightarrow 40$ $l = -44 \rightarrow 44$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.128$ S = 1.19 7006 reflections 447 parameters 0 restraints Primary atom site location: dual	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0365P)^2 + 50.0482P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.66$ e Å ⁻³ $\Delta\rho_{min} = -0.63$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Fe1	0.5000	0.7500	0.60614 (2)	0.01348 (13)
N1	0.37427 (17)	0.77288 (6)	0.56801 (6)	0.0146 (4)
N2	0.36620 (17)	0.71185 (6)	0.61341 (6)	0.0148 (4)
N3	0.55060 (18)	0.70451 (6)	0.64801 (6)	0.0166 (5)
C1	0.3933 (2)	0.80895 (8)	0.54604 (7)	0.0151 (5)
C2	0.4937 (2)	0.81186 (8)	0.52588 (7)	0.0189 (6)
H2	0.5457	0.7895	0.5264	0.023*
C3	0.5181 (2)	0.84716 (8)	0.50503 (8)	0.0195 (6)
H3	0.5861	0.8485	0.4911	0.023*
C4	0.4444 (2)	0.88047 (8)	0.50431 (8)	0.0205 (6)
H4	0.4614	0.9045	0.4899	0.025*
C5	0.3457 (2)	0.87820 (8)	0.52478 (8)	0.0220 (6)
Н5	0.2952	0.9010	0.5247	0.026*
C6	0.3199 (2)	0.84291 (8)	0.54545 (7)	0.0183 (5)
H6	0.2517	0.8418	0.5593	0.022*
C7	0.2742 (2)	0.75478 (8)	0.56928 (7)	0.0169 (5)
C8	0.1756 (2)	0.76466 (9)	0.54468 (8)	0.0231 (6)
H8A	0.1223	0.7820	0.5586	0.035*
H8B	0.1386	0.7388	0.5370	0.035*
H8C	0.2014	0.7796	0.5223	0.035*
C9	0.2667 (2)	0.72135 (8)	0.59619 (8)	0.0174 (5)
C10	0.1672 (2)	0.70106 (8)	0.60645 (8)	0.0230 (6)
H10	0.0983	0.7080	0.5945	0.028*
C11	0.1700 (2)	0.67089 (9)	0.63407 (9)	0.0245 (6)
H11	0.1029	0.6572	0.6414	0.029*
C12	0.2715 (2)	0.66062 (8)	0.65106 (8)	0.0210 (6)
H12	0.2747	0.6393	0.6695	0.025*
C13	0.3675 (2)	0.68179 (8)	0.64075 (7)	0.0168 (5)
C14	0.4765 (2)	0.67718 (8)	0.65847 (7)	0.0174 (5)
C15	0.4957 (2)	0.64459 (9)	0.68814 (8)	0.0243 (6)
H15A	0.5765	0.6418	0.6929	0.036*
H15B	0.4655	0.6180	0.6794	0.036*
H15C	0.4577	0.6528	0.7114	0.036*
C16	0.6627 (2)	0.70349 (8)	0.66146 (7)	0.0182 (5)
C17	0.7394 (3)	0.67610 (9)	0.64561 (8)	0.0255 (6)
H17	0.7143	0.6560	0.6279	0.031*
C18	0.8519 (3)	0.67774 (10)	0.65533 (9)	0.0319 (7)
H18	0.9033	0.6586	0.6445	0.038*
C19	0.8899 (3)	0.70702 (10)	0.68070 (10)	0.0335 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H19	0.9674	0.7084	0.6871	0.040*
C20	0.8139 (3)	0.73426 (10)	0.69674 (9)	0.0325 (7)
H20	0.8393	0.7543	0.7144	0.039*
C21	0.7009 (3)	0.73262 (9)	0.68734 (8)	0.0264 (6)
H21	0.6495	0.7515	0.6986	0.032*
Fe2	0.2500	0.5000	0.64429 (2)	0.01289 (13)
N4	0.12861 (18)	0.52706 (6)	0.68203 (6)	0.0157 (4)
N5	0.10938 (18)	0.46510 (6)	0.63800 (6)	0.0146 (4)
N6	0.29045 (18)	0.45369 (6)	0.60258 (6)	0.0160 (4)
C22	0.1573 (2)	0.56140 (8)	0.70498 (7)	0.0165 (5)
C23	0.2584 (2)	0.55886 (8)	0.72503 (7)	0.0188 (5)
H23	0.3041	0.5348	0.7225	0.023*
C24	0.2929(2)	0.59069 (8)	0.74837 (8)	0.0225 (6)
H24	0.3605	0.5879	0.7623	0.027*
C25	0.2294(2)	0.62673 (9)	0.75159 (8)	0.0236 (6)
H25	0.2529	0.6486	0.7677	0.028*
C26	0.1311(2)	0.63013 (8)	0 73093 (8)	0.0229(6)
H26	0.0877	0.6548	0.7326	0.0225 (0)
C27	0.0946(2)	0.59791 (8)	0.70769 (8)	0.027
027 Н27	0.0271	0.6008	0.6937	0.0201 (0)
C28	0.0271 0.0248 (2)	0.51224 (8)	0.68000 (7)	0.024 0.0163 (5)
C29	-0.0753(2)	0.51221(0) 0.52709(9)	0.00000(7) 0.70198(8)	0.0103(6)
H29A	-0.0498	0.5432	0.7238	0.0252 (0)
H29R	-0.1190	0.5031	0.7256	0.038*
H20C	-0.1224	0.5446	0.6859	0.038*
C30	0.1224 0.0117(2)	0.3440 0.47772 (8)	0.0859 0.65463(7)	0.038 0.0170(5)
C31	-0.0002(2)	0.4772(0) 0.45885(8)	0.64529 (8)	0.0170(5)
U31	-0.1579	0.45885 (8)	0.6568	0.0211 (0)
C32	-0.0925(2)	0.42601 (0)	0.61025 (8)	0.025
UJ2 H32	-0.1617	0.42091 (9)	0.6129	0.0241 (0)
C33	0.1017	0.4139	0.60236 (8)	0.029
U22	0.0070 (2)	0.41580 (8)	0.00230 (8)	0.0212 (0)
C34	0.0071 0.1056 (2)	0.3310 0.43407(8)	0.5646	0.025°
C34	0.1030(2) 0.2122(2)	0.43407(8)	0.01172(7) 0.50220(7)	0.0139(3)
C36	0.2133(2) 0.2250(2)	0.42730(8) 0.30306(0)	0.59329(7) 0.56407(8)	0.0101(3)
U26A	0.2239 (2)	0.39390 (9)	0.5407 (8)	0.0223 (0)
П30А Ц26Р	0.1913	0.4031	0.5405	0.033*
H36C	0.1009	0.3080	0.5728	0.033*
П30С С27	0.3039	0.3004	0.3399 0.58710 (7)	0.033°
C37	0.4000(2)	0.43207(8)	0.38710(7)	0.0178(3)
C30	0.4604 (2)	0.42575 (9)	0.00131 (9)	0.0204 (0)
П38 С20	0.4393	0.4034	0.0194	0.032°
U39	0.3910(3)	0.42820 (10)	0.38929 (10)	0.0300 (8)
П 39 С 40	0.0431	0.4094	0.3990	0.043^{*}
	0.0233 (3)	0.45784 (10)	0.50551 (10)	0.0362 (8)
H4U C41	0.0997	0.4399	0.5550	0.0224 (7)
U41	0.5452 (3)	0.48455 (10)	0.54870(9)	0.0324 (7)
H41	0.3042	0.304/	0.5305	0.039*
C42	0.4326 (2)	0.48196 (9)	0.56043 (8)	0.0233 (6)

H42	0.3782	0.	5003	0.5502	0.028*	
Atomic displacement parameters $(Å^2)$						
	U^{11}	U^{22}	<i>U</i> ³³	U^{12}	U^{13}	U^{23}
Fe1	0.0106 (2)	0.0120 (2)	0.0179 (3)	-0.00086 (19)	0.000	0.000
N1	0.0102 (10)	0.0139 (10)	0.0197 (11)	0.0024 (8)	-0.0003 (8)	-0.0004 (9)
N2	0.0115 (10)	0.0120 (10)	0.0210 (11)	-0.0015 (8)	0.0005 (8)	-0.0009 (8)
N3	0.0149 (11)	0.0154 (11)	0.0194 (11)	0.0006 (9)	-0.0002 (9)	0.0012 (9)
C1	0.0151 (13)	0.0135 (12)	0.0166 (12)	-0.0002 (10)	-0.0038 (10)	-0.0016 (10)
C2	0.0190 (13)	0.0157 (12)	0.0218 (14)	0.0002 (11)	-0.0017 (11)	-0.0009 (11)
C3	0.0148 (13)	0.0206 (13)	0.0231 (14)	-0.0023 (11)	0.0020 (11)	-0.0007 (11)
C4	0.0219 (14)	0.0163 (13)	0.0234 (14)	-0.0011 (11)	-0.0051 (11)	0.0033 (11)
C5	0.0268 (15)	0.0160 (13)	0.0231 (14)	0.0051 (11)	-0.0076 (12)	-0.0016 (11)
C6	0.0173 (13)	0.0180 (13)	0.0195 (13)	0.0021 (11)	-0.0031 (10)	-0.0023 (10)
C7	0.0133 (12)	0.0144 (12)	0.0229 (13)	0.0005 (10)	-0.0015 (10)	-0.0027 (10)
C8	0.0154 (13)	0.0231 (14)	0.0307 (15)	-0.0027 (11)	-0.0060 (11)	0.0029 (12)
C9	0.0140 (13)	0.0151 (12)	0.0232 (14)	0.0007 (10)	0.0005 (10)	-0.0027 (10)
C10	0.0150 (13)	0.0198 (13)	0.0342 (16)	0.0016 (11)	-0.0037 (12)	0.0000 (12)
C11	0.0156 (14)	0.0202 (14)	0.0376 (17)	-0.0058 (11)	0.0060 (12)	0.0019 (12)
C12	0.0176 (14)	0.0169 (13)	0.0285 (15)	-0.0014 (10)	0.0049 (11)	0.0031 (11)
C13	0.0158 (13)	0.0134 (12)	0.0211 (13)	0.0004 (10)	0.0017 (10)	0.0001 (10)
C14	0.0185 (14)	0.0136 (12)	0.0200 (13)	0.0010 (10)	0.0019 (10)	0.0007 (10)
C15	0.0204 (14)	0.0265 (15)	0.0259 (14)	-0.0016 (12)	-0.0016 (12)	0.0095 (12)
C16	0.0172 (13)	0.0171 (13)	0.0202 (13)	-0.0036 (10)	-0.0024 (10)	0.0070 (10)
C17	0.0252 (15)	0.0243 (14)	0.0271 (15)	0.0012 (12)	0.0004 (12)	0.0013 (12)
C18	0.0180 (15)	0.0352 (17)	0.0423 (18)	0.0016 (13)	-0.0011 (13)	0.0077 (15)
C19	0.0189 (15)	0.0325 (17)	0.049 (2)	-0.0028 (13)	-0.0091 (14)	0.0144 (15)
C20	0.0326 (17)	0.0264 (15)	0.0385 (18)	-0.0112 (13)	-0.0160 (14)	0.0052 (13)
C21	0.0310 (16)	0.0194 (14)	0.0286 (15)	0.0013 (12)	-0.0071 (13)	0.0032 (12)
Fe2	0.0107 (2)	0.0120 (2)	0.0160 (3)	-0.0018 (2)	0.000	0.000
N4	0.0151 (11)	0.0149 (10)	0.0171 (11)	0.0001 (8)	-0.0001 (9)	0.0002 (9)
N5	0.0135 (11)	0.0132 (10)	0.0171 (11)	-0.0028 (8)	-0.0001 (8)	0.0004 (8)
N6	0.0163 (11)	0.0145 (10)	0.0173 (11)	0.0005 (9)	0.0004 (9)	0.0000 (9)
C22	0.0166 (13)	0.0171 (12)	0.0157 (12)	-0.0052 (10)	0.0056 (10)	-0.0002 (10)
C23	0.0177 (13)	0.0174 (13)	0.0212 (14)	-0.0019 (11)	0.0031 (11)	-0.0019 (11)
C24	0.0204 (14)	0.0246 (14)	0.0226 (14)	-0.0050 (12)	0.0012 (11)	-0.0014 (12)
C25	0.0259 (15)	0.0192 (13)	0.0257 (14)	-0.0047 (12)	0.0055 (12)	-0.0066 (12)
C26	0.0255 (15)	0.0154 (13)	0.0277 (15)	0.0020 (11)	0.0117 (12)	-0.0027 (11)
C27	0.0184 (13)	0.0206 (14)	0.0211 (13)	-0.0019 (11)	0.0048 (11)	0.0012 (11)
C28	0.0087 (12)	0.0189 (13)	0.0212 (13)	-0.0001 (10)	0.0018 (10)	0.0008 (11)
C29	0.0168 (14)	0.0267 (15)	0.0320 (16)	-0.0031 (11)	0.0057 (12)	-0.0091 (12)
C30	0.0133 (12)	0.0171 (12)	0.0206 (13)	-0.0008 (10)	0.0011 (10)	0.0021 (11)
C31	0.0112 (13)	0.0215 (14)	0.0305 (15)	0.0008 (11)	0.0021 (11)	-0.0007 (12)
C32	0.0169 (14)	0.0226 (14)	0.0327 (16)	-0.0058 (11)	-0.0046 (12)	-0.0011 (12)
C33	0.0230 (14)	0.0177 (13)	0.0228 (14)	-0.0026 (11)	-0.0015 (11)	-0.0026 (11)
C34	0.0182 (13)	0.0135 (12)	0.0159 (12)	-0.0004 (10)	-0.0016 (10)	0.0019 (10)
C35	0.0172 (13)	0.0150 (12)	0.0163 (12)	0.0001 (10)	-0.0015 (10)	-0.0002 (10)

C36	0.0194 (14)	0.0229 (14)	0.0246 (14)	-0.0020(11)	0.0011 (11)	-0.0071(12)
C37	0.0174 (13)	0.0133 (12)	0.0204 (13)	-0.0019(10)	0.0012 (11)	0.0015 (13)
C38	0.0186 (15)	0.0249 (15)	0.0358 (17)	-0.0002(11)	0.0018 (12)	
C39	0.0168 (15)	0.0318 (17)	0.059 (2)	0.0034 (13)	0.0021 (15)	-0.0043 (16)
C40	0.0194 (15)	0.0300 (17)	0.059 (2)	-0.0070 (13)	0.0152 (15)	-0.0159 (16)
C41	0.0331 (17)	0.0243 (15)	0.0399 (18)	-0.0087 (13)	0.0187 (14)	-0.0054 (14)
C42	0.0226 (15)	0.0195 (13)	0.0280 (15)	0.0003 (11)	0.0067 (12)	-0.0030 (12)

Geometric parameters (Å, °)

2.149 (2)	Fe2—N4	2.155 (2)
2.149 (2)	Fe2—N4 ⁱⁱ	2.155 (2)
2.028 (2)	Fe2—N5 ⁱⁱ	2.029 (2)
2.028 (2)	Fe2—N5	2.029 (2)
2.173 (2)	Fe2—N6 ⁱⁱ	2.157 (2)
2.173 (2)	Fe2—N6	2.157 (2)
1.418 (3)	N4—C22	1.416 (3)
1.327 (3)	N4—C28	1.327 (3)
1.368 (3)	N5-C30	1.366 (3)
1.372 (3)	N5—C34	1.368 (3)
1.300 (3)	N6—C35	1.294 (3)
1.418 (3)	N6—C37	1.422 (3)
1.396 (4)	C22—C23	1.400 (4)
1.401 (4)	C22—C27	1.397 (4)
0.9500	С23—Н23	0.9500
1.388 (4)	C23—C24	1.381 (4)
0.9500	C24—H24	0.9500
1.386 (4)	C24—C25	1.390 (4)
0.9500	С25—Н25	0.9500
1.383 (4)	C25—C26	1.385 (4)
0.9500	С26—Н26	0.9500
1.388 (4)	C26—C27	1.395 (4)
0.9500	С27—Н27	0.9500
1.497 (4)	C28—C29	1.502 (4)
1.443 (4)	C28—C30	1.440 (4)
0.9800	С29—Н29А	0.9800
0.9800	С29—Н29В	0.9800
0.9800	С29—Н29С	0.9800
1.401 (4)	C30—C31	1.397 (4)
0.9500	С31—Н31	0.9500
1.382 (4)	C31—C32	1.384 (4)
0.9500	С32—Н32	0.9500
1.390 (4)	C32—C33	1.393 (4)
0.9500	С33—Н33	0.9500
1.381 (4)	C33—C34	1.383 (4)
1.450 (4)	C34—C35	1.456 (4)
1.505 (4)	C35—C36	1.501 (4)
0.9800	C36—H36A	0.9800
	2.149 (2) 2.149 (2) 2.028 (2) 2.028 (2) 2.173 (2) 2.173 (2) 1.418 (3) 1.327 (3) 1.368 (3) 1.372 (3) 1.300 (3) 1.418 (3) 1.396 (4) 1.401 (4) 0.9500 1.388 (4) 0.9500 1.388 (4) 0.9500 1.388 (4) 0.9500 1.388 (4) 0.9500 1.388 (4) 0.9500 1.388 (4) 0.9500 1.388 (4) 0.9500 1.497 (4) 1.443 (4) 0.9800 0.9800 0.9800 1.382 (4) 0.9500 1.382 (4) 0.9500 1.381 (4) 1.450 (4) 1.505 (4) 0.9800	2.149(2)Fe2—N4 $2.149(2)$ Fe2—N4" $2.028(2)$ Fe2—N5" $2.028(2)$ Fe2—N5 $2.173(2)$ Fe2—N6" $2.173(2)$ Fe2—N6 $1.418(3)$ N4—C22 $1.327(3)$ N4—C28 $1.368(3)$ N5—C30 $1.372(3)$ N5—C34 $1.300(3)$ N6—C35 $1.418(3)$ N6—C37 $1.396(4)$ C22—C23 $1.401(4)$ C22—C27 0.9500 C23—H23 $1.388(4)$ C23—C24 0.9500 C24—H24 $1.386(4)$ C24—C25 0.9500 C25—H25 $1.383(4)$ C26—C27 0.9500 C26—H26 $1.388(4)$ C28—C29 $1.443(4)$ C28—C29 $1.443(4)$ C28—C29 $1.443(4)$ C28—C29 $1.443(4)$ C28—C30 0.9800 C29—H29A 0.9800 C29—H29B 0.9800 C29—H29C $1.401(4)$ C31—C32 0.9500 C3—H33 $1.381(4)$ C3—C34 $1.450(4)$ C34—C35 $1.505(4)$ C35—C36 0.9800 C36—H36A

C15—H15B	0.9800	С36—Н36В	0.9800
C15—H15C	0.9800	С36—Н36С	0.9800
C16—C17	1.389 (4)	C37—C38	1.382 (4)
C16—C21	1.390 (4)	C37—C42	1.391 (4)
С17—Н17	0.9500	C38—H38	0.9500
C17 $C18$	1.384(4)	C_{38} C_{39}	1 386 (4)
$C_{1}^{1} = C_{18}^{10}$	0.0500	C30 H30	0.0500
	0.9300	C39—H39	0.9300
	1.381 (5)	C39—C40	1.382 (5)
С19—Н19	0.9500	C40—H40	0.9500
C19—C20	1.384 (5)	C40—C41	1.387 (5)
C20—H20	0.9500	C41—H41	0.9500
C20—C21	1.386 (4)	C41—C42	1.383 (4)
C21—H21	0.9500	C42—H42	0.9500
$N1$ —Fe1— $N1^{1}$	101.86 (11)	N4—Fe2—N4 ⁿ	103.07 (11)
N1 ⁱ —Fe1—N3	90.40 (8)	N4—Fe2—N6 ⁱⁱ	89.87 (8)
N1—Fe1—N3	148.84 (8)	N4—Fe2—N6	148.95 (8)
N1—Fe1—N3 ⁱ	90.40 (8)	N4 ⁱⁱ —Fe2—N6 ⁱⁱ	148.95 (8)
N1 ⁱ —Fe1—N3 ⁱ	148.84 (8)	N4 ⁱⁱ —Fe2—N6	89.87 (8)
N2—Fe1—N1 ⁱ	114.79 (8)	N5 ⁱⁱ —Fe2—N4 ⁱⁱ	74.91 (8)
N2 ⁱ —Fe1—N1	114.79 (8)	N5 ⁱⁱ —Fe2—N4	113.41 (8)
N2—Fe1—N1	75.01 (8)	$N5$ —Fe2— $N4^{ii}$	113 41 (8)
$N2^{i}$ Fe1 $N1^{i}$	75.01 (8)	$N5 = Fe^2 = N4$	74 91 (8)
$N2^{i}$ Eq. $N2$	165 36 (12)	$N5^{ii}$ E_{2} $N5$	167.26(12)
N2 = Fc1 = N2i	105.50(12)	$N5 = F_2 = NC^{\dagger}$	107.30(12)
$N_2 = Fe_1 = N_2$	95.96 (8)	$N5 - Fe2 - N6^{\circ}$	97.10(8)
N2—Fe1—N3	73.84 (8)	N5—Fe2—N6	74.04 (8)
$N2^{1}$ —Fe1—N3	95.96 (8)	$N5^{n}$ —Fe2—N6 ⁿ	74.05 (8)
$N2^{i}$ —Fe1—N3 ⁱ	73.84 (8)	N5 ⁿ —Fe2—N6	97.10 (8)
$N3^{i}$ —Fe1—N3	93.62 (11)	N6—Fe2—N6 ⁱⁱ	93.24 (11)
C1—N1—Fe1	121.09 (16)	C22—N4—Fe2	120.83 (16)
C7—N1—Fe1	116.93 (17)	C28—N4—Fe2	116.42 (17)
C7—N1—C1	121.5 (2)	C28—N4—C22	122.5 (2)
C9—N2—Fe1	119.18 (17)	C30—N5—Fe2	119.30 (17)
C9—N2—C13	119.0 (2)	C30—N5—C34	119.0 (2)
C13—N2—Fe1	120.60 (17)	C34—N5—Fe2	120.49 (17)
C14—N3—Fe1	117 66 (18)	C35—N6—Fe2	118 10 (18)
C14 - N3 - C16	121 8 (2)	$C_{35} - N_{6} - C_{37}$	1227(2)
C_{16} N3 Eq.	121.0(2) 120.47(16)	C_{37} N6 E_{e2}	122.7(2)
$C_{10} = N_{10} = 101$	120.47(10) 118.3(2)	$C_{23} C_{22} N_{4}$	117.10(10)
$C_2 = C_1 = C_1$	110.3(2)	$C_{23} = C_{22} = N_4$	117.0(2)
$C_2 = C_1 = C_0$	118.5 (2)	$C_2/-C_{22}$ -N4	124.7 (2)
C6—C1—N1	123.3 (2)	C27—C22—C23	118.2 (2)
С1—С2—Н2	119.7	C22—C23—H23	119.4
C3—C2—C1	120.5 (2)	C24—C23—C22	121.1 (3)
С3—С2—Н2	119.7	С24—С23—Н23	119.4
С2—С3—Н3	119.6	C23—C24—H24	119.7
C4—C3—C2	120.8 (3)	C23—C24—C25	120.5 (3)
С4—С3—Н3	119.6	C25—C24—H24	119.7
C3—C4—H4	120.4	C24—C25—H25	120.6

C5—C4—C3	119.1 (3)	C26—C25—C24	118.8 (3)
C5—C4—H4	120.4	C26—C25—H25	120.6
C4—C5—H5	119.7	C25—C26—H26	119.4
C4—C5—C6	120.7 (3)	C25—C26—C27	121.1 (3)
С6—С5—Н5	119.7	C27—C26—H26	119.4
С1—С6—Н6	119.7	C22—C27—H27	120.0
C5—C6—C1	120.6 (3)	C26—C27—C22	120.1 (3)
С5—С6—Н6	119.7	C26—C27—H27	120.0
N1—C7—C8	126.2 (2)	N4—C28—C29	126.6 (2)
N1—C7—C9	114.0 (2)	N4—C28—C30	114.4 (2)
C9—C7—C8	119.8 (2)	C30—C28—C29	119.0 (2)
C7—C8—H8A	109.5	C28—C29—H29A	109.5
C7—C8—H8B	109.5	C28—C29—H29B	109.5
C7—C8—H8C	109.5	$C_{28} = C_{29} = H_{29}C_{29}$	109.5
H8A—C8—H8B	109.5	H29A—C29—H29B	109.5
H8A - C8 - H8C	109.5	H29A—C29—H29C	109.5
H8B - C8 - H8C	109.5	H29B-C29-H29C	109.5
$N^2 - C^9 - C^7$	1142(2)	N5-C30-C28	1141(2)
$N_{2} - C_{9} - C_{10}$	110.2(2) 120.8(2)	N5-C30-C31	110.1(2) 1204(2)
C_{10} C_{9} C_{7}	125.0(2)	$C_{31} - C_{30} - C_{28}$	125.1(2) 125.4(2)
C9-C10-H10	120.3	C_{30} C_{31} H_{31}	120.0
C_{11} C_{10} C_{9}	1195(3)	C_{32} C_{31} C_{30}	120.0(3)
$C_{11} - C_{10} - H_{10}$	120.3	$C_{32} = C_{31} = H_{31}$	120.0 (5)
C10-C11-H11	120.3	C31 - C32 - H32	120.0
C10-C11-C12	110.1	$C_{31} = C_{32} = C_{33}$	120.1 119.7(3)
C12 - C11 - H11	119.8 (5)	C_{33} C_{32} H_{32}	119.7 (3)
C11 - C12 - H12	120.1	C32—C33—H33	120.1
C_{13} C_{12} C_{11} C_{12} C_{11}	120.4 119 1 (2)	C_{34} C_{33} C_{32}	120.0 118.4(2)
$C_{13} = C_{12} = C_{11}$	119.1 (2)	$C_{34} = C_{33} = C_{32}$	110.4 (2)
$N_{2} = C_{12} = M_{2}$	120.4 121.8(2)	N5 C34 C33	120.8 122.4(2)
$N_2 = C_{13} = C_{12}$	121.0(2) 113.0(2)	N5 C34 C35	122.4(2) 112.8(2)
12 - C13 - C14	113.0(2) 125.1(2)	$C_{33}^{34} = C_{35}^{34}$	112.0(2) 124.6(2)
$N_{2} = C_{14} = C_{14}$	123.1(2) 114.4(2)	N6 C35 C34	124.0(2) 114.3(2)
$N_{2} = C_{14} = C_{15}$	114.4(2) 124.7(2)	NG C25 C26	114.3(2) 125.1(2)
13 - C14 - C15	124.7(2) 120.7(2)	C_{24} C_{25} C_{26}	123.1(2) 120.4(2)
$C_{13} - C_{14} - C_{15}$	120.7 (2)	C_{25} C_{26} U_{26A}	120.4 (2)
C14 $C15$ $U15D$	109.5	C_{25} C_{26} H_{26} H_{26}	109.5
С14—С15—Н15С	109.5	С35—С36—Н36В	109.5
H_{15} H_{15} H_{15}	109.5	$C_{33} - C_{30} - H_{30}C$	109.5
HI5A = C15 = H15C	109.5	НЗбА С26 Ц26С	109.5
HISA-CIS-HISC	109.5	НЗОА—СЗО—НЗОС	109.5
HI3D - CI3 - HI3C	109.3	C_{28} C_{27} NG	109.5
C17 - C16 - N3	119.8(2)	$C_{38} = C_{37} = C_{42}$	120.3(2)
$C_1 / - C_{10} - C_{21}$	110.0(3)	$C_{42} = C_{27} = N_{42}$	119.1(3)
$C_{1} = C_{10} = N_{3}$	121.0 (3)	C42 - C3 / - N0	120.1 (2)
C_{10} C_{17} C_{16}	119./	$C_{3}/-C_{3}$ C_{3} C_{3}	119.9
$C_{18} = C_{17} = U_{17}$	120.7 (3)	$C_{3}/-C_{3}S-C_{3}S$	120.3 (3)
	119./	C39—C38—H38	119.9
C1/C18H18	119.8	C38—C39—H39	119.6

C19—C18—C17	120.4 (3)	C40—C39—C38	120.8 (3)
C19—C18—H18	119.8	C40—C39—H39	119.6
С18—С19—Н19	120.4	C39—C40—H40	120.5
C18—C19—C20	119.2 (3)	C39—C40—C41	119.0 (3)
C_{20} C_{19} H_{19}	120.4	C41 - C40 - H40	120.5
C_{19} C_{20} H_{20}	119.6	C40-C41-H41	119.8
C_{19} C_{20} C_{21}	120.8 (3)	C40 - C41 - C40	119.0 120.4(3)
$C_{11}^{21} C_{20}^{20} H_{20}^{21}$	120.8 (5)	$C_{42} = C_{41} = C_{40}$	110.9
$C_{21} - C_{20} - H_{20}$	119.0	$C_{42} = C_{41} = \Pi_{41}$	119.8
$C_{10} = C_{21} = C_{16}$	119.9 120.1(2)	$C_{3} = C_{42} = C_{42} = C_{42}$	117.0 120.5(2)
$C_{20} = C_{21} = C_{10}$	120.1 (5)	C41 - C42 - C37	120.3 (3)
C20—C21—H21	119.9	С41—С42—п42	119.8
Fe1—N1—C1—C2	49.0 (3)	Fe2—N4—C22—C23	-47.6 (3)
Fe1—N1—C1—C6	-126.8(2)	Fe2—N4—C22—C27	129.6 (2)
Fe1—N1—C7—C8	-178.0(2)	Fe2—N4—C28—C29	-177.2(2)
Fe1-N1-C7-C9	-12(3)	$Fe^2 - N4 - C^28 - C^{30}$	47(3)
$Fe1_N2_C9_C7$	97(3)	$Fe^2 = N5 = C_30 = C_28$	-89(3)
$F_{e1} = N_2 = C_2 = C_1 $	-166.8(2)	$F_{e2} = N5 = C30 = C20$	168.2(2)
$F_{e1} = N_2 = C_{10} = C_{10}$	167.8(2)	$F_{e2} = N5 = C34 = C33$	-160.2(2)
$F_{e1} = N_2 = C_{13} = C_{12}$	-85(3)	$F_{2} = N_{5} = C_{34} = C_{35}$	60(3)
Fe1 = N2 = C13 = C14	-6.3(3)	Fe2 = N5 = C34 = C35	0.0(3)
FeI = N3 = C14 = C15	-1.3(3)	Fe2 = N6 = C35 = C34	2.0(3)
FeI = N3 = C14 = C13	-1/7.3(2)	Fe2 = NG = C35 = C30	1/8.1(2)
FeI—N3—C16—C17	-96.2 (3)	Fe2 - N6 - C37 - C38	96.8 (3)
FeI—N3—C16—C21	76.4 (3)	Fe2 - N6 - C37 - C42	-75.9 (3)
N1—C1—C2—C3	-177.7 (2)	N4—C22—C23—C24	-179.5 (2)
N1—C1—C6—C5	176.9 (2)	N4—C22—C27—C26	-179.3 (2)
N1—C7—C9—N2	-5.2 (3)	N4—C28—C30—N5	2.3 (3)
N1—C7—C9—C10	171.1 (3)	N4—C28—C30—C31	-174.6 (3)
N2-C9-C10-C11	-0.5 (4)	N5-C30-C31-C32	0.5 (4)
N2-C13-C14-N3	5.9 (3)	N5—C34—C35—N6	-5.4 (3)
N2-C13-C14-C15	-177.7 (2)	N5—C34—C35—C36	178.9 (2)
N3—C16—C17—C18	172.8 (3)	N6-C37-C38-C39	-172.3 (3)
N3-C16-C21-C20	-172.3 (3)	N6-C37-C42-C41	171.9 (3)
C1—N1—C7—C8	9.8 (4)	C22—N4—C28—C29	-3.0 (4)
C1—N1—C7—C9	-173.4 (2)	C22—N4—C28—C30	178.9 (2)
C1—C2—C3—C4	1.1 (4)	C22—C23—C24—C25	-2.1(4)
C2-C1-C6-C5	1.1 (4)	C23—C22—C27—C26	-2.2(4)
C2—C3—C4—C5	0.1 (4)	C23—C24—C25—C26	-0.1(4)
C3—C4—C5—C6	-0.8(4)	C24—C25—C26—C27	1.0 (4)
C4—C5—C6—C1	0.2 (4)	C25—C26—C27—C22	0.1 (4)
C6-C1-C2-C3	-1.7(4)	C_{27} C_{22} C_{23} C_{24}	32(4)
C7 - N1 - C1 - C2	-1391(3)	C_{28} N4 C_{22} C23	1385(3)
C7-N1-C1-C6	45 1 (4)	C28—N4—C22—C27	-443(4)
C7-C9-C10-C11	-176.6(3)	C_{28} C_{30} C_{31} C_{32}	177 3 (3)
$C_{8} C_{7} C_{9} N_{2}$	171.9(2)	$C_{20} = C_{30} = C_{30} = C_{32}$	-1750(3)
$C_{8} = C_{7} = C_{9} = C_{10}$	-11.8(4)	C_{29} C_{28} C_{30} C_{31}	72(A)
$C_0 = C_1 $	0.7(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-25(4)
C_{2} N2 C_{12} C_{14}	$-175 \in (2)$	$C_{30} = 13 = C_{34} = C_{35}$	2.3(4)
U7-1N2-U13-U14	-1/3.0(2)	U3U-IN3-U34-U33	1/3.2(2)

C9—C10—C11—C12	-0.8 (4)	C30—C31—C32—C33	-0.3 (4)
C10-C11-C12-C13	2.0 (4)	C31—C32—C33—C34	-1.3 (4)
C11—C12—C13—N2	-1.9 (4)	C32—C33—C34—N5	2.8 (4)
C11—C12—C13—C14	173.9 (3)	C32—C33—C34—C35	-172.5 (3)
C12-C13-C14-N3	-170.2 (3)	C33—C34—C35—N6	170.2 (2)
C12—C13—C14—C15	6.2 (4)	C33—C34—C35—C36	-5.5 (4)
C13—N2—C9—C7	177.1 (2)	C34—N5—C30—C28	-176.3 (2)
C13—N2—C9—C10	0.6 (4)	C34—N5—C30—C31	0.8 (4)
C14—N3—C16—C17	79.8 (3)	C35—N6—C37—C38	-81.6 (3)
C14—N3—C16—C21	-107.5 (3)	C35—N6—C37—C42	105.6 (3)
C16—N3—C14—C13	-177.5 (2)	C37—N6—C35—C34	-178.9 (2)
C16—N3—C14—C15	6.3 (4)	C37—N6—C35—C36	-3.4 (4)
C16-C17-C18-C19	-0.7 (5)	C37—C38—C39—C40	0.7 (5)
C17—C16—C21—C20	0.5 (4)	C38—C37—C42—C41	-1.0 (4)
C17—C18—C19—C20	1.0 (5)	C38—C39—C40—C41	-1.4 (5)
C18-C19-C20-C21	-0.6 (5)	C39—C40—C41—C42	1.0 (5)
C19—C20—C21—C16	-0.2 (5)	C40—C41—C42—C37	0.2 (5)
C21—C16—C17—C18	-0.1 (4)	C42—C37—C38—C39	0.5 (4)

Symmetry codes: (i) -*x*+1, -*y*+3/2, *z*; (ii) -*x*+1/2, -*y*+1, *z*.